

650V N-Channel Planar MOSFET

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

650V N-Channel Planar MOSFET

650V N-Channel Planar MOSFET Power Transistor

DD65N04Ax Data Sheet

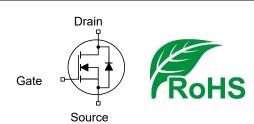
Rev. 2024 V1.0

650V N-Channel Planar MOSFET

Description

650V N-Channel Planar MOSFET

DD65N04Ax is HRM high voltage MOSFET family based on advanced planar stripe DMOS technology. This advanced MOSFET family has optimized on-state resistance, and also provides superior switching performance and higher avalanche energy strength. This device family is suitable for high efficiency switch mode power supplies.


Features

- RDSON=2.7Ω @Vgs=10V, Id=2A
- Low gate Charge(typical 12.6nC)
- Low Crss (typical 1.3pF)
- Fast switching capability
- 100% avalanche tested
- Improved dv/dt capability
- ●RoHS compliant

TO-220F TO-252

Applications

- Switch Mode Power Supply
- Uninterruptible Power Supply (UPS)
- TV Power
- A dapter/Charger

Key Performance Parameters

Parameter	Value	Unit
V_{DS}	650	V
R _{DS(on),typ}	2.7	Ω
$Q_{g,typ}$	12.6	nC
I _D	4	Α
I _{D,pulse}	16	Α

Device Marking and Package Information

Device	Package	Marking
DD65N04AFT	TO-220F	65N04AFT
DD65N04AD	TO-252	65N04AD

滁州华瑞微电子科技有限公司 Chuzhou HRM Electronic Technology Co.,Ltd.

Absolute Maximum Ratings $T_C = 25^{\circ}C$, unless otherwise noted				
Parameter		Symbol	Value	Unit
Drain-Source Voltage(V _{GS} =0V))	V _{DS}	650	V
Continuous Drain Current¹)	T _C = 25°C		4	^
Continuous Drain Current	T _C = 100°C	I _D	2.4	A
Pulsed Drain Current ²⁾	•	I _{D,pulse}	16	А
Gate-Source Voltage		V_{GS}	±30	V
Single Pulse Avalanche Energy³)		E _{AS}	208	mJ
Peak Diode Recovery dv/dt 4)		dv/dt	5	V/ns
Power Dissipation For TO-220F		В	26.7	10/
Power Dissipation For TO-252		P _D	34.4	W
Continuous Diode Forward Current		Is	4	
Diode Pulsed Current ²⁾		I _{S,pulse}	16	A
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55~+150	°C

Thermal Resistance For TO-220F			
Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R_{thJC}	4.69	• °C/W
Thermal Resistance, Junction-to-Ambient	R_{thJA}	80	*C/VV

Thermal Resistance For TO-252			
Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R_{thJC}	3.63	°C/W
Thermal Resistance, Junction-to-Ambient	R_{thJA}	62	0/ ۷۷

Notes

- 1) Limited by maximum junction temperature.
- 2) Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3) L=26mH, I $_{AS}$ =4A, RG=25 Ω ,VDD=80V,Start TJ=25 $^{\circ}$ C.
- 4) $I_{SD} \le 4A$, di/dt $\le 100A/\mu s$, VDD $\le BV_{DSS}$, Start $T_J = 25$ °C.

滁州华瑞微电子科技有限公司 Chuzhou HRM Electronic Technology Co.,Ltd.

Downwater		To at Oour distings		Value		
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 250\mu A$	650			V
Zero Gate Voltage Drain Current		$V_{DS} = 650V$ $V_{GS} = 0V, T_{J} = 25^{\circ}C$			1	шΛ
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 650V,$ $V_{GS} = 0V, T_{J} = 150^{\circ}C$			100	μΑ
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 30V$			±100	nA
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
Drain-Source On-State-Resistance	R _{DS(on)}	$V_{GS} = 10V, I_D = 2A$		2.7	3.1	Ω
Gate Resistance	R _G	f = 1.0MHz open drain		1.4		Ω
Dynamic Characteristics						
Input Capacitance	C _{iss}			537		pF
Output Capacitance	C _{oss}	$V_{GS} = 0V, V_{DS} = 25V$ f = 1.0MHz		42		
Reverse Transfer Capacitance	C _{rss}			1.3		
Total Gate Charge	Qg			12.6		
Gate-Source Charge	Q_{gs}	$V_{DD} = 520V, I_{D} = 4A$		4.2		nC
Gate-Drain Charge	Q_{gd}	$V_{DD} = 520V, I_{D} = 4A$ $V_{GS} = 10V$		2.6		
Gate Plateau Voltage	V _{Plateau}			4.9		V
Turn-on Delay Time	t _{d(on)}	$V_{DD} = 325V, I_{D} = 4A$ $R_{G} = 12\Omega, V_{GS} = 10V$		14		
Turn-on Rise Time	t _r			16		
Turn-off Delay Time	t _{d(off)}			32		ns
Turn-off Fall Time	t _f			11		
Drain-Source Body Diode Character	ristics		•		· · · · ·	
Body Diode Forward Voltage	V _{SD}	$T_J = 25^{\circ}C, I_{SD} = 4A$ $V_{GS} = 0V$			1.2	V
Reverse Recovery Time	t _{rr}	V _R = 520V		256		ns
Reverse Recovery Charge	Q _{rr}	$I_F = 4A, di_F/dt = 100A/\mu s$		1.2		μC

Typical Characteristics $T_J = 25^{\circ}$ C, unless otherwise noted

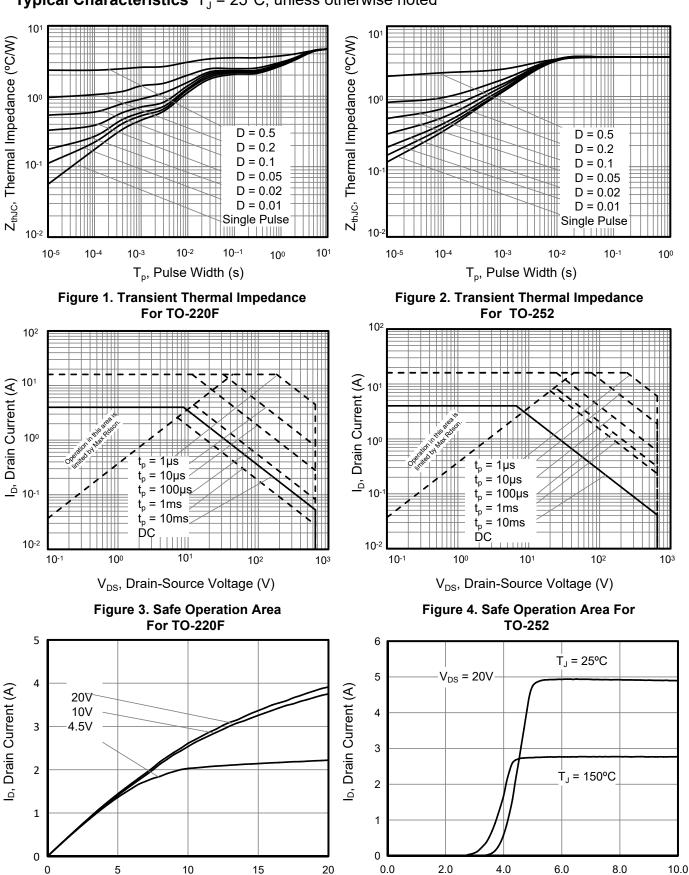
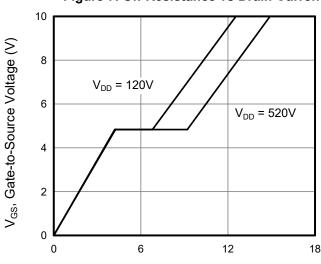


Figure 5. Output Characteristics

V_{DS}, Drain-to-Source Voltage (V)

Figure 6. Transfer Characteristics


V_{GS}, Gate-to-Source Voltage (V)

Typical Characteristics $T_J = 25^{\circ}C$, unless otherwise noted

Figure 7. On-Resistance vs Drain Current

Q_g, Total Gate Charge (nC) Figure 9. Gate Charge

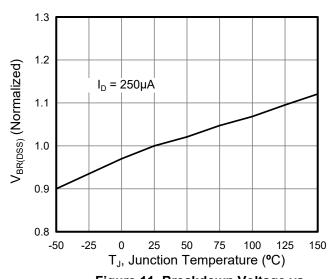


Figure 11. Breakdown Voltage vs Junction Temperature

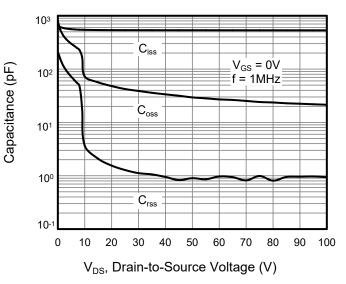


Figure 8. Capacitance

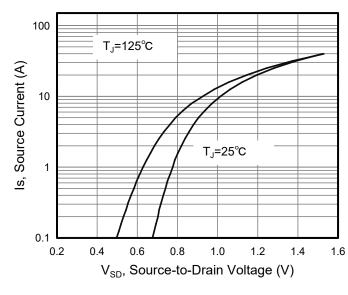


Figure 10. Body Diode Forward Voltage

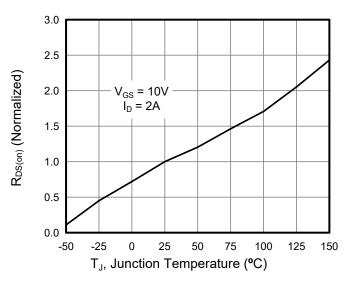


Figure 12. On-Resistance vs Temperature

Figure A: Gate Charge Test Circuit and Waveform

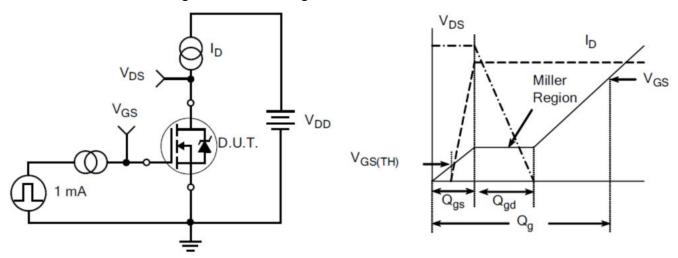
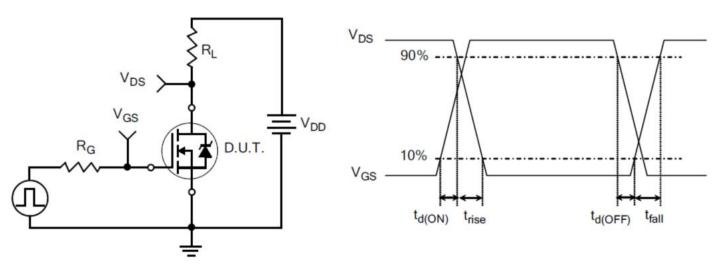
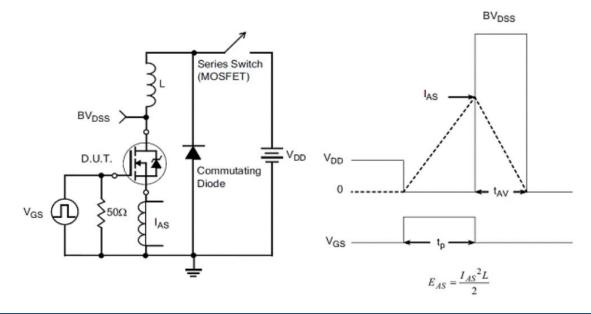
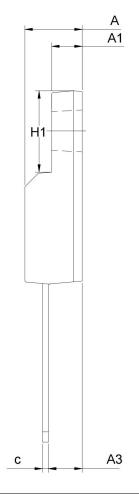
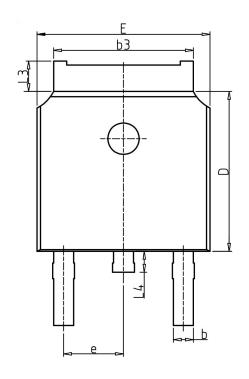


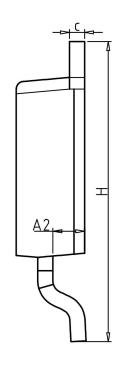
Figure B: Resistive Switching Test Circuit and Waveform

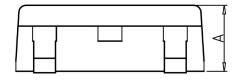



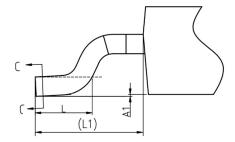


Figure C: Unclamped Inductive Switching Test Circuit and Waveform

Outlines TO-220F Package






SYMBOL	Unit: mm		
STWIBOL	MIN	MAX	
А	4.45	4.9	
A1	2.3	2.8	
A3	2.5	3.03	
b	0.65	0.95	
b2	1.28	1.56	
С	0.4	0.65	
D	15.5	16.24	
D1	15.27	16.07	
E	9.91	10.36	
е	2.54BSC		
H1	6.48	6.88	
L	12.5	13.6	
L1	2.6	3.5	
ФР	3.03	3.48	
Q	3.1	3.5	



Outlines TO-252 Package

SYMBOL	Unit: mm		
STWIBOL	MIN	MAX	
Α	2.1	2.5	
A1	0	0.2	
A2	0.88	1.17	
b	0.5	0.9	
b3	5.1	5.53	
С	0.4	0.62	
D	5.4	6.4	
E	6.3	6.9	
е	2.286BSC		
Н	9.25	10.5	
L	1.35	1.8	
L1	2.4	3.4	
L3	0.82	1.412	
L4	0.5	1	

滁州华瑞微电子科技有限公司 Chuzhou HRM Electronic Technology Co.,Ltd.

Disclaimer

HRM has made reasonable commercial efforts to ensure that the information given in this datasheet is correct. However, it must clearly be understood that such information is for guidance only and does not constitute any representation or form part of any offer or contract.

For documents and material available from this datasheet, HRM does not warrant or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, technology or process disclosed hereunder.

HRM reserves the rights to at its own discretion to make any changes or improvements to this datasheet. Unless said datasheet is incorporated into the formal contract, any customer should not rely on the information as any specification or product parameters duly committed by HRM. Customers are hereby advised to verify that the information contained herein is current and complete before the entering of any contract or acknowledgement of any purchase order. Accordingly, all products specified hereunder shall be sold subject to HRM's terms and conditions supplied at the time of order acknowledgement. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

HRM does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information contained herein shall be only permissible if such reproduction is without any modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. HRM is not responsible or liable for such altered documentation.

Resale of HRM's products with statements different from or beyond the parameters stated by HRM for that product or service voids all express or implied warrantees for the associated HRM's product or service and is unfair and deceptive business practice. HRM is not responsible or liable for any such statements.

HRM's products are not authorized for use as critical components in life support devices or systems without the express written approval of HRM. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.