
Description:

This N-Channel MOSFET uses advanced SGT technology and design to provide excellent $R_{DS(on)}$ with low gate charge. It can be used in a wide variety of applications.

Features:

- 1) $\rm V_{DS}\!=\!30V, I_D\!=\!220A, R_{DS(ON)}\!<\!1.2\,m\,\Omega$ @V $_{GS}\!=\!10V$ (Typ : 1m
- 2) Low gate charge.
- 3) Green device available.
- 4) Advanced high cell denity trench technology for ultra low R_{DS(ON)}.
- 5) Excellent package for good heat dissipation.

Package Marking and Ordering Information:

Part NO.	Marking	Package	Packing
DON220N03T	220N03T	DFN5*6-8	5000 pcs/Reel

Absolute Maximum Ratings: (T_j=25℃ unless otherwise noted)

Symbol	Parameter	Ratings	Units
V _{DS}	Drain-Source Voltage	30	V
V _{GS}	Gate-Source Voltage	±20	V
	Continuous Drain Current-T _C =25℃	220	
I _D	Continuous Drain Current-T _C =100℃	130	А
I _{DM}	Pulsed Drain Current ²	450	
E _{AS}	Single Pulse Avalanche Energy ³	180	mJ
P _D	Power Dissipation -T _C =25 $^{\circ}$ C	100	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	${\mathbb C}$

Thermal Characteristics:

Symbol	Parameter	Max	Units
R _{OJC}	Thermal Resistance, Junction to Case	0.95	°C/W
R _{OJA}	Thermal Resistance, Junction to Ambient	62	°C/W

Electrical Characteristics: (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
Off Characteristics								
BV _{DSS}	Drain-Sourtce Breakdown Voltage	V _{GS} =0V,I _D =250 μ A	30			V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} =0V, V _{DS} =30V			1	μА		
l _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA		
On Characteristics	On Characteristics							
V _{GS(th)}	GATE-Source Threshold Voltage	V _{GS} =V _{DS} , I _D =0.25mA	1	1.5	2	V		
R _{DS(ON)}	Drain-Source On Resistance	V _{GS} =10V,I _D =20 A		1	1.2	_		
		V _{GS} =4.5V,I _D =10 A		1.3	1.6	m Ω		
Dynamic Characteristics								
C _{iss}	Input Capacitance 4	V _{DS} =15V, V _{GS} =0V, f=1MHz	5	7.15	9.2	nF		
C _{oss}	Output Capacitance ⁴		2	2.9	3.8	nF		
C _{rss}	Reverse Transfer Capacitance 4		149	549	949	pF		
Switching Characteris	tics ⁴							
t _{d(on)}	Turn-On Delay Time			12		ns		
t _r	Rise Time	V_{DD} =15V, I_{D} =100A, R_{G} =1.6 Ω V_{GS} =10V		9		ns		
t _{d(off)}	Turn-Off Delay Time			50		ns		
t _f	Fall Time			9		ns		
Qg	Total Gate Charge			90		nC		
\mathbf{Q}_{gs}	Gate-Source Charge	V _{GS} =0 to 10V, V _{DD} =15V,		17		nC		
\mathbf{Q}_{gd}	Gate-Drain "Miller" Charge	I _D =100A		16		nC		
Drain-Source Diode C	haracteristics				1			
Symbol	Parameter	Conditions	Min	Тур	Max	Units		
V _{SD}	Source-Drain Diode Forward Voltage	V _{GS} =0V,I _{SD} =100A		0.86	1.1	V		
Trr	Reverse Recovery Time	V _R =15V, I _F =100A		55	110	ns		
Qrr	Reverse Recovery Charge	dI _F /dt=100A/us		70	140	nc		
Is	Continuous Source Current	VG=VD=0V			220	Α		
I _{SM}	Pulsed Source Current	-			450	А		

Notes:

- 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. I_{AS} = 60.0A, V_{DD} = 30V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. Defined by design. Not subject to production test.

Typical Characteristics: (Tc=25°C unless otherwise noted)

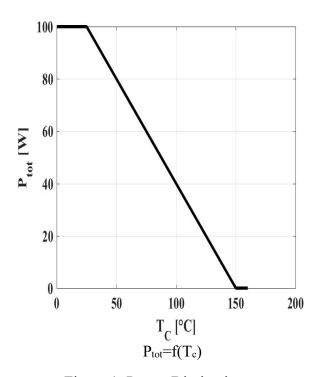


Figure 1: Power Dissipation

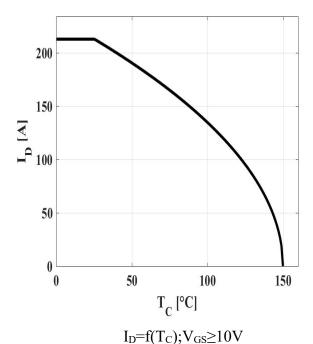


Figure 3: Drain Current

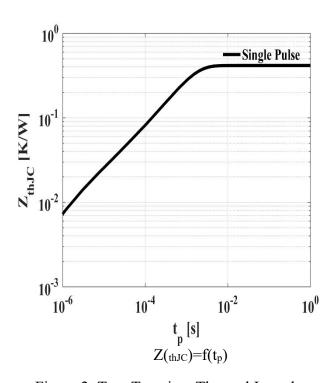
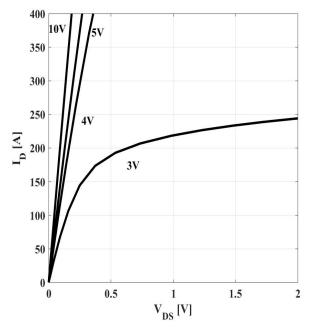



Figure 2: Typ. Transient Thermal Impedance

 $I_D=f(V_{DS});Tj=25^{\circ}C;$ parameter: V_{GS}

Figure 4: Typ. Output Characteristics

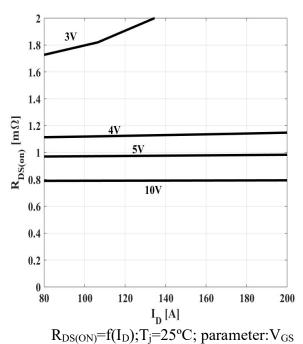


Figure 5: Typ. Drain-Source On-State Resistance

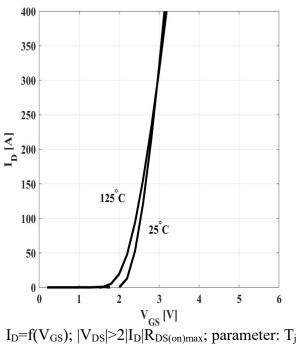


Figure6: Typ. Transfer Characteristics

Figure 7: Typ. Forward Transconductance

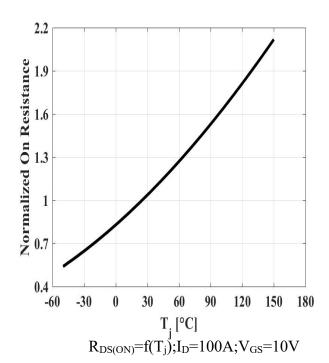
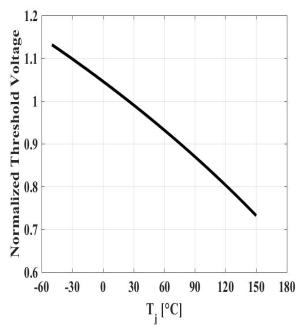



Figure 8: Typ. Drain-Source On-State Resistance

 $V_{GS(th)} = f(T_j); V_{GS} = V_{DS}; I_{DS} = 250 \mu A$

Fg ure9: Typ.Gate Threshold Voltage

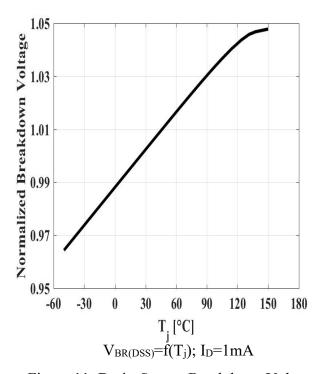
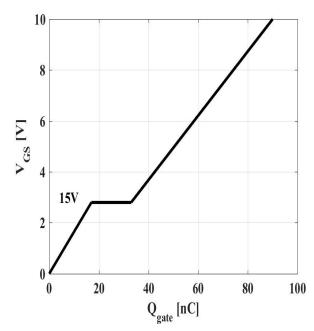



Figure 11: Drain-Source Breakdown Voltage

 V_{GS} = $f(Q_{gate})$, I_D =50A pulsed

Figure 10: Typ. Gate Charge

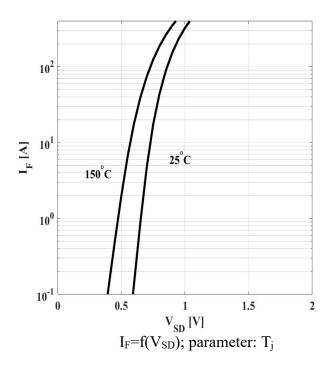
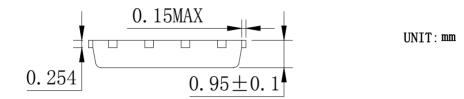
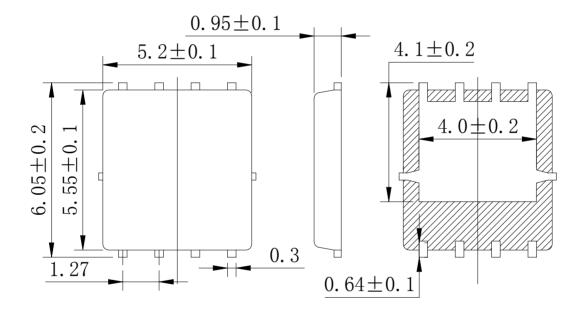
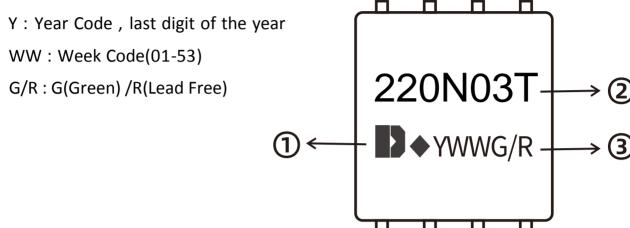




Figure 12: Forward Characteristics of Reverse Diode

DFN5×6-8 Package Information:



Marking Information:

- ①. Doingter LOGO
- ②. Part NO.
- ③. Date Code(YWWG / R)

Attention:

- Information furnished in this document is believed to be accurate and reliable. However, Shenzhen Doingter Semiconductor Co.,Ltd. assumes noresponsibility for the consequences of use without consideration for such information nor use beyond it.
- Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, Shenzhen Doingter complies with the agreement.

 Products and information provided in this document have no infringement of patents.
- Shenzhen Doingter assumes noresponsibility for any infringement of other rights of third parties which may result from the use of such products and information. This document supersedes and replaces all information previously supplied.

 Is a registered trademark of Shenzhen Doingter Semiconductor Co., Ltd. Copyright © 2013 Shenzhen DoingterSemiconductor Co., Ltd. Printed All rights reserved.