MPQ7225

16-Channel Current Sink LED Driver with Adaptive Feedback Control (AFC), AEC-Q100 Qualified

DESCRIPTION

The MPQ7225 is a 16-channel current sink LED driver. Each channel is rated for up to 200mA of current, and 16 ICs can be cascaded together to create a 256-channel solution.

The MPQ7225 is optimized for animated or dynamic lighting applications. It employs 12-bit pulse-width modulation (PWM) dimming and 6-bit analog dimming register per channel, with individual control of each channel. The MPQ7225 is designed to function across distanced PCBs with a robust, high-speed, CAN-compatible differential interface.

The MPQ7225 features adaptive feedback control (AFC) to maximize system efficiency. The output voltage of the pre-regulator (e.g. buck voltage regulator) is adjusted in real time so that the voltage across the channels is kept at a minimum value (typically 300mV headroom at 200mA).

Frequency spread spectrum (FSS) optimizes EMC performance. The LED current's ramping rate and the phase shift between channels can be digitally configured as well.

The MPQ7225 can aid a system design for functional safety with a failsafe (/FS) indicator. The full protection suite includes LED open/short protection, ISET pin open/short protection, and thermal shutdown. If a fault condition occurs, the fault indicator pulls low, and the matching fault register is set.

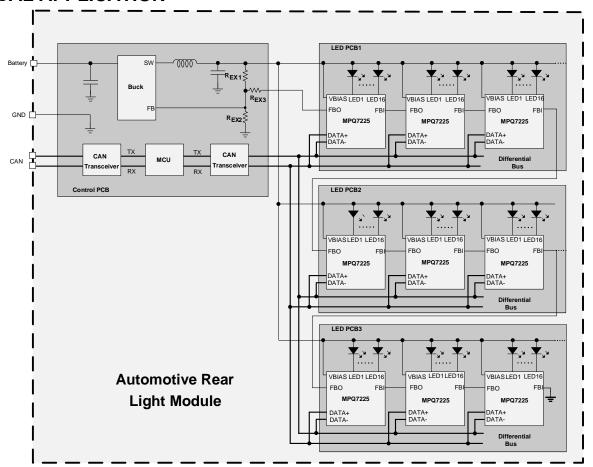
The MPQ7225 is available in a QFN-32 (5mmx6mm) package. It is AEC-Q100 qualified.

FEATURES

- Scalability:
 - 16 Channels, 200mA/Channel (Max Current)
 - Cascade up to 16 ICs for up to 256 Channels
 - Pin-Configurable Device Address
- Designed for Automotive Applications:
 - Supports 2.5V Cold Crank
 - Operating Junction Temperature from -40°C to +150°C

FEATURES (continued)

- Cooler Thermals and Optimized Efficiency:
 - Adaptive Feedback Control (AFC)
 Dynamically Optimizes Pre-Regulator
 Output
 - 300mV Current Sink Headroom at 200mA
 - Headroom Optimization for Multiple ICs
- Robust Communication
 - 2Mbps CAN Compatible Differential Interface
 - 12-Bit Pulse-Width Modulation (PWM)
 Dimming or 6-Bit Analog Dimming for Each Channel
- Optimized EMI/EMC
 - Configurable Phase Shift and Slew Rate
 - Frequency Spread Spectrum (FSS) (Internal Clock)
 - Selectable PWM Dimming Frequency
 - CISPR25 Class 5 Compliant
- Additional Features
 - Functional Safety Document Available to Support System in Achieving ASIL Requirements
 - Failsafe (/FS) Pin and Fault Registers for System Protection and Diagnostics
 - LED Short (to GND and Battery)
 - LED Open
 - Thermal Warning and Shutdown
 - ISET Pin Open/Short
- One-Time Programmable (OTP) Memory
- Available in a QFN-32 (5mmx6mm) Package with Wettable Flank
- Available in AEC-Q100 Grade 1


APPLICATIONS

- Dynamic/Animated Tail Lights
- · Adaptive Matrix Headlights
- Daytime Running Lights (DRLs)
- Turn Signals
- Puddle Lights

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

ORDERING INFORMATION

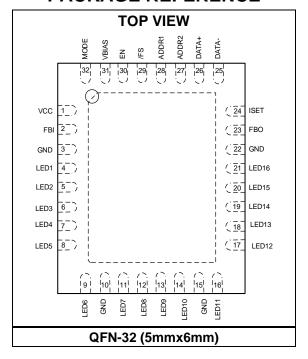
Part Number*	Package	Top Marking	MSL Rating**
MPQ7225GQJE-xxxx- AEC1***,****	QFN-32 (5mmx6mm)	See Below	2

^{*} For Tape & Reel, add suffix -Z (e.g. MPQ7225GQJE-xxxx-AEC1-Z).

****Wettable flank

TOP MARKING

MPSYYWW


MP7225

LLLLLLL

E

MPS: MPS prefix YY: Year code WW: Week code MP7225: Part number LLLLLL: Lot number E: Wettable flank

PACKAGE REFERENCE

^{**} Moisture Sensitivity Level Rating

^{*** &}quot;xxxx" is the configuration code identifier for the register settings stored in the OTP register. Each "x" can be a hexadecimal value between 0 and F. The default code is ""0000". Contact an MPS FAE to create this unique number.

PIN FUNCTIONS

Pin#	Name	Description
1	VCC	Internal bias supply. The VCC pin is powered from VBIAS, and it supplies power to the internal control circuit and gate drivers. Place a ≥10µF decoupling capacitor from VCC to ground, and close to VCC. VCC needs power from an external source if V _{BIAS} is below 3.5V.
2	FBI	Feedback input. The FBI pin indicates the current sink headroom information input between multiple MPQ7225 devices. Connect FBI to GND if it is not used.
3, 10, 15, 22	GND	Ground. GND is the reference ground of the power device, and requires careful consideration during PCB layout.
4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21	LED1– LED16	LED channel 1–16 current inputs . Connect the cathodes of LED channels 1–16 to these pins. Connect the LEDx pin to GND if it is not used, and disable LEDx through the CHx_EN (0x03) register.
23	FBO	Feedback output. Connect the FBO pin to the DC/DC converter's feedback pin through a resistor divider network. FBO is used as the current sink headroom information output between multiple MPQ7225 devices. Float the pin if adaptive feedback control (AFC) is not used.
24	ISET	LED current set. Connect an external resistor from ISET to ground to set the LED average current. (The I_{LED} for each Channel (mA) = $600 / R_{ISET}$ (k Ω).) If the ISET pin is shorted to ground or an open condition is detected, the device latches off and asserts /FS.
25	DATA-	Differential interface (negative).
26	DATA+	Differential interface (positive).
27	ADDR2	Address setting. Configure the device's address by connecting this pin to VCC/GND or to GND with a $35k\Omega$ (with $\pm 10\%$ range) resistor. For more details, see the Device Address section on page 27.
28	ADDR1	Address setting. Configure the device's address by connecting this pin to VCC/GND or to GND with a $35k\Omega$ (with $\pm 10\%$ range) resistor. For more details, see the Device Address section on page 27.
29	/FS	Failsafe output. The /FS pin is an active-low, open-drain output. /FS pulls low if any of the following occur: LED short, LED open, thermal shutdown, and ISET pin open or short. The /FS pin can support a continuous connection to VBIAS or VCC through a pull-up resistor. Float this pin if it is not used.
30	EN	Enable input. Pull EN above 2.2V to enable the part, and pull EN below 0.8V to shut down the part. The EN pin can be directly pulled to VBIAS through a resistor.
31	VBIAS	Bias supply. The MPQ7225 operates from a 2.5V to 18V input rail. A capacitor (C _{IN}) is required, and it must be placed close to VBIAS to decouple the input rail.
32	MODE	Mode selection. The MODE pin is the master/slave mode selection pin. Tie MODE to GND to configure master mode, or tie MODE to VCC to configure slave mode. If AFC is not used, connect all devices' MODE pins to GND.
-	Exposed pad	Exposure thermal pad. The exposed pad has no internal electrical connection to GND. Connect the exposed pad to the external GND plane on the board for optimal thermal performance.

ABSOLUTE MAXIMUM RATINGS (1)

V _{VBIAS}	-0.3V to +20V
V _{LEDx}	
FBO, EN, /FS	0.37 10 +207
DATA+, DATA	
All other pins	0.3V to +4V
Continuous power dissipation	
QFN-32 (5mmx6mm)	5.9W
Junction temperature	150°C
Lead temperature	
Storage temperature	
ESD Ratings	
Human body model (HBM)	Class 2 (3)
Charged device model (CDM	
Recommended Operating	g Conditions
VCC (if externally supplied)	3.2V to 3.5V
VBIAS voltage (V _{VBIAS})	
V DIAO VOILAGO (V VBIAS)	

LED current (I_{LED}).......200mA/ch

Operating junction temperature (T_J).....

.....-40°C to +150°C

Thermal Resistance θ_{JA} θ_{JC}

QFN-32 (5mmx6mm) JESD51-7......23.8.....1.4....°C/W ⁽⁵⁾ EVQ7225-QJ-00A......21.2.....0.93...°C/W ⁽⁶⁾

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{JA}, and the ambient temperature, T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation can cause excessive die temperature, and the regulator may go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) Per AEC-Q100-002.
- 4) Per AEC-Q100-011.
- 5) Measured on a JESD51-7, 4-layer PCB. The values given in this table are only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application. The value of θ_{JC} shows the thermal resistance from junction-to-case bottom.
- 6) Measured on a standard EVB for the MPQ7225: 83.5mmx83.5mm size, 4-layer PCB, 2oz. The value of θ_{JC} shows the thermal resistance from junction-to-case top.

ELECTRICAL CHARACTERISTICS

 $V_{BIAS} = 6.5V$, $T_J = -40$ °C to +150°C, typical values are at $T_J = 25$ °C, unless otherwise noted.

Parameter	Symbol	Condition		Min	Тур	Max	Units
Supply Voltage	•					-	•
		Disabled, E	N pin is low (shutdown)		0.5	2.5	μA
		EN_ANA b	o LED load (EN pin is high, bit = 0, quiescent current), nally supplied, V _{BIAS} = 6.5V		0.6	1	mA
BIAS supply current	I _{BIAS}	EN_ANA k	o LED load (EN pin is high, bit = 0, quiescent), VCC supplied, V _{BIAS} = 14V		1.4	2.1	mA
		EN_ANA I	o LED load (EN pin is high. bit = 0, quiescent), VCC upplied, V _{BIAS} = 6.5V		7	12	mA
		EN_ANA b	o LED load (EN pin is high, bit = 0, quiescent), VCC upplied, V _{BIAS} =14V		8	13	mA
VBIAS under-voltage	V5146 18# 6	Rising edge	e		1.8		V
lockout (UVLO) threshold	V _{BIAS_UVLO}	Falling edge	е		1.6		V
VCC supply current		Only required if VCC externally supplied	Disabled, EN pin is low (shutdown), Vcc = 3.5V		0.05	60	μA
	lcc		V _{CC} = 3.5V, enabled, no LED load. (EN pin is high, quiescent current)		6.5	13	mA
			$V_{CC}=3.5V,~16~LED$ channels are enabled (EN pin is high, EN_ANA bit = 1, PWM = 100%, R_{ISET}=6.04k\Omega, I_{LED}=100mA)		12	20	mA
Internal VCC regulator voltage	Vcc	I _{VCC} = 0mA		3.1	3.3	3.5	V
VCC supply UVLO	V	Rising edge	9	2.8	3	3.2	V
threshold	V _{CC_UVLO}	Falling edge	е	2.6	2.8	3.0	V
EN throobold	V _{EN_R}	V _{EN} - V _{GND}		2.2			V
EN threshold	V _{EN_} F	Ven - Vgnd				0.8	V
LED Current							
1 50 (()		R _{ISET} = 3.01	IkΩ, T _J = 25°C	194.35	199.34	204.32	mA
LED current (channel output to ideal current error)	lico	R _{ISET} = 3.01	$IkΩ$, $T_J = -40$ °C to $+150$ °C	189.37	199.34	209.3	mA
	ILED	R _{ISET} = 6.04	4kΩ, T _J = 25°C	96.85	99.34	101.82	mA
, 		$R_{ISET} = 6.04$	$1k\Omega$, $T_J = -40^{\circ}C$ to $+150^{\circ}C$	94.37	99.34	104.3	mA
		I _{LED} = 200m	nA		300	400	
Current sink headroom	V_{LEDx}	I _{LED} = 100m	nA		150	250	mV
		$I_{LED} = 50 \text{mA}$			75	125	
ISET voltage	V _{ISET}	$R_{ISET} = 3.01$	$IkΩ$ (or $I_{ISET} = 200μA$)	0.57	0.60	0.63	V

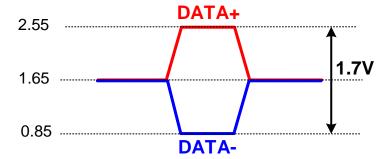
ELECTRICAL CHARACTERISTICS

 $V_{BIAS} = 6.5V$, $T_J = -40$ °C to +150°C, typical values are at $T_J = 25$ °C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Channel output leakage	luco	PWM = 0% (a single channel), $T_J = -40^{\circ}\text{C}$ to +150°C			2	μΑ
current	I _{LKG}	PWM = 0% (all 16 channels), $T_J = -40$ °C to +150°C			32	μΑ
Channel-to-channel current error	I _{EER_CC}	$I_{ERR_CC} = (I_{OUTI} - I_{AVE}) / I_{AVE} \times 100\%,$ 100mA, 200mA	-5%		+5%	
Dimming						
PWM frequency	f _{PWM}	Default setting	225	250	275	Hz
PWM Frequency range		Configuration range	250		1000	Hz
PWM duty slew rate	tрwм	12-bit resolution, f _{PWM} = 250Hz	0.8	1	1.2	μs
Phase shift delay	tDELAY	PHASE_SHIFT[1:0] = 11	16	20	24	μs
LED current slew rate in PWM		Slew_RATE[1:0] = 01, rising edge, RISET = $6.04k\Omega$	2	5	10	μs
dimming		Slew_RATE[1:0]= 11, rising edge, RISET = $6.04k\Omega$	8	20	32	μs
Protection (Latch or Hiccup S	electable)					
Short LED string protection threshold	V _{LED_S}	LED_SHORT_THR[1:0] = 00	1.8	2.1	2.3	V
Short LED string protection time	t _{LED_} s	V _{LEDx} > V _{LED_S}	3.6	4	4.4	ms
Open LED string protection threshold	V _{LED_O}	LED on, real-time monitoring (cover pin short-to-GND)	50	100	150	mV
Open LED string protection time	t _{LED_O}	V _{LEDx} < V _{LED_O} (100mV)	3.6	4	4.4	ms
ISET current threshold for pin short (/FS, latch)	liset_sth		0.7	1	1.3	mA
ISET current threshold for pin open (/FS, latch)	I _{ISET_OTH}		2	4.5	7	μΑ
Thermal warning threshold (7)	T _{WARN}		135	150	165	°C
Thermal warning hysteresis (7)	Twarn_hys			20		°C
Thermal shutdown threshold (7)	T _{SD}		155	170	185	°C
Thermal shutdown hysteresis	T _{SD_HYS}			20		°C
/FS (Open Drain)			•			
Failsafe low output level	V _{FS_OL}	I _{FS_OL} = 2mA, active	0.15	0.33	0.5	V
Failsafe input current leakage	I _{FS_LKG}	Inactive			1	μA
Failsafe assert deglitch time	t _{FS-Td}		5	20	40	μs

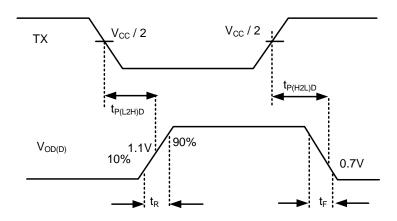
INTERFACE CHARACTERISTICS

 $V_{BIAS} = 6.5V$, $T_J = -40$ °C to +150°C, typical values are at $T_J = 25$ °C, unless otherwise noted.

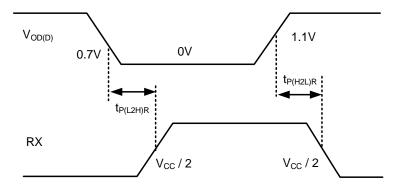

Parameters	Symbol	Condition	Min	Тур	Max	Units
Driver						
Bus output voltage (recessive)	$V_{O(R)}$	$R_L = 180\Omega$	1.15	1.65	2.15	V
Bus output voltage (DATA+) (dominant)	V _{O(D+)}	R_L = 180 Ω , see Figure 1 on page 9	2.35	2.55	2.85	٧
Bus output voltage (DATA-) (dominant)	V _{O(D-)}	R_L = 180Ω, see Figure 1 on page 9	0.5	0.85	1.15	٧
Differential output voltage (dominant)	V _{OD(D)}	$R_L = 180\Omega, V_{CC} = 3.3V$	1.4	1.7	2.35	٧
Output symmetry (dominant or recessive)	Vsym	$V_{CC} = 3.3V$, $V_{O(DATA+)} + V_{O(DATA-)}$	2.97	3.4	3.63	٧
Differential output rising time (7)	t _R	R_L = 180 Ω , C_L = 50pF, V_{CC} = 3.3V, see Figure 2 on page 9	2	5	15	ns
Differential output falling time	t _F	$R_L = 180\Omega$, $C_L = 50pF$, $V_{CC} = 3.3V$, see Figure 2 on page 9	20	25	35	ns
Propagation delay time (low-to-high level) (7)	t _{P(L2H)D}	$R_L = 180\Omega$, $C_L = 50pF$, $V_{CC} = 3.3V$, see Figure 2 on page 9	2	7	15	ns
Propagation delay time (highto-low level) (7)	t _{P(H2L)D}	R_L = 180 Ω , C_L = 50pF, V_{CC} = 3.3V, see Figure 2 on page 9	10	22	40	ns
Receiver						
Input resistance (DATA+/-)	R _{IN}	$V_{CC} = 3.3V$, $R_{IN} = \triangle V(DATA+) / \triangle I(DATA+)$	14	30	58	kΩ
Differential threshold voltage for RX going negative	V _{RXTH} -	Vcc = 3.3V	0.7	1.1	1.5	٧
Differential threshold voltage for RX going positive	V _{RXTH+}	Vcc = 3.3V	0.3	0.7	1.1	٧
Propagation delay time (low-to-high level) (7)	t _{P(L2H)R}	R_L = 180 Ω , C_L = 50pF, V_{CC} = 3.3V, see Figure 3 on page 9	3	13	30	ns
Propagation delay time (highto-low level) (7)	t _{P(H2L)R}	$R_L = 180\Omega$, $C_L = 50pF$, $V_{CC} = 3.3V$, see Figure 3 on page 9	5	18	35	ns
Input capacitance to ground (7)	CIN			20		pF

Notes:

⁷⁾ Not tested in production. Guaranteed by design and characterization.



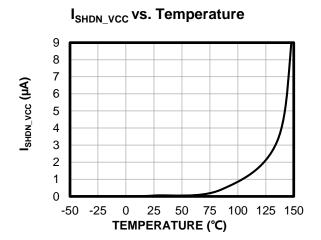
TIMING DIAGRAMS

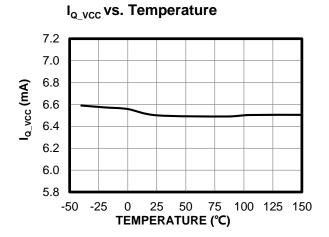


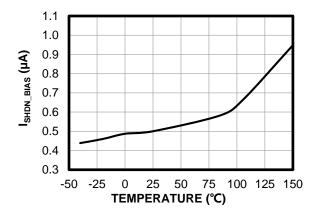
Recessive Dominant Recessive

Figure 1: Differential Interface Timing

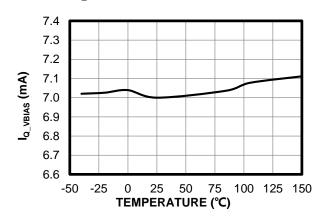
Figure 2: Driver Interface Timing

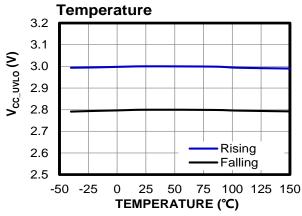


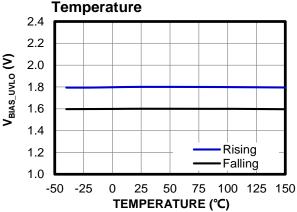

Figure 3: Receiver Interface Timing


TYPICAL CHARACTERISTICS

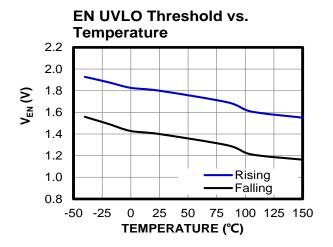
 $V_{BIAS} = 6.5V$, $T_J = -40$ °C to +150°C, unless otherwise noted.

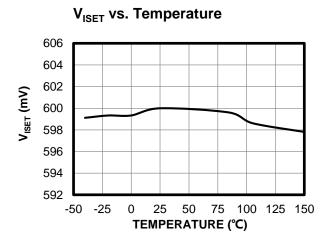


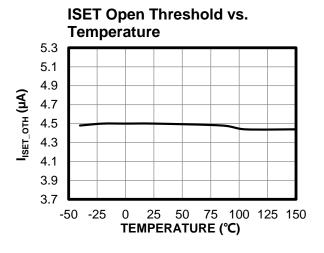

 I_{SHDN_VBIAS} vs. Temperature

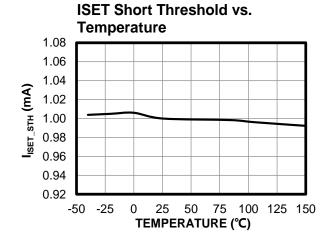

I_{Q VBIAS} vs. Temperature

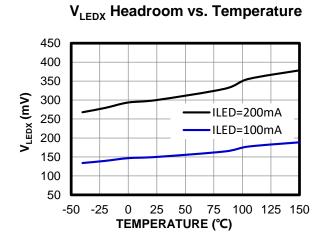
VCC UVLO Threshold vs.

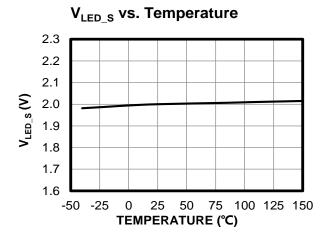

VBIAS UVLO Threshold vs.

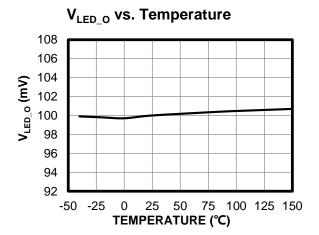


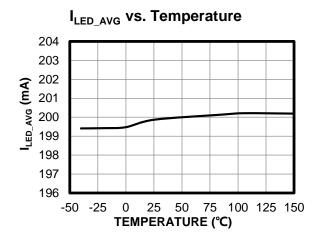



TYPICAL CHARACTERISTICS (continued)


 $V_{BIAS} = 6.5V$, $T_J = -40$ °C to +150°C, unless otherwise noted.

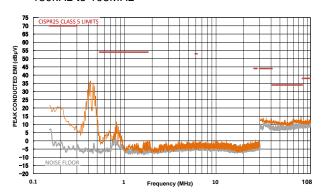






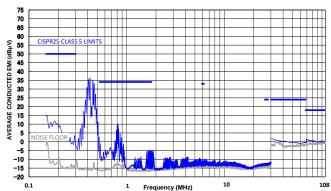
TYPICAL CHARACTERISTICS (continued)

 $V_{BIAS} = 6.5V$, $T_J = -40$ °C to +150°C, unless otherwise noted.

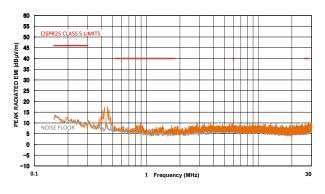


TYPICAL PERFORMANCE CHARACTERISTICS

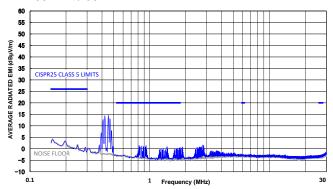
2 LEDs in series (V_{LED} = 6V), I_{LED}/channel = 200mA, T_A = 25°C, unless otherwise noted. (8)


CISPR25 Class 5 Peak Conducted Emissions

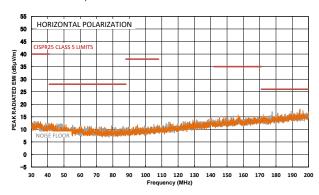
150kHz to 108MHz


CISPR25 Class 5 Average Conducted Emissions

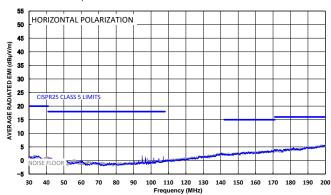
150kHz to 108MHz


CISPR25 Class 5 Peak Radiated Emissions

150kHz to 30MHz


CISPR25 Class 5 Average Radiated Emissions

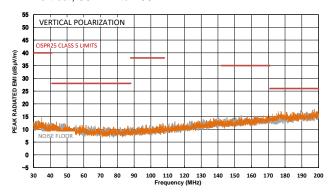
150kHz to 30MHz


CISPR25 Class 5 Peak Radiated Emissions

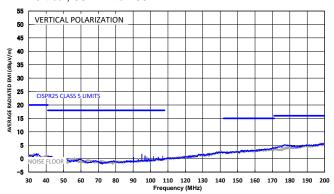
Horizontal, 30MHz to 200MHz

CISPR25 Class 5 Average Radiated Emissions

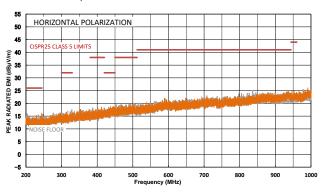
Horizontal, 30MHz to 200MHz



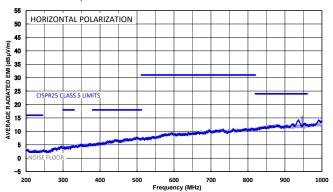
2 LEDs in series (V_{LED} = 6V), I_{LED}/channel = 200mA, T_A = 25°C, unless otherwise noted. (8)


CISPR25 Class 5 Peak Radiated Emissions

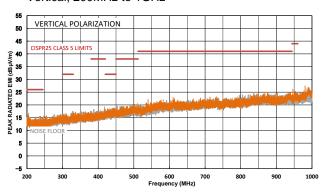
Vertical, 30MHz to 200MHz


CISPR25 Class 5 Average Radiated Emissions

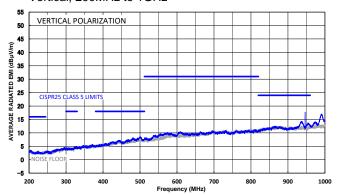
Vertical, 30MHz to 200MHz


CISPR25 Class 5 Peak Radiated Emissions

Horizontal, 200MHz to 1GHz


CISPR25 Class 5 Average Radiated Emissions

Horizontal, 200MHz to 1GHz

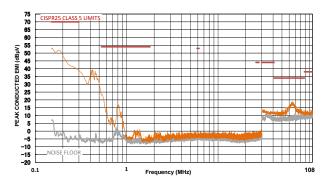

CISPR25 Class 5 Peak Radiated Emissions

Vertical, 200MHz to 1GHz

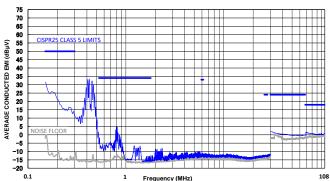
CISPR25 Class 5 Average Radiated Emissions

Vertical, 200MHz to 1GHz

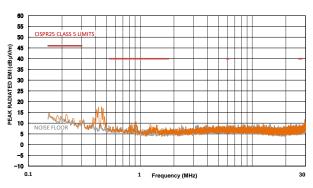
Notes:


8) The EMC test results are based on the application circuit with EMI filters (see Figure 23 on page 44).

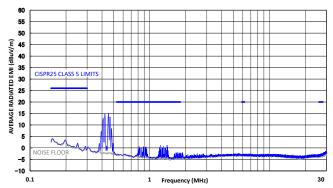
2 LEDs in series (V_{LED} = 6V), I_{LED}/channel = 200mA, T_A = 25°C, unless otherwise noted. (9)


CISPR25 Class 5 Peak Conducted Emissions

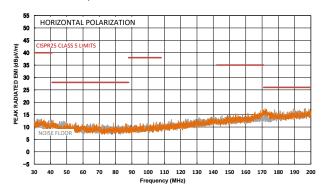
150kHz to 108MHz


CISPR25 Class 5 Average Conducted Emissions

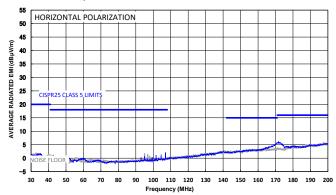
150kHz to 108MHz


CISPR25 Class 5 Peak Radiated Emissions

150kHz to 30MHz


CISPR25 Class 5 Average Radiated Emissions

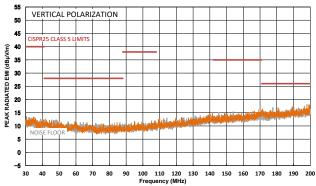
150kHz to 30MHz


CISPR25 Class 5 Peak Radiated Emissions

Horizontal, 30MHz to 200MHz

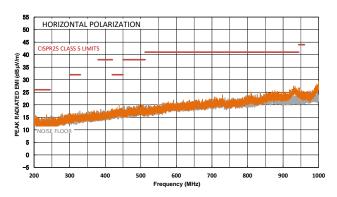
CISPR25 Class 5 Average Radiated Emissions

Horizontal, 30MHz to 200MHz

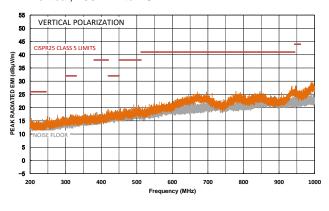


2 LEDs in series (V_{LED} = 6V), I_{LED}/channel = 200mA, T_A = 25°C, unless otherwise noted. (9)

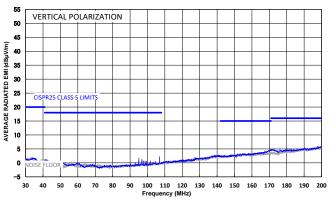
CISPR25 Class 5 Peak Radiated **Emissions**


Vertical, 30MHz to 200MHz

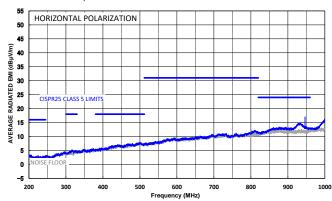
CISPR25 Class 5 Peak Radiated


Horizontal, 200MHz to 1GHz

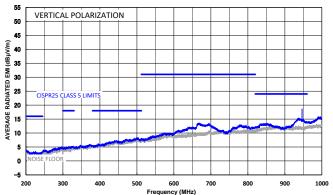
Emissions



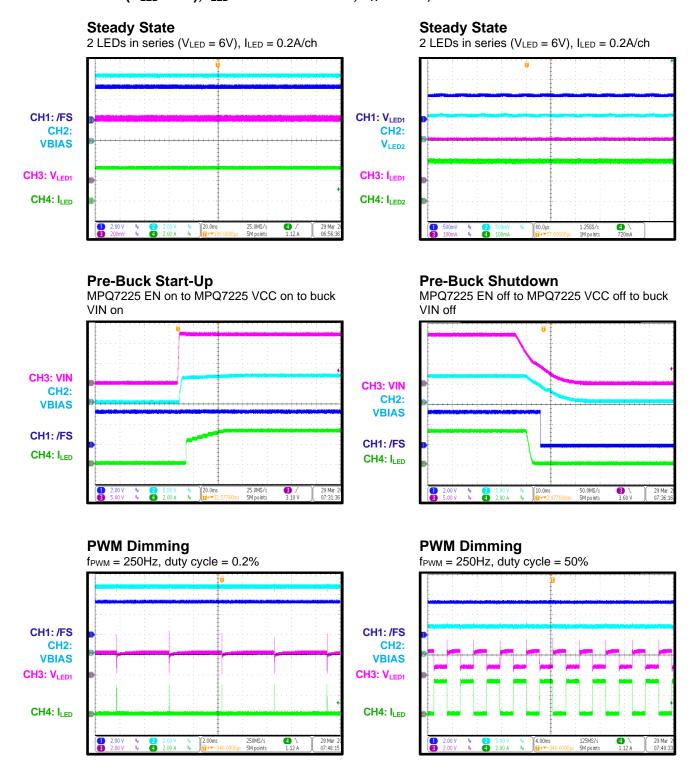
Vertical, 200MHz to 1GHz


CISPR25 Class 5 Average Radiated **Emissions**

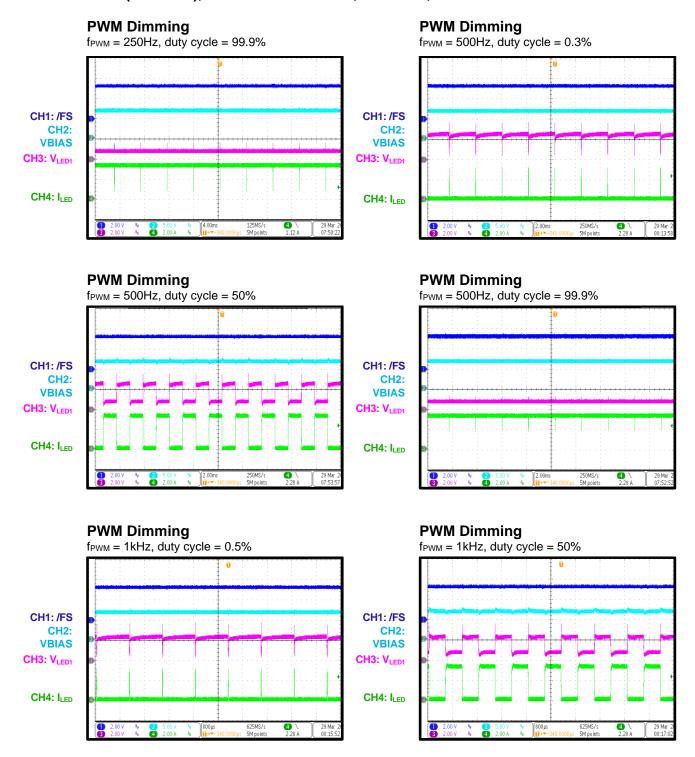
Vertical, 30MHz to 200MHz


CISPR25 Class 5 Average Radiated Emissions

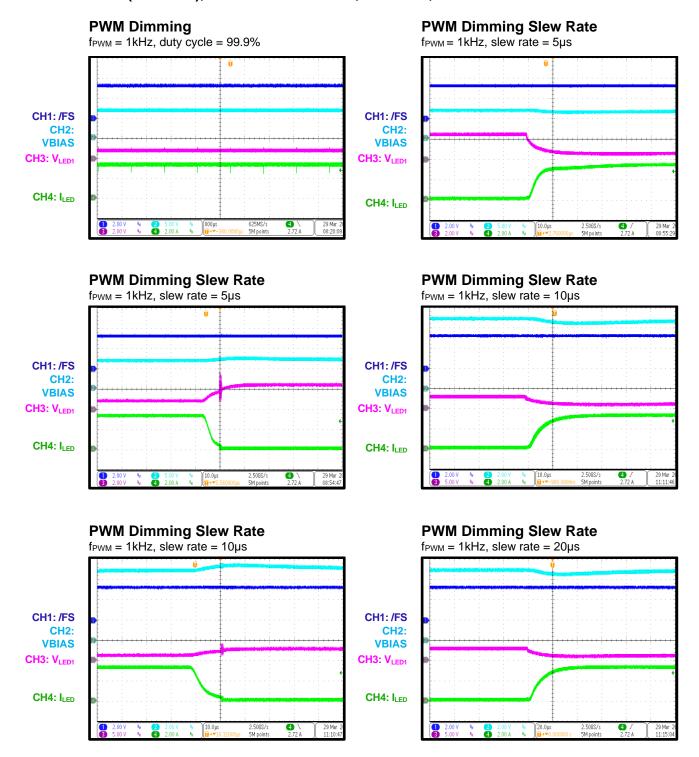
Horizontal, 200MHz to 1GHz

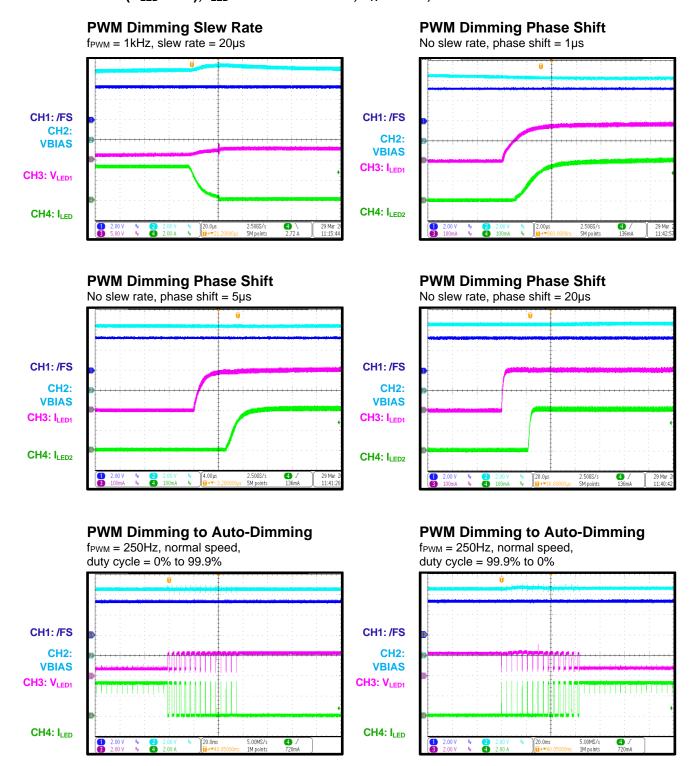

CISPR25 Class 5 Average Radiated Emissions

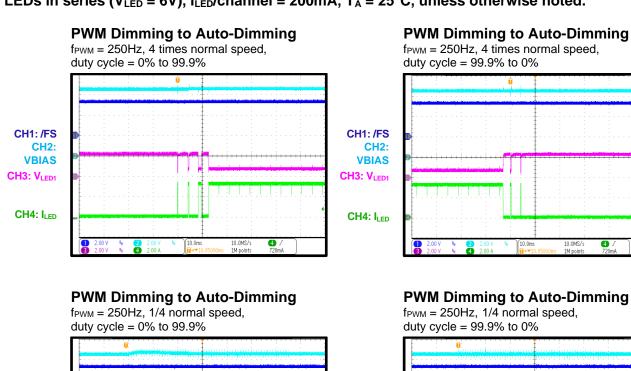
Vertical, 200MHz to 1GHz

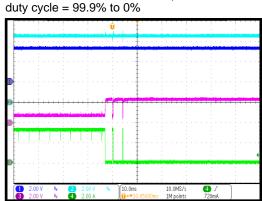


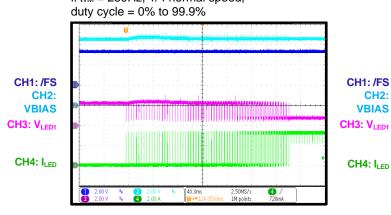
9) The EMC test results are based on the application circuit with EMI filters (see Figure 23 on page 44). The configurations are as follows: $f_{PWM} = 250$ Hz, duty cycle = 50%, phase shift = 1 μ s, slew rate = 5 μ s.

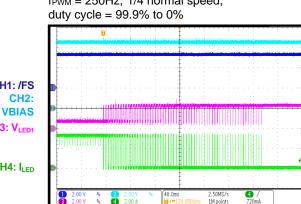


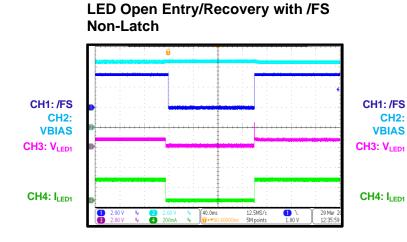


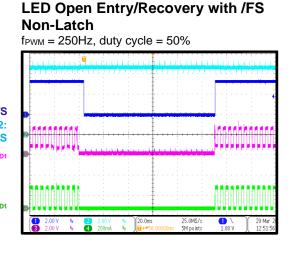


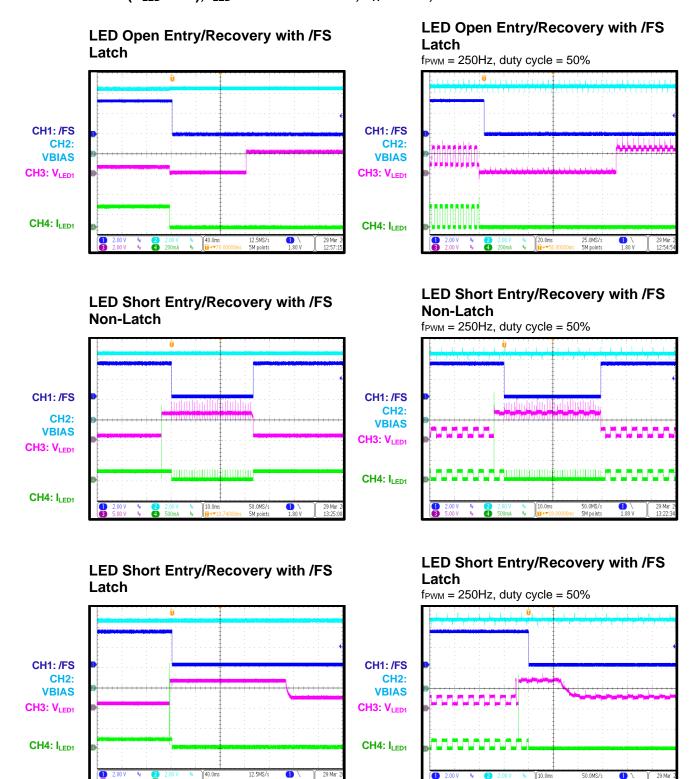


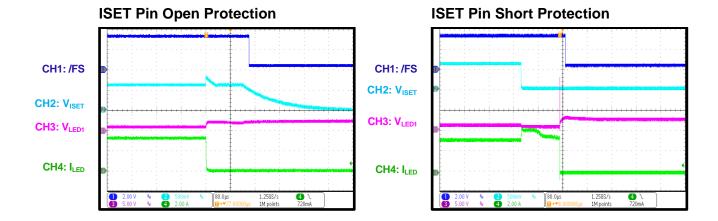


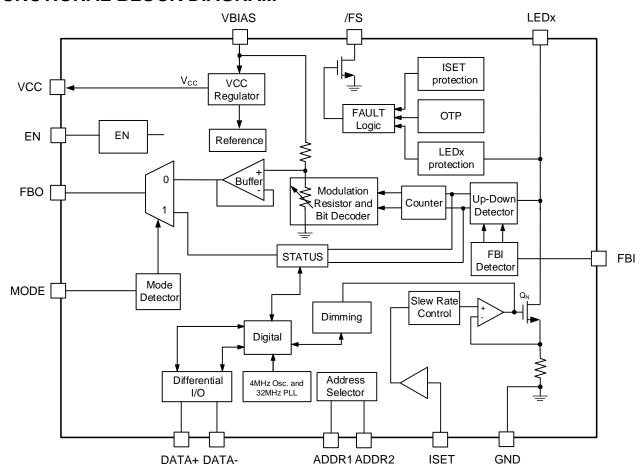












FUNCTIONAL BLOCK DIAGRAM

Figure 4: Functional Block Diagram

OPERATION

LED Current Sinks

The current sink regulators (16 channels) embedded in the MPQ7225 can be individually configured to provide up to a maximum current of 200mA for each channel. These 16 specialized current sinks are accurate to within ±5% for currents at 200mA across the full temperature range, with a string-to-string difference of ±5%.

Pre-Regulator Adaptive Feedback Control (AFC)

The MPQ7225 features adaptive feedback control (AFC) for the external pre-regulator. The output voltage (VBIAS) of the pre-regulator (e.g. the buck) is always self-adjusted based on the LED string with the lowest headroom voltage. This minimizes the LEDx pin voltage (V_{LEDx}) and maintains the target LED current (I_{LED}) for the 16 channels. Overall efficiency is maximized when the MPQ7225's current sinks operate with the minimum headroom voltage.

The number of used LED outputs are automatically detected, and only the active LED outputs are monitored for AFC. If any LED strings are not used, they can be disabled via the one-time programmable (OTP) memory using CHx_EN (0x03).

V_{LEDx} is periodically monitored by the control loop. If any of the LED outputs fall below the low-band threshold (0.45V), the external pre-regulator's output voltage increases. If all LED outputs exceed the high-band threshold (0.55V), the external pre-regulator's output decreases.

V_{LEDx} should remain between the low band and high band. The band can be configured via register 0x27 based on I_{LED}. The high-band voltage can be set between 0.25V and 0.6V, while the low-band voltage can be set between 0.2V and 0.55V. If 150mA < I_{LED} ≤ 200mA, it is recommended to set the overall band between 0.45V and 0.55V. If I_{LED} ≤ 150mA, it is recommended to set the overall band between 0.3V and 0.4V to improve efficiency.

The initial VBIAS voltage (V_{BIAS}) can also be configured via the OTP. The internal resistor divider (R1 and R2) defines both the minimum and maximum adaptive VBIAS voltage levels (see Figure 7 on page 25).

Choose the maximum V_{BIAS} based on the maximum LED string voltage specification. Before the LED drivers are active, the initial preregulator output voltage exceeds the maximum LED string voltage by about 0.3V.

One of the MPQ7225's key benefits is that its dropout information can be transferred to the DC/DC converter's feedback pin via the FBO pin to optimize system efficiency in real time. This information sharing is also available between multiple MPQ7225 devices via the FBI and FBO pins. The channel with the lowest V_{LEDx} uses its V_{LEDx} to determine the DC/DC converter's power supply output. AFC also works if multiple MPQ7225 devices are connected in parallel.

Figure 5 shows when V_{BIAS} is set with AFC.

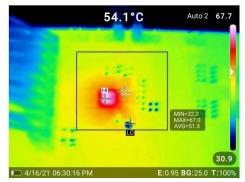


Figure 5: V_{BIAS} with AFC

Figure 6 shows when V_{BIAS} has a fixed voltage $(V_{LEDx} = 1V)$ without AFC.

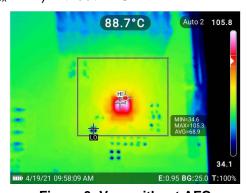


Figure 6: VBIAS without AFC

AFC improves both thermal performance and efficiency. When $I_{LED} = 200 \text{mA}$, the temperature deviation is about 38.3°C.

If AFC is not used, float the MPQ7225's FBO and MODE pins, and connect the FBI pin to GND.

Multiple Devices

The MPQ7225 can also support several devices in parallel by setting the part to master mode or slave mode through the MODE pin. If the MODE pin is connected to GND, the part is configured as the master. The slave device's FBO pin should be connected to the master's FBI pin. If the MODE pin is connected to VCC, the part is configured as a slave. The FBO pin of the master is connected to the pre-regulator's FB resistor divider (see Figure 7). Only the master device can directly adjust the VBIAS voltage; the slave chip can only deliver the VBIAS information to master device through the FBI pin.

For the master device, the FBI pin voltage (V_{FBI}) and V_{LEDx} determine how to adjust V_{BIAS}. If the high band is set to 0.55V and the low band is set to 0.45V, and 0.75V < V_{FBI} < 1.2V (or any of the master devices' V_{LEDx} < 0.45V), the chip decreases R2. This decreases the FBO voltage (V_{FBO}), which regulates V_{BIAS} to high by the preregulator. If V_{FBI} < 0.3V and all the masters' V_{LEDx} > 0.55V, the chip increases R2. This increases V_{FBO}, which regulates V_{BIAS} to low by the preregulator. For other conditions, V_{BIAS} is

maintained as normal.

Refer to the FBI detector. When $0.75V < V_{FBI} < 1.2V$, UP_S = 1, and DOWN_S = 0, this means that V_{BIAS} is not sufficient for the slave device, so V_{BIAS} must be increased for the slave device. When $V_{FBI} < 0.3V$, DOWN_S = 1, and UP_S = 0, this means that V_{BIAS} is too high for the slave device, so V_{BIAS} must be decreased. When $0.3V < V_{FBI} < 0.75V$, UP_S = 0, and DOWN_S = 0, this means that V_{BIAS} must stay the same for the slave device.

For any slave device, if $V_{LEDx} < 0.45V$, or $0.75 < V_{FBI} < 1.2V$, then $V_{FBO} = 1V$ (V_{BIAS} is not sufficient; increase V_{BIAS} for the slave device). If all $V_{LEDx} > 0.55V$ and $V_{FBI} < 0.3V$, then $V_{FBO} = 0V$ (V_{BIAS} is too high; decrease V_{BIAS} for the slave device); for other conditions, $V_{FBO} = 0.5V$ (maintain V_{BIAS} for the slave device).

In summary, if $V_{LEDx} < 0.45V$, then V_{BIAS} increases; does V_{BIAS} decreases only when each $V_{LEDx} > 0.55V$. For other conditions, V_{BIAS} stays the same. Table 1 summarizes these relationships.

Table 11 Holation p Botti of 11 20, 15/A, and 1225x								
Slave Device								
Condition	Any V _{LEDx} < 0.45 or 0.75 < V _{FBI} < 1.2V	All $V_{LEDx} > 0.55V$ and $V_{FBI} < 0.3V$	Other condition					
V _{FBO}	1V	0V	0.5V					
Master Device								
Condition	Any V _{LEDx} < 0.45 or 0.75 < V _{FBI} < 1.2V	All $V_{LEDx} > 0.55V$ and $V_{FBI} < 0.3V$	Other condition					
V _{FBO}	Decreases	Increases	Stays the same					
VBIAS	Increases	Decreases	Stays the same					

Table 1: Relationship between FBI, FBO, VBIAS, and VLEDX

Figure 7 shows how to set up the master and slave modes.

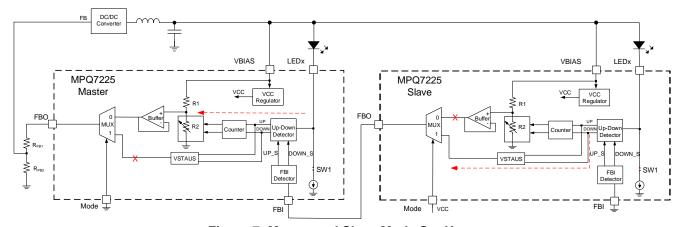


Figure 7: Master and Slave Mode Set-Up

© 2023 MPS. All Rights Reserved.

Device Address

The device address is configured via ADDR1,

ADDR2, and the SADDR PAGE bit. A total of 16 different addresses can be configured (see

Table 2: Address Setting

ADDR2	ADDR1	SADDR_PAGE	Bits[3:0]
Connect to VCC	Connect to VCC	0	0000
Connect to VCC	Connect R = $35k\Omega$ to GND	0	0001
Connect to VCC	Connect to GND	0	0010
Connect R = $35k\Omega$ to GND	Connect to VCC	0	0011
Connect R = $35k\Omega$ to GND	Connect R = $35k\Omega$ to GND	0	0100
Connect R = $35k\Omega$ to GND	Connect to GND	0	0101
Connect to GND	Connect to VCC	0	0110
Connect to GND	Connect R = $35k\Omega$ to GND	0	0111
Connect to GND	Connect to GND	0	1000
Connect to GND	Connect to GND	1	1000
Connect to VCC	Connect to VCC	1	1000
Connect to VCC	Connect R = $35k\Omega$ to GND	1	1001
Connect to VCC	Connect to GND	1	1010
Connect R = $35k\Omega$ to GND	Connect to VCC	1	1011
Connect R = $35k\Omega$ to GND	Connect R = $35k\Omega$ to GND	1	1100
Connect R = $35k\Omega$ to GND	Connect to GND	1	1101
Connect to GND	Connect to VCC	1	1110
Connect to GND	Connect R = $35k\Omega$ to GND	1	1111

At start-up, the IC checks the address first. Once the address is checked, the address is maintained during operation unless there is a power-on reset (POR). Note that the $35k\Omega$ resistor must be within the ±10% range. If SADDR_PAGE is set to 0 via the OTP, the solution can support a maximum of 9 devices in one system. To use more than 9 devices, set SADDR PAGE to 1.

Enable and Start-Up

The EN pin can connected to VBIAS through a resistor, or it can be controlled by the MCU's I/O pin. Pull EN above 2.2V to enable the part; pull EN below 0.8V to disable the part.

If using VBIAS to power VCC, V_{CC} does not rise until V_{BIAS} and EN are high. Then the internal logic circuits, including the differential interface, are active. The start-up sequence is as follows:

- V_{BIAS} and EN pull high.
- V_{CC} exceeds its UVLO threshold.
- Internal logic circuits are active and provide the output to the LEDs.

Each channel can be enabled or disabled individually by setting the corresponding ChxEN bit (register address: 0x03) to "disabled."

Figure 8 shows the start-up sequence. This sequence is described in greater detail below.

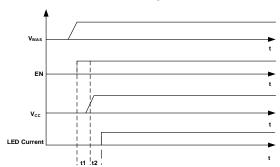


Figure 8: Start-Up Sequence

- t1: The delay time from EN going high to V_{CC} > V_{CC UVLO} is about 200µs, which is based on the 10µF VCC capacitor.
- t2: The delay time from V_{CC} rising to when the internal logic is ready is about 5.5ms.

If V_{BIAS} < 3.5V, another external LDO is required to power VCC. Set the external LDO voltage to 3.3V and with a current ability > (n20mA + 50mA), where n is the number of MPQ7225 devices in the system.

If using a buck converter as the MPQ7225's preregulator, the FBO pin must be connected to the pre-regulator's FB pin through a divider network. In this scenario, start-up should follow the sequence below:

- Power the MPQ7225's VCC pin with an external 3.3V LDO.
- The MPQ7225's EN pin goes high.
- Start up the pre-regulator.

Figure 9 shows this start-up sequence. This sequence is described in greater detail below.

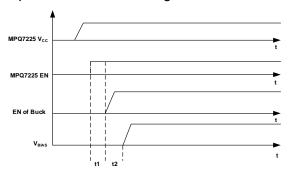


Figure 9: Start-Up Sequence

 $\underline{t1}$: The IC needs 500 μ s to load the OTP. It is recommended to wait longer than 500 μ s to initially start up the MPQ7225 or the buck converter.

<u>t2</u>: This time period is based on the buck's startup delay.

If VBIAS is disconnected from the pre-regulator, or the FBO pin is disconnected from the FB divider, then the pre-regulator works at a maximum duty cycle, and the output voltage is regulated to the input voltage. Then all LEDx pins detect an LED short after 4ms, and all LEDx pins shut off.

If AFC is not used, then V_{BIAS} can be set to a fixed voltage. V_{BIAS} must exceed the maximum V_{LEDx} by at least 0.4V.

LED Current Setting

The LED currents of all channels are set by an external resistor at the ISET pin, calculated with Equation (1):

$$I_{LED}(mA) = \frac{600}{R_{ISET}(k\Omega)}$$
 (1)

The nominal ISET voltage (V_{ISET}) is 0.6V. When the ISET current exceeds a specific value, it is detected as a pin short to ground. The ISET

current threshold for short detection is 1mA (corresponding to a $0.6k\Omega$ resistor, or a 1000mA I_{LED}). When the ISET current is below 5µA (corresponding to a 120k Ω resistor or 5mA I_{LED}), an ISET open condition is detected.

If an open or short condition is detected, the device latches off and asserts the /FS pin.

EMI Reduction

The MPQ7225 features three EMI reduction methods. The first method requires configuring the LED current's rising/falling slew rates during pulse-width modulation (PWM) dimming, as this can sufficiently optimize EMI performance. The LED current rising/falling slew rates are controlled via register 0x01, bits[13:12]. The slew rates can be set to no slew rate, 5µs, 10µs, and 20µs. The default value is 5µs.

The second method requires configuring the LED current's phase-shift function. This function is controlled via register 0x01, bits[11:10]. When the phase-shift function is enabled, the channel x + 1 (where x = 1, 2...13) LED current phase shift is 1 μ s, 5 μ s, or 20 μ s after channel x's LED current rising edge.

The third EMI reduction method is frequency spread spectrum (FSS). The spread spectrum function reduces EMI noise around the internal clock frequency and its harmonic frequencies. This method deliberately spreads the frequency of the clock waveform and widens the bandwidth of the switching waveform, which ultimately reduces its EMI spectral density. The spread spectrum function modulates the internal clock frequency within ±10% from the central frequency, with a 15.6 kHz modulation frequency (f_M) (see Figure 10). The spread spectrum function can disabled via register 0x01, bit[0].

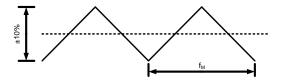


Figure 10: Spread Spectrum Function

Pulse-Width Modulation (PWM) Dimming

During PWM dimming, the LED current is chopped. This means that the LED current amplitude stays the same, while the LED current duty cycle varies with the PWM dimming register.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

The PWM dimming duty cycle is set via the PWM dimming registers 0x07~0x26, bits[11:0].

The duty cycle can be estimated with Equation (2):

$$D = \frac{PWMx}{2^{12} - 1} = \frac{PWMx}{4095}$$
 (2)

Where PWMx is the PWM dimming register for channel x (x = 1, 2...16). When PWMx, bits[11:0] = 0x000, the corresponding LED channel current is 0. The PWM dimming frequency can be set via register 0x01, bits[9:8]. The dimming frequency can be set to 250Hz, 500Hz, and 1kHz.

The PWM dimming frequency and PWM dimming duty cycle can be changed on the fly.

Automatic Logarithmic Dimming

To reduce the burden on the communication bus, the MPQ7225 provides imbedded, automatic logarithmic dimming based on a fixed 64-point look-up table. Assume there are a total of 64 steps between when the duty cycle = 1% and the duty cycle = 100%. For a fixed constant (k = 1.075), the logarithmic curve can be fixed, so the duty cycle value for the 64 points can be calculated out via software and solidified in a digital circuity. The duty cycle for Duty x is equal to (kx Duty (x-1)), where k = 1.075 and the initial duty cycle is 1%.

Figure 11 shows the logarithmic dimming curve.

Figure 11: Logarithmic Dimming Curve

If the configurable cycle duty is not equal to the duty cycle on the curve, one more step is required to change the configured duty cycle.

The automatic logarithmic dimming speed can set via register 0x02, bits[10:8]. The speed can set to 4, 8, 16, 32, or 64 points, with a default of

16 points.

Figure 12 shows an example of the logarithmic dimming curve when the duty cycle changes. In this example, the duty cycle follows the sequence below:

- The duty cycle is configured from 0% to 80%
- The duty cycle is reduced to 30%
- The duty cycle is increased to 60%
- The duty cycle is decreased to 15%
- The duty cycle is increased to 50%

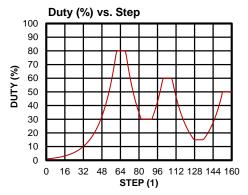


Figure 12: Logarithmic Dimming Curve with Continuous Duty Cycle Changes

Analog Dimming

During analog dimming, the LED current amplitude changes when the analog dimming register changes. Change the value of the analog dimming register for the corresponding channel via 0x17~0x26, bits[5:0]. The initial value of the analog dimming register is 0x20, though it can be set from 0x00 to 0x3F. When the register increases by 1 bit, the LED current amplitude increases by 0.5%. When the register decreases by 1 bit, the LED current amplitude decreases by 0.5%. I_{LED} can be adjusted between 84% and 115.5% of the normal value.

Global Dimming Function

When the global dimming function is disabled, the MPQ7225 can execute both analog dimming and PWM dimming for each channel independently. When global dimming is enabled, the dimming duty cycle and amplitude for each channel follows channel 1. This means that it is possible to adjust the LED current for each channel by only adjusting channel 1.

Phase Shift

The MPQ7225 can set the channel-by-channel current phase shift function. This function is enabled via register 0x01, bits[13:12]. When the phase shift function is enabled, the channel x + 1 (x = 1, 2...13) LED current phase shift is 1 μ s, 5 μ s, or 20 μ s after channel x's LED current rising edge.

Diagnostic and Fault Indications

The MPQ7225 supports a variety of diagnostic features, including the following:

- LED short protection
- LED open protection
- ISET pin open/short
- Thermal warning and shutdown

The /FS pin is an active-low open drain that is pulled high to an external voltage source via a $100k\Omega$ resistor. If a protection is triggered, the corresponding fault bit in the register is set.

The LATCH_EN bit determines the channel behavior and pin behavior. Fault channels should latch off or hiccup if LED open or short protection occurs (not including Vcc UVLO, ISET pin open/short protection, thermal warning, and thermal shutdown). The integrated failsafe flag register indicates which channel triggered the protection; if any channel triggers a protection, the related register bit is set to 1.

If LATCH_EN = 1 (latch-off mode) and the fault is triggered, the fault channel stays off until POR or until EN turns off to reset the channel. Meanwhile, the other channels operate normally. Since the fault register is R1C (the register is cleared after being read once), the fault is not flagged again — even if the fault is present — unless VCC or EN is reset.

If LATCH_EN = 0 (hiccup mode), the fault channel tries to conduct 32µs within every 1ms to detect whether the fault is cleared. /FS is released once the fault condition is removed. The fault bit remains until it is read-cleared by the MCU. It is not affected by LATCH_EN. The fault is not flagged again — even if the fault is present — unless VCC, EN, or EN BIT is reset.

Vcc Under-Voltage Lockout (UVLO)

Under-voltage lockout (UVLO) protects the chip from operating at an insufficient supply voltage.

 V_{CC} UVLO does not trigger the /FS pin. If V_{CC} UVLO is triggered, the IC stops working, and all the registers are reset.

LED Open Protection

The MPQ7225 features integrated LED open diagnostics. If V_{LEDx} drops below V_{LED_O} (about 100mV) for longer than 4ms, an open load condition is detected. If there is an open load on one of the outputs, the output turns off and the corresponding open fault bit (CHx_OPEN, where x = 1, 2...16) is set, and /FS pulls low.

If LATCH_EN = 1 (latch-off mode), the fault channel stays off until POR or until EN turns off to reset the channel. Meanwhile, the other channels operate normally. /FS is released high after the fault bit is read-cleared by the MCU.

If LATCH_EN = 0 (hiccup mode), the LED open is not latched, and the fault channel tries to conduct for $32\mu s$ within every 1ms to detect whether the fault is cleared. As soon as the open load condition is no longer present, the channel turns on again. /FS releases high once the fault condition is removed. The fault bit remains set until it is read-cleared by the MCU. It is not affected by LATCH_EN.

LED Short Protection

During an LED short condition, V_{BIAS} - V_{LEDX} drops to low. If V_{LEDX} exceeds $V_{\text{LED_S}}$ for 4ms, LED short protection is triggered. The shorted channel turns off, the corresponding fault bit (CHx_SHORT) is set, and /FS pulls low.

If LATCH_EN = 1 (latch-off mode), the fault channel stays off until VCC or EN go low to reset the channel. Meanwhile, the other channels operate normally. /FS is released high after the fault bit is read-cleared by the MCU.

If LATCH_EN = 0 (hiccup mode), the LED short is not latched, and the fault channel tries to conduct for 32µs within every 1ms to detect whether the fault has cleared. As soon as the short load condition is removed, the channel turns on again. /FS releases high once the fault condition is removed. The fault bit remains set until it is read-cleared by the MCU. It is not affected by LATCH_EN.

The LED short protection threshold can be configured via LED_SHORT_THR, bits[1:0]. There are four potential thresholds:

- If LED_SHORT_THR = 00, the threshold is 2V.
- If LED_SHORT_THR = 01, the threshold is 3V.
- If LED_SHORT_THR = 10, the threshold is 4V.
- If LED_SHORT_THR = 11, the threshold is 5V.

ISET Pin Open/Short Protection

The MPQ7225 implements a current monitor for the ISET resistor to provide open and short diagnostics and protection. The device monitors the current (I_{ISET}) flowing out of the ISET pin. If I_{ISET} exceeds I_{ISET_STH} (1mA), a short condition asserts. If I_{ISET} falls below I_{ISET_OTH} (5µA), an ISET pin open condition asserts.

ISET open or short protection is a latch-off protection. If an open or short is detected, the ISET_PIN_OPEN or ISET_PIN_SHORT bit is set. The MPQ7225 latches off and asserts /FS.

The fault bit can be cleared by the MCU, POR, or an EN reset. However, the /FS pin does not release high until POR or until EN goes high.

Thermal Warning

If the temperature exceeds 150°C, the OT_WARN bit is set and /FS asserts. The MPQ7225 continues working. /FS releases high once the thermal warning condition is removed. The fault bit is set until it is cleared by the MCU, POR, or an EN reset.

Thermal warning can be individually masked via OT_WARN_MASK to prevent the /FS opendrain output from pulling low. Even if the fault is masked, the fault status can still be flagged by the registers.

Thermal Shutdown

Thermal shutdown prevents the chip from operating at exceedingly high temperatures. If the die temperature exceeds 170°C, all output channels turn off, the OT_STD bit is set, and /FS asserts. /FS releases high when the MPQ7225 recovers from thermal shutdown. The fault bit is set until it is cleared by the MCU, POR, or an EN reset.

Thermal protection is a non-latch protection. If the temperature drops at least 20°C below the thermal shutdown threshold, the MPQ7225 recovers, and the channels turn on using the previous settings without re-initializion.

Differential Interface

The MPQ7225 is designed to operate with a differential interface for automotive lighting applications. By using the differential interface, the onboard MCU controls the settings and timings through a CAN transceiver.

The integrated differential interface is compatible with most CAN transceivers. It can communicate with other CAN transceivers by connecting the DATA+ and DATA- pins to the CAN bus. The interface features a high-speed receiver and transmitter capable of operating up to 2Mbps.

The differential interface is supplied from a 3.3V $V_{\rm CC}$ to maintain driver symmetry; the typical output common-mode voltage is 1.65V in the dominant state. The internal common-mode reference is set to $V_{\rm CC}$ / 2 = 1.65V to match the dominant state's common-mode output voltage. The transmitter converts a single-ended input (TXD) from the external CAN transceiver to differential outputs for the bus lines (DATA+ and DATA-).

The receiver reads differential inputs from the bus lines (DATA+ and DATA-) and transfers this data as a single-ended output (RXD) to the internal digital circuitry. The receiver consists of a comparator that senses the voltage difference (V_{DIFF}) = (DATA+, DATA-) with respect to an internal threshold of 1.1V. If V_{DIFF} exceeds 1.1V, a low logic is present at RXD. If V_{DIFF} is below 0.7V, a high logic is present. The receiver always echoes the CAN bus data.

Figure 13 shows the differential interface with a read command.

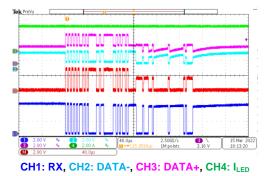


Figure 13: Differential Interface with Read CMD

Figure 14 shows the differential interface with a write command.

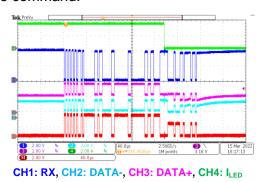


Figure 14: Differential Interface with Write CMD

Communication Protocol

The differential interface is a CAN-based protocol supported by most MCUs. Each frame contains multiple bytes, starting with a synchronization byte. The synchronization byte allows LED drivers to synchronize to the master MCU's frequency, which reduces costs on high-

precision oscillators that are commonly used in CAN interfaces. The differential interface can support communication bode rates between 150kbps and 2Mbps.

The protocol supports the master and slave with a star-connected topology. The differential interface supports both write and read back commands (CMD).

Table 3 describes the frame structure of a typical single-byte write action. When the MCU writes data to the MPQ7225, the MPQ7225's internal RX receives data from DATA+ and DATA- with a SYNC byte, DEV_ADDR, REG_ADDR, DATA, and CRC. Once the MPQ7225 verifies the cyclic redundancy check (CRC), it sends back a status byte and a CRC byte from TX to DATA+ and DATA-. Since the register is 16 bits long, it is transferred with the 8-bit LSB first, following by the 8-bit MSB.

Table 3: Write Frame

ST +	ST +	ST +	ST +	ST +	ST +	ST +	ST +
8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP
Sync Byte	Device Address Byte	Register Address Byte	DATA[0]	DATA[n]	CRC Byte	Status Byte	CRC Byte

Figure 15 shows a write command with status feedback.

Figure 15: Write Command with Status Feedback

Table 4 describes the frame structure of a typical read back action. The master write frame consists of SYNC, DEV_ADDR, REG_ADDR, DATA and CRC bytes. Once the MPQ7225

verifies the CRC, the MPQ7225 immediately feeds back the status byte and CRC byte to the MCU through DATA+ and DATA-. Note that the CRC calculation does not include the sync bits.

Table 4: Read Frame

ST +	ST +	ST +	ST +	ST +	ST +	ST +	ST +
8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP	8-Bit + SP
Sync Byte	Device Address Byte	Register Address Byte	CRC byte	Status Byte	DATA[0]	DATA[n]	CRC Byte

Figure 16 shows a read command with status feedback.

Figure 16: Read Command with Status Feedback

Synchronization Byte

The first byte transmitted from the MCU to the MPQ7225 is the following byte: 01010101 (see Table 5). The MCU sends the clock signal to the MPQ7225 by outputting a 01010101 binary code in the first frame. The slave adaptively uses the

same clock to communicate with the MCU through the same internal, high-frequency clock. To avoid clock drift over time, the synchronization byte is always required for each new instruction transaction. This approach improves communication reliability and saves the cost of an external crystal oscillator.

Table 5: Synchronization Bytes

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1

Figure 17 shows the timing diagram for synchronization frame and device address frame.

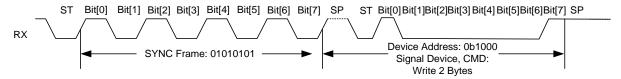


Figure 17: Synchronization Byte

Device Address Byte

The device address byte follows the synchronization byte (see Table 6).

Bits	Bit Name	Description					
D[7:4]	DEV_ADDR	Sets the device address.					
		Sets the broadcast mode.					
D3	BROADCAST	1: Broadcast mode					
		0: Single-device only. Broadcast only accepts write commands					
		Sets the command mode. Since the register is 2 bytes, it can only support >2 bytes.					
		000: Write 1 byte of data					
		001: Write 2 bytes of data					
D[0.0]	CMD	010: Write 4 bytes of data					
D[2:0]		011: Write 8 bytes of data					
		100: Read 1 byte of data					
		101: Read 2 bytes of data					
		110: Read 4 bytes of data					
		111: Read 8 bytes of data					

Register Address Byte

As a read or write start address, the REG_ADDR frame follows the device address frame. There are total of 8 bits of binary code in the register address byte (see Table 7). The register value can range between 0x00 to 0x33, with a 16-bit width.

Table 7: Register Address Byte

Bits	Bit Name	Description
D[7:0]	REG_ADDR Register address	Sets the REG_ADDR register address.

Data Byte

For the data bytes, the data frame follows the register address byte. The MPQ7225 supports single-data byte or multiple-data byte writing in a one-time data transaction. The number of data bytes is defined in the device address byte (see Table 5). There are total four options, including 2, 4, or 8 data bytes.

Status Byte

If no LED short or open condition is detected, D5 and D4 are set to 0. D3 is set to 1 to indicate that /FS is high (see Table 8).

Table 8: Status Byte

D7	D6	D5	D4	D3	D2	D1	D0
1	0	CH_SHORT	CH_OPEN	FS_PIN_STATUS	0	0	0

CRC Byte

The CRC code algorithm for multiple bytes of binary data is based on the polynomial $x^8 + x^5 + x^4 + 1$. The CRC code contains a binary code of 8 bits, and the initial value is 0xFF. The poly value is 0x31, and the XOR value is 0x00. Note that the CRC calculation does not include the sync bits.

REGISTER MAP WITHOUT OTP (10) (11)

Reg.	R/W	Addr.	Default	D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
General Sett SIL_REV	ings an	d Enable 0x00	0x0001						RESE	RVFD							SIL_I	RFV	
DEV_CFG_	R/W	0x01	0x0200	LED_SHORT_T SLEW_RATE			RESERVED PHASE_SHIFT PWM_FREQ					RESERVED			GLOB AL_ DIM	FSS_ EN			
DEV_CFG_ 2	R/W	0x02	0x6003				AUTO_ DIM_H AUTO_DIM_SPEED RN_FS_ OLD MASK				RESERVED				MOD_ EN	EN_ ANA			
CH_EN	R/W	0x03	0xFFFF	CH16_ EN	CH15_ EN	CH14_ EN	CH13_ EN	CH12_ EN	CH11_ EN	CH10_ EN	CH9_ EN	CH8_EN	CH7_ EN	CH6_ EN	CH5_ EN	CH4_ EN	CH3_EN	CH2_ EN	CH1_ EN
Diagnostics																			
DIAG_ STAT_1	R1C	0x04	0x0000	CH16_ OPEN	CH15_ OPEN	CH14_ OPEN	CH13_O PEN	CH12_ OPEN	CH11_ OPEN	CH10_O PEN	CH9_O PEN	CH8_OP EN	CH7_O PEN	CH6_ OPEN	CH5_ OPEN	CH4_ OPEN	CH3_O PEN	CH2_ OPEN	CH1_ OPEN
DIAG_ STAT_2	R1C	0x05	0x0000	CH16_ SHOR	CH15_ SHORT	CH14_ SHOR	CH13_S HORT	CH12_ SHOR	CH11_S HORT		CH9_S HORT	CH8_SH ORT	CH7_S HORT		CH5_S	CH4_S		CH2_S	
DIAG_ STAT_3	R1C	0x06	0x0000	RESE OT_WA ISET_P ISET_PI RVED RN IN_SH N_OPE			PEGE						RESERVED						
Dimming an	d Additi	onal Cor	nfiguration	S		ORT	N												
CH1_PWM	W/R	0x07	0x0FFF		RESE	RVED							PWM_DII	M_1					
CH2_PWM	W/R	0x08	0x0FFF			RVED							PWM_DI						
CH3_PWM	W/R	0x09	0x0FFF		RESE	RVED							PWM_DI	M_3					
CH4_PWM	W/R	0x0A	0x0FFF			RVED							PWM_DI						
CH5_PWM	W/R	0x0B	0x0FFF			RVED							PWM_DI						
CH6_PWM	W/R	0x0C	0x0FFF			RVED							PWM_DI						
CH7_PWM	W/R	0x0D	0x0FFF			RVED							PWM_DI						
CH8_PWM	W/R	0x0E	0x0FFF			RVED							PWM_DI						
CH9_PWM	W/R	0x0F	0x0FFF		RESE	RVED							PWM_DI	M_9					
CH10_PW M CH11_PW	W/R	0x10	0x0FFF			RVED							PWM_DIN						
M CH12_PW	W/R W/R	0x11 0x12	0x0FFF 0x0FFF	RESERVED				PWM_DIM_11											
M CH13_PW	W/R	0x12	0x0FFF	RESERVED RESERVED			PWM_DIN PWM_DIN												
M CH14_PW M	W/R	0x14	0xFFF	RESERVED				PWM_DIM_14											
CH15_PW M	W/R	0x15	0x0FFF	RESERVED				PWM_DIM_15											
CH16_PW M	W/R	0x16	0x0FFF		RESE	RVED		PWM_DIM						1_16					
CH1_ANA_ DIM CH2_ANA_	W/R	0x17	0x0020					RESERVED					ANA_DIM_1						
DIM CH3_ANA_	W/R	0x18	0x0020					RESERVED					ANA_DIM_2 ANA_DIM_3						
DIM CH4_ANA_	W/R W/R	0x19 0x1A	0x0020 0x0020					RESERVED RESERVED					ANA_DIM_4						
DIM CH5_ANA_ DIM	W/R	0x17t	0x0020					RESERVED					ANA_DIM_5						
CH6_ANA_ DIM	W/R	0x1C	0x0020					RESERVED					ANA_DIM_6						
CH7_ANA_ DIM	W/R	0x1D	0x0020					RESERVED					ANA_DIM_7						
CH8_ANA_ DIM	W/R	0x1E	0x0020					RESERVED					ANA_DIM_8						
CH9_ANA_ DIM CH10 ANA	W/R	0x1F	0x0020					RESERVED					ANA_DIM_9						
_DIM CH11_ANA	W/R W/R	0x20 0x21	0x0020					RESERVED					ANA_DIM_10						
_DIM CH12_ANA	W/R W/R	0x21 0x22	0x0020 0x0020					RESERVED RESERVED					ANA_DIM_11 ANA_DIM_12						
_DIM CH13_ANA	W/R	0x23	0x0020					RESERVED				ANA_DIM_12 ANA_DIM_13							
_DIM CH14_ANA _DIM	W/R	0x24	0x0020					RESERVED					ANA_DIM_14						
CH15_ANA _DIM	W/R	0x25	0x0020					RES	RESERVED					ANA_DIM_15					
CH16_ANA _DIM	W/R	0x26	0x0020					RESERVED					ANA_DIM_16						
PRE-VBIAS	R	0x27	0x5454					IAS_VOLT						REAL_VBIAS_VOLT					
DROP_ BAND SUFFIX_C	R	0x28	0x25B9					ERVED LOW_BANG									RVED		
ODE SADDR_PA	R R	0x32 0x33	0x0000				KESE		RESERVED				SADDR RESERVED						
GE	.,	0,00	0.0000						_PAGE										

Notes:

- 10) Commands in white that are not RESERVED or SIL_REV are read-only.
- 11) Commands in gray can be OTP read and written.

REGISTER DESCRIPTION

SIL_REV (0x00)

POR: Load from the OTP.

The SIL_REV command provides readout data and returns the silicon information.

Bits	Access	Bit Name	Default	Description
D[15:8]	RSV	RESERVED	0x00	Reserved. Always reads as 0.
D[7:4]	RSV	RESERVED	0x0	Reserved. Always reads as 0.
D[3:0]	R	SIL_REV	0x1	Returns the Silicon revision information.

DEV_CFG_1 (0x01)

POR: Load from the OTP.

The DEV_CFG_1 command configures the LED short threshold, PWM dimming frequency, LED current slew rate, and phase shift during PWM dimming. It also enables global dimming and spread spectrum control.

Bits	Access	Bit Name	Default	Description
D[15:14]	R/W	LED_ SHORT_TH	00	Sets the LED short threshold. 00: 2V 01: 3V 10: 4V 11: 5V
D[13:12]	R/W	SLEW_RATE	00	Controls the dimming slew rate. 00: No slew rate 01: 5µs 10: 10µs 11: 20µs
D[11:10]	R/W	PHASE_ SHIFT	00	Controls the PWM dimming phase shift. 00: No phase shift between channels 01: The rising edge of channel x + 1 is 1µs after channel x 10: The rising edge of channel x + 1 is 5µs after channel x 11: The rising edge of channel x + 1 is 20µs after channel x
D[9:8]	R/W	PWM_FREQ	10	Sets the LED channel PWM dimming frequency. The PWM frequency can be changed on the fly. 00: 1kHz 01: 500H 10: 250Hz 11: 1kHz
D[7:2]	RSV	RESERVED	0	Reserved.
D1	R/W	GLOBAL_ DIM	0	When global dimming is enabled, all channels share dimming settings with channel 1. This allows users to adjust the LED current of all channels by only changing channel 1. 0: Disable global dimming 1: Enable global dimming
D0	R/W	FSS_EN	0	Enables frequency spread spectrum (FSS). 0: Disabled 1: Enabled

DEV_CFG_2 (0x02)

POR: Load from the OTP.

The DEV_CFG_2 command configures the LED open/short fault mask and protection behavior, the thermal warning fault mask, automatic dimming parameters, logarithmic automatic dimming, AFC, and the analog dimming circuit.

Bits	Access	Bit Name	Default	Description
				Enables the /FS mask for LED channel diagnostics.
D15	R/W	CH_FS_ MASK	0	O: Disabled. /FS pulls down if there is a fault error flag or any channel experiences a short/open 1: Enabled. /FS does not pull down if there is a fault error flag or any channel experiences a short/open
D14	R/W	LATCH_EN	1	Sets the fault protection mode. If a fault is detected on a channel, the related channel latches off or enters hiccup mode while the other channels work normally.
				0: Hiccup mode 1: Latch-off mode
D13	RSV	CRC_EN	1	Reserved.
				Sets the logarithmic automatic dimming mode.
D12	R/W	AUTO_DIM_ MODE	0	0: Manual mode. The PWM dimming duty cycle changes for the next PWM dimming cycle 1: Automatic diming mode (logarithmic dimming). The duty cycle changes according to the fixed exponential curve with a certain speed setting
D11	R/W	AUTO_DIM_ HOLD	0	O: Normal operation. The dimming duty cycles changes to the setting value 1: Stop all the ongoing automatic dimming ramping, and remain at the current dimming value on the curve
D[10:8]	R/W	AUTO_DIM_ SPEED	000	Sets the automatic dimming speed for the 64-point logarithmic curve. 000: Normal speed. Jump 4 points per PWM cycle (0% to 100% in 16 PWM cycles) 001: 2x speed. Jump 8 points per PWM cycle (0% to 100% in 8 PWM cycles) 010:4x speed. Jump 16 points per PWM cycle (0% to 100% in 4 PWM cycles) 011: 1/2x speed. Jump 2 points per PWM cycle (0% to 100% in 32 PWM cycles) 100: 1/4x speed, jump 1 points per PWM cycle (0% to 100% in 64 PWM cycles) Others: Reserved, or similar to selecting 000
D7	R/W	OT_WARN_ FS_MASK	0	Sets the over-temperature (OT) warning diagnostic mask control. 0: An OT warning signal pulls down the /FS pin 1: An OT warning signal does not pull down the /FS pin
D[6:2]	RSV	RESERVED	0	Reserved.
D1	R/W	MOD_EN	1	O: AFC is disabled. Disable up-down counter and maintain the current modulation bit 1: AFC is enabled. Enable the up-down counter
D0	R/W	EN_ANA	1	O: The analog circuit is disabled. When disabled, the device shuts down 1: The analog circuit is enabled. When enabled, the device turns on

CH_EN (0x03)

POR: Load from the OTP.

The CH_EN command enables channels 1–16.

Bits	Access	Bit Name	Default	Description
D[15:0]	R/W	CHx_EN	0xFFFF	Channel enable bit. Bits[15:0] control channel 16 to channel 1, respectively. If any channel is not used, set the related bit to 0. 0: Disabled 1: Enabled

DIAG_STAT_1 (0x04)

POR: N/A

The DIAG_STAT_1 command reports the channel LEDx open statuses. If any bit is set to 1, this means the related channel is open. If the register is read one time, the open flag resets to 0.

Bits	Access	Bit Name	Default	Description
D[15:0]	R1C	CHx_OPEN	0x0000	Channel x open protection fault flag. Bits[15:0] control channel 16 to channel 1, respectively. If any channel is not used, set the related bit to 0. 0: No open fault was detected 1: An open fault was detected. After being read, /FS is reset with the fault flag if the mode is set to latch-off mode; if the mode is set to hiccup
				mode, the fault flag is reset even if the fault is still present, but /FS resets after the fault is removed

DIAG_STAT_2 (0x05)

POR: N/A

The DIAG_STAT_2 command reports the channel LEDx short statuses. If the bit is set to 1, the related channel is experiencing a short condition. If the register is read one time, the open flag resets to 0.

Bits	Access	Bit Name	Default	ault Description	
D[15:0]	R1C	CHx_ SHORT	0x0000	Channel x short protection fault flag. Bits[15:0] control channel 16 to channel 1, respectively. If any channel is not used, set the related bit to 0. 0: No short fault was detected 1: A short fault was detected. After being read, /FS is reset along with	
		the fault flag if the mode is set to latch-off mode; if the mode is set to hiccup mode, the fault flag is reset even if the fault is still present, but /FS resets after the fault is removed			

DIAG_STAT_3 (0x06)

POR: N/A

The DIAG_STAT_3 command reports an over-temperature (OT) warning, ISET pin short/open fault, and thermal shutdown status. If a bit is set to 1, the related protection is triggered; when the register is read one time, the related flag resets to 0.

Bits	Access	Bit Name	Default	ault Description	
D15	RSV	RESERVED	0 Reserved.		
D14	R1C	OT_WARN	0	Over temperature (OT) warning status. 0: No OT warning is present 1: There is an OT warning. After being read, the fault flag is reset. When the temperature recovers, /FS returns to high	

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

				ISET pin short flag.
D13	R1C ISET_PIN_ SHORT		0	0: No short condition was detected on the ISET pin 1: A short condition was detected on the ISET pin. After being read, the fault flag is reset. Only VCC or EN can reset the /FS pin
				ISET pin open flag.
D12	R1C	ISET_PIN_ OPEN	0	0: No open condition was detected on the ISET pin 1: An open condition was detected on the ISET pin. After being read, the fault flag is reset. Only VCC or EN can reset the /FS pin
D11	RSV	RESERVED	0	Reserved.
				Returns the OT shutdown status.
D10	R1C	OT_SD	0	O: No OT shutdown has occurred OT shutdown has occurred. After being read, the fault flag is reset. When the temperature recovers, /FS pulls high
D[9:0]	RSV	RESERVED	0	Reserved.

CHx_PWM (0x07~0x16)

POR: Load from the OTP.

The CHx_DIM command controls the PWM dimming duty cycle for all channels (channels 1–16). Register 0x07 corresponds to channel 1, while register 0x16 corresponds with channel 16.

Bits	Access	Bit Name	Default	Description
D[15:12]	RSV	RESERVED	0	Reserved.
D[11:0]	R/W	PWM_DIM	0xFFF	Sets PWM dimming for the corresponding channel.

CHx_ANA_DIM (0x17~0x26)

POR: Load from the OTP.

The CHx_ANA_DIM command controls the analog dimming range for all channels (channels 1–16). Register 0x17 corresponds to channel 1, while register 0x26 corresponds with channel 16.

Bits	Access	Bit Name	Default	Description	
D[15:6]	RSV	RESERVED	0	Reserved.	
D[5:0]	R/W	ANA_DIM	0x20	Sets analog dimming for the corresponding channel. The register value can be set from 0x00 to 0x3F.	

VBIAS_VOLT (0x27)

POR: Load from the OTP.

The VBIAS_VOLT command sets the pre-V_{BIAS} voltage. It can only be changed via the OTP.

Bits	Access	Bit Name	Default	Description			
						gister value increases by se FBO voltage = 1.2V.	/ 1, the
				V _{BIAS} (V)	Bits[15:8] (Dec)	Bits[15:8] (Hex)	1
D[15:8]	R	PRE-VBIAS	0x54	2.5	14	0E	
' '				2.55	15	0F	
				13.95	243	F3	
				14	244	F4	
D[7:0]	R	REAL_ VBIAS	0xxx	The real value of the V_{BIAS} counter. Automatically adjusted after the MPQ7225 starts up.			fter the

DROP_BAND (0x28)

Default: 0x25B9

POR: Load from the OTP.

The DROP_BAND command controls the LED voltage (V_{LEDx}) for the AFC band, including the low band and the high band. If can only be changed via the OTP.

Bits	Access	Bit Name	Default	Des	Description			
D[15:8]	RSV	RESERVED	0x25	Res	Reserved.			
				Set	s the low-ba	nd value for AFC.		
					Bits[7:5]	Low-Band Value	Bits[7:5]	Low-Band Value
D[7:5]	R	LOW_BAND	0b101		000	0.2V	100	0.4
		_			001	0.25V	101	0.45
					010	0.3V	110	0.5
					011	0.35V	111	0.55
		HIGH BAND		Set	s the high-ba	and value for AFC.		
			0b110		Bits[4:2]	High-Band Value	Bits[4:2]	High-Band Value
D[4:2]	R				000	0.25V	100	0.45
					001	0.3V	101	0.5
			i l		010	0.35V	110	0.55
					011	0.4	111	0.6
D[1:0]	RSV	RESERVED	0b01	Reserved.				

SUFFIX_CODE (0x32)

POR: Load from the OTP.

The SUFFIX_CODE command returns the code information. It can only be changed via the OTP.

Bits	Access	Bit Name	Default Description	
D[15:8]	RSV	RESERVED	0x00	Reserved.
D[7:0]	R	SUFFIX_ CODE	0x00	Returns the suffix code information. It can also be used to store the code information, though this can only be changed via the OTP.

SADDR_PAGE (0x33)

Default: 0x0000. Read-only after OTP.

POR: Load from the OTP

The SADDR_PAGE command controls the device address. It can only be changed via the OTP, and is read-only after OTP.

Bits	Access	Bit Name	Default	Description
D[15:7]	RSV	RESERVED	0x00	Reserved.
D6	R	SADDR_ PAGE	0	Information register. Can be set to 0 or 1 via the OTP to support different device addresses.
D[5:0]	RSV	RESERVED	0x00	Reserved.

APPLICATION INFORMATION

AFC Network Connection

The FBI, FBO, and MODE pins are related to AFC. If AFC is not used, float the FBO pin, then connect FBI and MODE to GND (see Figure 18).

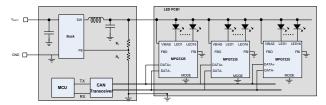


Figure 18: Application Circuit without AFC

V_{BIAS} can be set by the DC/DC converter's feedback voltage, calculated with Equation (3):

VBIAS =
$$V_{FB}(1 + \frac{R_1}{R_2})$$
 (3)

Consider the maximum LED voltage and ensure that (V_{BIAS} - V_{LED}) exceeds the headroom of each V_{LEDx} .

When using AFC, connect the FBI pin of the last slave device or single chip to GND; otherwise, connect FBI to the FBO pin of the next MPQ7225 for the current sink headroom information (see Figure 19).

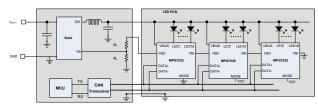


Figure 19: Application Circuit with AFC and a Connected FBO

For example, slave 2's FBI pin should connected to slave 3's FBO pin. For the master device, the FBO pin is the feedback output, and it should be connected to the DC/DC converter's feedback pin through a resistor divider network.

If the MPQ7225 and DC/DC converter are on the same board, or there is a connected FBO wire condition, the resistor network can be connected following Figure 18. Then the FB resistors can be estimated with Equation (4):

$$V_{FBO} = V_{FB} (1 + \frac{R_1}{R_2})$$
 (4)

Where V_{FB} is the reference voltage of the DC/DC converter (e.g. for the MPQ4323C, it is 0.8V),

and FBO can between 0.6V and 2.2V. If $V_{FBO} = 1.2V$ and $R_2 = 80.6k\Omega$, then R_1 is $40.2k\Omega$.

The pre- V_{BIAS} voltage is set via the OTP, internal modulator, and resistors (R_1 and R_2) (see Figure 20).

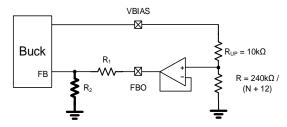


Figure 20: AFC Modulator Network

In Figure 19, N can be adjusted from 14 to 244 via OTP register 0x27. Note that the pre- V_{BIAS} voltage should match the LED voltage, or the device detects an LED open or short when the LED is on. So if $V_{FBO} = 1.2V$ and N = 100 (0x6464), then pre- V_{BIAS} should be set to 6.8V.

N automatically adjusts when the LED voltage changes after the device starts operating. If $V_{FB} = 0.8V$, $R_2 = 80.6k\Omega$, and $R_1 = 40.2k\Omega$, the FBO voltage is about 1.2V, and V_{BIAS} can be adjusted between 2.5V and 14V with an N change between 14 and 244. See the VBIAS_VOLT (0x27) section on page 39 for more details.

If the MPQ7225 and DC/DC converter are not on the same PCB, there must be an FBO line between the converter and the MPQ7225. If the FBO line is open, V_{BIAS} is regulated to the battery voltage (V_{BATT}), then an LED short is triggered.

A resistor network can be used to prevent V_{BIAS} from regulating to V_{BATT} when the FBO line is open.

Figure 21 shows the AFC modulator network.

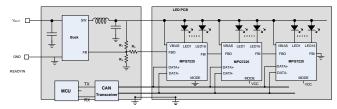


Figure 21: AFC Modulator Network

V_{BIAS} can be calculated with Equation (5):

$$V_{BIAS} = \frac{V_{FB} \times (R_1 + R_3) + \frac{V_{FB}}{R2} \times R_1 \times R_3}{\frac{240}{N+12} + R_3}$$

$$R_1 \times \frac{\frac{240}{N+12}}{10 + \frac{240}{N+12}} + R_3$$
(5)

When R3 is disconnected, V_{BIAS_O} can be estimated with Equation (6):

$$V_{BIAS_O} = V_{FB} \times (1 + \frac{R_1}{R_2})$$
 (6)

Figure 22 shows the AFC network with FBO open protection.

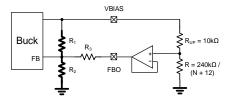


Figure 22: AFC Modulator Network with FBO Open Protection

For example, when the MPQ7225 has 2 LEDs in series ($V_{LED} = 6.3V$), set $V_{BIAS_O} = 7.1V$ when FBO is open. If the DC/DC converter's V_{FB} is 0.8V (based on Equation (6)), select $R_1 = 100k\Omega$ so that $R_2 = 12.7k\Omega$. If the N is set to 100 via the OTP, set $R_3 = 100k\Omega$. Then the pre- V_{BIAS} voltage is 6.71V based on Equation (5). When N changes from 14 to 244, V_{BIAS} changes from 5.9V to 7.6V, so consider the pre- V_{BIAS} value set via the OTP, as well as resistor selection when making this connection. The connection in Figure 21 minimizes the V_{BIAS} range.

Selecting the VBIAS Capacitor

The VBIAS pin is the bias supply. The MPQ7225 operates from an input voltage (V_{IN}) between 2.5V and 18V. A capacitor (C_{IN}) is required to decouple the VBIAS line's voltage noise. If using the MPQ4323 output as the V_{BIAS} for the MPQ7225, a decoupling capacitance is required for the MPQ7225's VBIAS: 2 x 22µF, 2 x 10µF, and 0.1µF. Place the 22µF capacitors close to the MPQ4323. Place the 10µF capacitor close to the MPQ7225's VBIAS pin.

Selecting the VCC Capacitor and Current Capability

The VCC is pin is the internal bias power supply. An internal LDO from VBIAS generates the 3.3V

VCC. VCC supplies power to the internal control circuit and gate drivers. A $\geq 10\mu\text{F}$ decoupling capacitor should be placed from VCC to ground. VCC needs power from the external LDO if the V_{BIAS} cannot sufficiently power VCC. The external LDO should be between 3.1V and 3.5V and with a 50mA + 20mA current ability. When there are multiple devices in parallel, the external DC source current ability should be ((50mA + n x 20mA)), where the n is the number of devices.

LED Current Setting

Set the LED currents of all channels with an external resistor at ISET pin, calculated with Equation (7):

$$I_{SET}(mA) = \frac{600}{R_{ISET}(k\Omega)}$$
 (7)

Certain ISET resistors are recommended (see Table 10).

Table 10: Resistor Selection

I _{LED} (mA)	R _{ISET} (kΩ)	
200	3.01	
100	6.04	
50	12.1	

The LED current can be adjusted via analog dimming and PWM dimming. For more details, see the Pulse-Width Modulation (PWM) Dimming section on page 28 and the Analog Dimming section on page 29.

MODE Pin Configuration

If AFC is disabled, connect the MODE pin to GND. If AFC is enabled and the part is the master, connect MODE to GND; if it is a slave device, connect MODE to VCC.

EN Pin

If the EN pin is not used to control the MPQ7225 on/off function, EN can be directly connected to VBIAS through a $10k\Omega$ resistor. When EN pulls low, VCC shuts down, and all the registers are reset.

ADDR1 and ADDR2 Pin

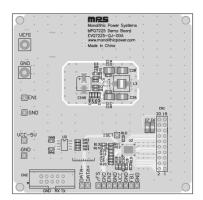
The ADDR1 and ADDR2 pins set the device address. They must be connected to VCC and GND, or connected to GND through a $35k\Omega$ resistor (within a $\pm 10\%$ range).

PCB Layout Guidelines for BCI/EMC

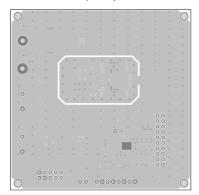
Consider the bulk current injection (BCI), as FBO has a maximum current capability of 5mA for anti-interference. To improve BCI and EMC results, refer to Figure 23 on page 44 and follow the guidelines below:

- 1. For the MPQ4323C, place the symmetric input capacitors as close to VIN and GND as possible.
- 2. For the MPQ4323C, ensure that the highcurrent paths at GND and VIN have short, direct, and wide traces.
- 3. For the MPQ4323C, place the VCC capacitor as close to VCC and GND as possible.
- 4. For the MPQ4323C, route SW and BST away from sensitive analog areas, such as FB.
- 5. For the MPQ7225, place the feedback resistors close to the chip to ensure that the trace connected to FB is as short as possible.
- 6. For the MPQ7225, place the capacitors as close to the input as possible.
- For the MPQ7225, add a small capacitor as close as the IC pins as possible to improve anti-interference abilities.
- 8. For the MPQ7225, a GND polygon is necessary since it improves anti-interference abilities and it can improve heat dissipation.
- 9. For the MPQ7225, make the GND polygon large.

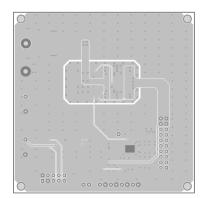
2-Layer Layout Guidelines

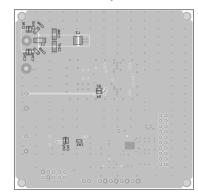

For a 2-layer PCB layout, follow the steps below:

- 1. The top layer should include the power, signal, and GND.
- 2. Cover GND in all areas except for the signal and power path.
- 3. The bottom layer should only include the GND polygon to shield noise interference, unless there is not enough PCB space.


4-Layer Layout Guidelines

For a 4-layer PCB layout, follow the steps below:


- 1. The top layer should include the power, signal, and GND.
- 2. Cover GND in all areas on the top layer except for the signal and power path.
- 3. The second layer should only include GND to shield noise interference on the top layer.
- 4. The third layer should include the power, signal, and GND.
- 5. Cover GND in all areas on the third layer except for the signal path.
- Cover GND in all areas on the bottom layer except for the signal and power path.


Top Layer

Mid-Layer 1

Mid-Layer 2

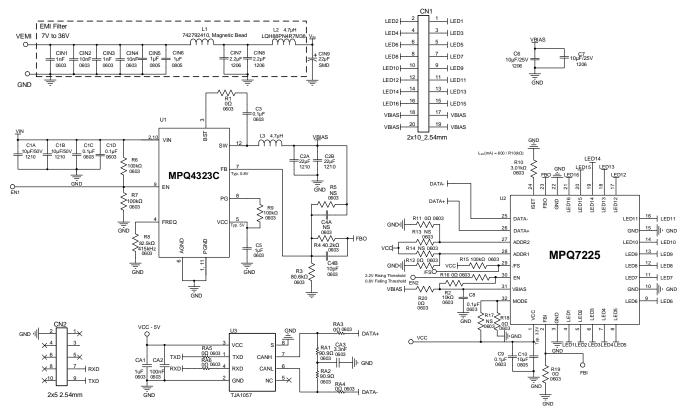
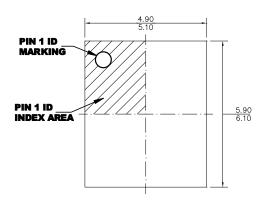
Bottom Layer

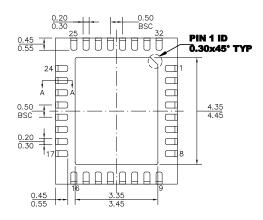
Figure 23: Recommended PCB Layout

Note:

12) The recommended PCB layout is based on Figure 24 on page 45.

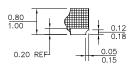
TYPICAL APPLICATION CIRCUIT

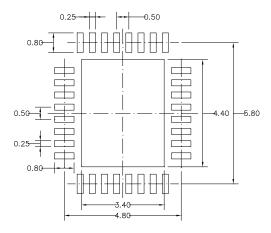

Figure 24: Typical Application Circuit (ILED = 200mA/Channel)

PACKAGE INFORMATION

QFN-32 (5mmx6mm) Wettable Flank

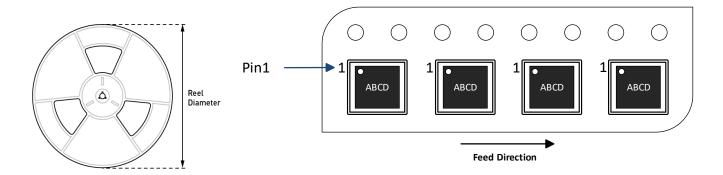


TOP VIEW



SIDE VIEW

SECTION A-A


RECOMMENDED LAND PATTERN

NOTE:

- 1) THE LEAD SIDE IS WETTABLE.
- 2) ALL DIMENSIONS ARE IN MILLIMETERS.
- 3) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
- 4) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
- 5) JEDEC REFERENCE IS MO-220.
- 6) DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Quantity/ Tray	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MPQ7225GQJE- xxxx-AEC1-Z	QFN-32 (5mmx6mm)	5000	N/A	N/A	13in	12mm	8mm

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	3/28/2023	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.