

30V, 0.3A, High-Frequency Transformer Driver for Automotive Applications, AEC-Q100

DESCRIPTION

The MPQ18913 is a high-frequency half-bridge transformer driver. It is ideal for use as the primary-side MOSFET in isolated power supplies for biasing silicon carbide (SiC) field-effect transistors (FETs), silicon FETs, and insulated gate bipolar transistors (IGBTs). The MPQ18913 simplifies an isolated biased supply's design by integrating the control, switching power stage, and protection circuitry in one device. This typology supports designs with a high isolation voltage and small interwinding capacitance.

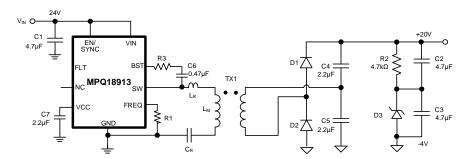
The MPQ18913 features soft switching and an optional frequency spread spectrum (FSS) to optimize EMI performance. It supports a wide 5V to 30V input voltage (V_{IN}) range, and can survive surges of up to 50V. It also integrates two switching MOSFETs that are rated for 300mA of average input current (I_{IN}).

The device has a wide 400kHz to 5MHz configurable switching frequency (f_{SW}) range, which reduces the solution size and optimizes efficiency in resonant topologies (e.g. LLC converters).

Full safety and protection features include input over-voltage protection (OVP), over-current protection (OCP), and fault indication. The device's built-in soft start (SS) controls the inrush current during start-up.

The MPQ18913 is available in QFN-10 (2mmx2.5mm) package with wettable flanks.

FEATURES


- Advanced Protection Features:
 - Over-Current Protection (OCP)
 - Short-Circuit Protection (SCP)
 - Over-Voltage Protection (OVP)
 - Over-Temperature Protection (OTP)
 - Fault Reporting
 - Under-Voltage Lockout (UVLO)
 - Supports Up to 5kV Isolation Voltage
- Low EMI:
 - o Soft Switching
 - Flip-Chip Package
 - Frequency Spread Spectrum (FSS)Option
 - Low Interwinding Capacitance
- Small Solution Size:
 - 400kHz to 5MHz Configurable Switching Frequency (f_{SW})
 - Available in a Tiny QFN-10 (2mmx2.5mm) Package with Wettable Flanks

APPLICATIONS

- Silicon Carbide (SiC) Transformer Driver Biased Supplies
- Automotive Traction Inverters and Onboard Charging (OBC)
- DC Fast-Charging Stations
- Uninterrupted Power Supplies (UPSs) and Solar Inverters
- Isolated Power Supplies

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

SELECTION GUIDE

Part Number	Soft-Start Time	Hiccup Time
MPQ18913GRPE-AEC1-Z	2ms	12ms
MPQ18913GRPE-A-AEC1-Z	20ms	120ms

ORDERING INFORMATION

Part Number	Package	Top Marking	MSL Rating
MPQ18913GRPE-AEC1*	QFN-10 (2mmx2.5mm)	See Below	1
MPQ18913GRPE-A-AEC1**	QFN-10 (ZIIIIIXZ.SIIIII)	See Delow	l

^{*} For Tape & Reel, add suffix -Z (e.g. MPQ18913GRPE-AEC1-Z).

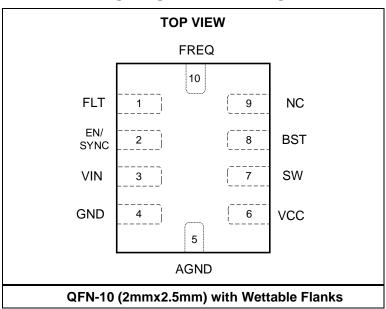
TOP MARKING (MPQ18913GRPE-AEC1)

TOP MARKING (MPQ18913GRPE-A-AEC1)

MLY

MMY

LLL


LLL

ML: Product code of MPQ18913GRPE-AEC1

MM: Product code of MPQ18913GRPE-A-AEC1-Z

Y: Year code LLL: Lot number Y: Year code LLL: Lot number

PACKAGE REFERENCE

© 2024 MPS. All Rights Reserved.

^{**} For Tape & Reel, add suffix -Z (e.g. MPQ18913GRPE-A-AEC1-Z).

PIN FUNCTIONS

Pin#	Name	Description
1	FLT	Fault indicator. The FLT pin is an open-drain output.
2	EN/SYNC	Enable and external clock. Pull the EN/SYNC pin high to turn the device on; pull EN/SYNC low to turn it off. Apply an external clock to synchronous switching frequency (fsw).
3	VIN	Input voltage. Bypass the VIN pin to GND using a $1\mu F$ ceramic capacitor, placed as close to the IC as possible.
4	GND	Ground.
5	AGND	Analog ground. Connect AGND to power ground using a single-point connection.
6	VCC	Biased supply. Decouple the VCC pins using a $\ge 1\mu F$ ceramic capacitor referred to GND. Place this capacitor as close to VCC as possible.
7	SW	Switching node.
8	BST	HS-FET driver voltage. Connect a ceramic capacitor between the BST and SW pins.
9	NC	Not connected. For internal test use only. Leave the NC pin floating.
10	FREQ	Switching frequency setting. Connect a resistor between the FREQ and GND pins to set fsw. Place this resistor as close to FREQ as possible.

ABSOLUTE MAXIMUM RATINGS (1)

V _{IN} , V _{EN}	0.3V to +35V
V _{SW}	$-0.3V$ to $(V_{IN} + 0.3V)$
BST to SW	0.3V to +6.5V
V_{CC} , V_{DET} , V_{FLT} , V_{FREQ}	0.3V to +6.5V
V _{IN} , V _{EN} (surge)	0.3V to +50V
Junction temperature (T _J)	150°C
Lead temperature	260°C
Storage temperature	65°C to +150°C
Continuous power dissipati	on $(T_A = 25^{\circ}C)^{(2)}$
QFN-10 (2mmx2.5mm)	2.5W

ESD Ratings

Human body model (HBN	Л)±2000V
Charged device model (C	DM)±2000V

Recommended Operating Conditions (3)

Input voltage (V _{IN})	5V to 30V
External VCC bias	4.86V to 5.5V
Operating junction temp (7	(i)40°C to +150°C

Thermal Resistance θ_{JA} θ_{JC}

EVQ-189	13-D-00A ⁽⁴⁾	45.3	7	°C/W
QFN-10 ((2mmx2.5mm)) ⁽⁵⁾ 70	2.3	°C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{JA}, and the ambient temperature, T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation can cause excessive die temperature, which may cause the device to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on the EVQ18913-D-00A, 6-layer PCB.
- 5) Measured on a JESD51-7, 4-layer PCB. The value of θ_{JA} given in this table is only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application.

3

ELECTRICAL CHARACTERISTICS

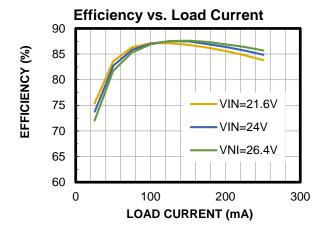
 $V_{IN} = 24V$, $T_J = -40$ °C to +150°C, typical values are tested at $T_J = 25$ °C, unless otherwise noted.

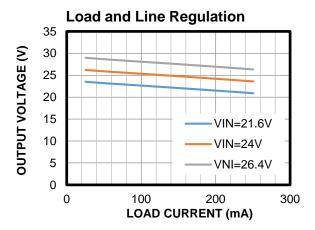
Parameter	Symbol	Condition	Min	Тур	Max	Units
Power Supply Transformer Driver				•		
VCC regulator voltage	Vcc	I_{CC} = 0mA to 20mA, V_{EN} = 1.5V	4.55	4.7	4.85	V
Vcc under-voltage lockout rising (UVLO) threshold	Vcc_uvlo_ RISING	V _{CC} rising	4.1	4.25	4.4	V
Vcc UVLO falling threshold	V _{CC_UVLO_} FALLING	Vcc falling	3.95	4.1	4.25	V
Vcc UVLO hysteresis	Vcc_uvlo_hys			150		mV
V _{IN} UVLO rising threshold	V _{IN_UVLO_}	V _{IN} rising	4.35	4.65	4.9	V
V _{IN} UVLO falling threshold	VIN_UVLO_ FALLING	V _{IN} falling	4	4.25	4.5	V
V _{IN} UVLO hysteresis	V _{IN_UVLO_HYS}			400		mV
Shutdown current	I _{SD}	V _{EN} = 0V		4	12	μΑ
Quiescent current	ΙQ	V_{EN} =1.5V, f_{SW} = 1MHz (set by the FREQ resistor, R_{FREQ}), SW is floating		9.5		mA
Input over-voltage protection (OVP) rising threshold	Vovp_rising	Rising	31	33	35	V
Input OVP falling threshold	Vovp_falling	Falling	28.5	30.5	32.5	V
Input OVP hysteresis	Vovp_hys			2.5		V
EN start-up threshold	V _{EN_ON}	V _{EN} rising	1	1.1	1.2	V
EN shutdown threshold	V _{EN_OFF}	V _{EN} falling	0.8	0.9	1	V
EN hysteresis	V _{EN_HYS}			0.2		V
EN pull-down resistance	Ren			2		МΩ
EN shutdown blanking time (6)	ten_sd_blk	EN off to stop switching		6		μs
Synchronous (SYNC) input rising threshold	V _{SYNC_RISING}	Rising		1.7		V
SYNC input falling threshold	VSYNC_FALLING	Falling		0.9		V
SYNC input hysteresis	V _{SYNC_HYS}			0.8		V
High-side MOSFET (HS-FET) on resistance	Rds(on)_hs	I _{DS} = 0.1A		180		mΩ
Low-side MOSFET (LS-FET) on resistance	R _{DS(ON)_LS}	I _{DS} =0.1A		180		mΩ
		V _{EN} = 0V, V _{SW} = 24V, T _J = 25°C			1	μΑ
Switch leakage	Isw_LkG	V _{EN} = 0V, V _{SW} = 24V, T _J = -40°C to 150°C			6	μΑ
Average SW capacitance	Csw	V _{EN} = 0V, SW ramps up from 0V to 24V	100	125	150	pF
FLT output low voltage	V _{OL}			0.2	0.3	V
Contable of free	t.	$R_{FREQ} = 33k\Omega$	-3%	3	+3%	MHz
Switching frequency	fsw	$R_{FREQ} = 100k\Omega$	-3%	1	+3%	MHz

ELECTRICAL CHARACTERISTICS (continued)

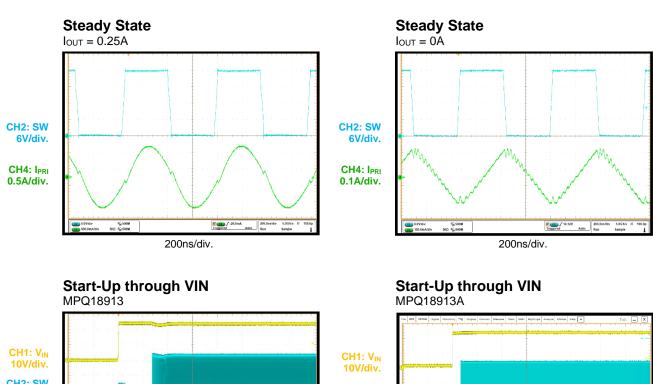
 $V_{IN} = 24V$, $T_J = -40$ °C to +150°C, typical values are tested at $T_J = 25$ °C, unless otherwise noted.

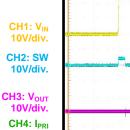
Parameter	Symbol	Condition	Min	Тур	Max	Units
FREQ resistor	RFREQ		20		250	kΩ
SYNC frequency	fsync		0.4		5	MHz
Over-current protection (OCP) threshold	Іоср		-15%	1.2	+15%	А
Over-current protection		MPQ18913, $R_{FREQ} = 100k\Omega$	-20%	1	+20%	ms
(OCP) blanking time (6)	tocp	MPQ18913-A, R _{FREQ} =100kΩ	-20%	20	+20%	ms
Short circuit protection (SCP) threshold	I _{SC}	Fast off limit		6		А
Licoup time (6)		MPQ18913	-20%	12	+20%	
Hiccup time (6)	tHICCUP	MPQ18913-A	-20%	120	+20%	ms
Dead time (DT) (6)			-20%	25	+20%	ns
0 (1 1 1 1 1 (6)		MPQ18913, $R_{FREQ} = 100$ kΩ		2		ms
Soft-start time (6)	tss	MPQ18913-A, $R_{FREQ} = 100k\Omega$		20		ms
Thermal shutdown	T _{SD}			170		°C
Thermal shutdown hysteresis	ΔT_{SD}			20		°C

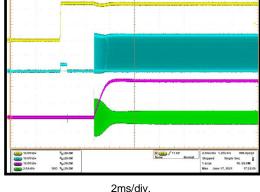

Note:


⁶⁾ Derived from bench characterization. Not tested in production.

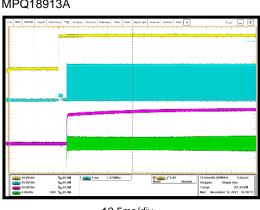
TYPICAL CHARACTERISTICS

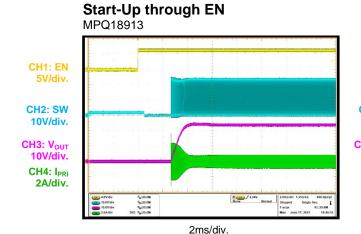

Performance curves and waveforms are tested on the evaluation board, V_{IN} = 24V, V_{OUT} = 24V, T_A = 25°C, unless otherwise noted.

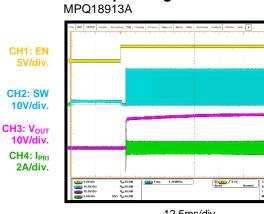


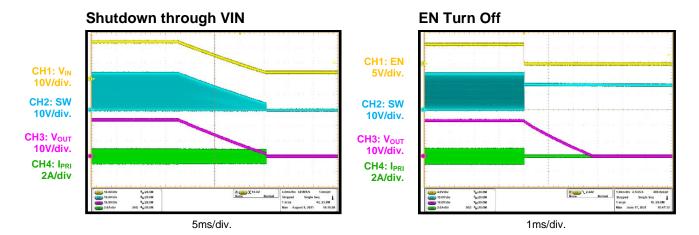

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{IN} = 24V$, $I_{OUT} = 0.25A$, $T_A = 25$ °C, unless otherwise noted.




2A/div.





Start-Up through EN

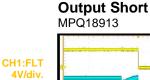
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $V_{IN} = 24V$, $I_{OUT} = 0.25A$, $T_A = 25$ °C, unless otherwise noted.

CH1:FLT

CH2: SW

10V/div.


CH3: Vout

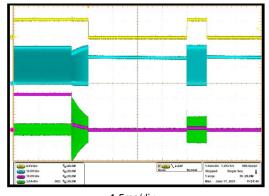
10V/div.

CH4: I_{PRI}

3A/div.

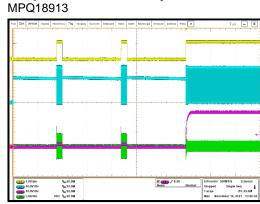
4V/div.

CH2: SW

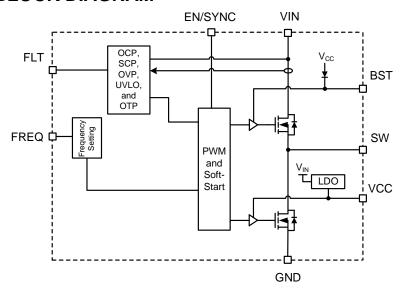

10V/div.

CH3: V_{OUT}

10V/div.


CH4: I_{PRI}

3A/div.



Output Short Recovery

FUNCTIONAL BLOCK DIAGRAM

Figure 1: Functional Block Diagram

OPERATION

Enable Control (EN/SYNC)

The EN pin enables and disables the MPQ18913 power converter. Pull the EN voltage (V_{EN}) above the start-up threshold to enable the MPQ18913. The device starts switching after a delay time. The device is disabled when V_{EN} falls below the shutdown threshold. The EN/SYNC pin can support up to 30V. For automatic start-up, connect EN/SYNC directly to the VIN pin.

Then EN/SYNC pin can also be used for external clock synchronization. Connect a clock with a 400kHz to 1.67MHz frequency to the EN/SYNC pin. The internal clock frequency scales to be 1x or 3x the external clock frequency while continuing to operate at a 50% duty cycle. The scale factor is set by the FREQ resistor (R_{FREQ}).

Scale Factor	f _{SW} (MHz)	R _{FREQ} (kΩ)
1	0.4 to 1.5	100
3	1.5 to 5	33.2

Under-Voltage Lockout (UVLO)

The MPQ18913 implements separate undervoltage lockout (UVLO) protection for the input VIN and VCC pins. The maximum input voltage (V_{IN}) UVLO rising threshold can be as low as 4.9V to allow for start-up across the entire V_{IN} range. The FLT pin is always low during V_{IN} or V_{CC} UVLO.

Power Converter Soft Start (SS)

During start-up, the switching frequency (f_{SW}) is 2x the set frequency to limit the inrush current, and then gradually decreases to the set value.

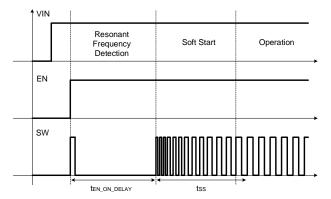


Figure 2: Timing Diagram during Start-Up

Over-Current Protection (OCP) and Short-Circuit Protection (SCP)

Over-Current protection (OCP) is implemented by measuring the instantaneous current (I_{INSTANTANEOUS}) on the low-side MOSFET (LS-FET). When the current exceeds the OCP threshold, f_{SW} increases to limit the input current (I_{IN}). If the over-current (OC) fault persists for longer than 1ms, the device stops switching, and automatically attempts to resume switching after a hiccup period (thiccup). The FLT pin is also pulled low. The FLT pin is released once the part attempts to start switching again.

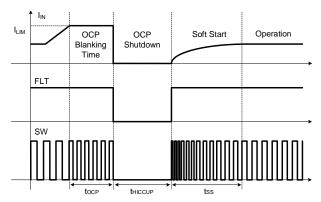


Figure 3: Timing Diagram during an OC Fault

Short-circuit protection (SCP) is implemented by sensing I_{INSTANTANEOUS} on high-side MOSFET (HS-FET). SCP protects the device from dead shorts between SW and GND.

Over-Voltage Protection (OVP)

When V_{IN} exceeds the over-voltage protection (OVP) rising threshold, the converter immediately stops switching, and FLT pulls low. Once V_{IN} falls below the OVP falling threshold with hysteresis, the part starts switching and FLT releases.

Over-Temperature Protection (OTP)

The MPQ18913 consistently monitors the die temperature to implement over-temperature protection (OTP). When the die temperature exceeds the thermal shutdown threshold, the part stops switching and pulls FLT low. Once the temperature falls below thermal shutdown threshold with hysteresis, the part starts up again and FLT releases.

Fault Reporting (FLT)

The FLT pin is an open-drain output that is pulled low if one of the following occur: V_{IN} UVLO, V_{CC} UVLO, OCP (in hiccup or latch-off mode), SCP (in hiccup or latch-off mode), OVP, and OTP.

Table 1: Fault Reporting Functions (7)

EN	V _{IN}	V _{cc}	FLT
-	Powered	Powered	High
-	Not powered, UVLO	Not powered, UVLO	Low
Low	Powered	Not powered	Low
Low	Not powered, UVLO	Powered (8)	Low
High	Powered	Not powered, UVLO (8)	Low
High	Not powered, UVLO	Powered (8)	Low

Note:

- 7) "Powered" means that the device is no longer in V_{IN} or V_{CC} UVLO, and an internal or external supply is applied. "Not powered" means the pin is in UVLO.
- 8) This operation can only occur when an external V_{CC} bias is applied. It is not recommended to power V_{CC} while V_{IN} is not powered, or to pull EN high while V_{IN} is powered and V_{CC} is not powered.

APPLICATION INFORMATION

COMPONENT SELECTION

Selecting the Rectification Diodes

It is recommended to use Schottky diodes, due to their low forward voltage drop and fast recovery, to minimize power loss and achieve zero voltage switching (ZVS).

The diodes' peak current (IPEAK) can be calculated with Equation (1):

$$I_{PEAK} \approx \Pi \times I_{LOAD}$$
 (1)

Selecting the Output Capacitor (Cout)

The output voltage ripple (ΔV_{OUT}) is determined by the powered device's capacitance and gate charge (e.g. SiC FET or IGBT). To maintain an acceptable ΔV_{OUT} , choose a proper output capacitance (C_{OUT}). C_{OUT} for the two V_{OUT} rails can be estimated with Equation (2):

$$C_{OUT_POS_RAIL} = C_{OUT_NEG_RAIL} \ge (QG / \Delta V_{OUT})$$
 (2)

If each rail's capacitance should exceed 22µF, then the MPQ18913A should be selected due to its longer soft-start time (tss).

Selecting the Switching Frequency (f_{SW})

A higher f_{SW} reduces the size of transformer, requires a larger transformer winding AC resistance, which limits the output power (Pout). Table 2 shows the recommended fsw.

Table 2: Recommended fsw

P _{OUT} (W)	f _{SW} (MHz)
≤6	0.4 to 0.75
≤3	0.75 to 2
≤2	1.5 to 5

The resistor between FREQ and GND (R_{FREQ}) sets f_{SW} (see Figure 4).

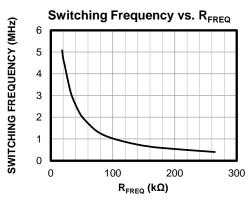


Figure 4: Switching Frequency vs. RFREQ

Selecting the Transformer's Magnetizing Inductance

The magnetizing inductance (L_M) target design value is based on achieving ZVS. L_M can be calculated with Equation (3).

$$L_{M} = \frac{DT}{8 \times C_{SW} \times f_{SW}} = \frac{25ns}{8 \times 0.15nF \times f_{SW}}$$
(3)

If L_M exceeds the target value, then there is not enough magnetizing current to achieve full ZVS. With a low input voltage and small parasitic capacitance on the converter, partial ZVS may not cause excessive thermal or electrical stress. If L_M is below the design target value, there is more magnetizing current than required, which caused additional conduction loss in the FET and copper loss in the transformer. Given the small on resistance of the integrated FET and reasonable AC resistance of the transformer, the additional loss can be manageable.

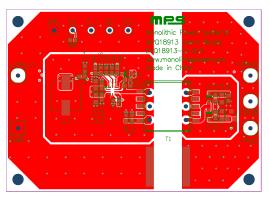
L_M should exceed 10x the leakage inductance to reduce V_{OUT}'s sensitivity to the inductance and resonant capacitance variation.

Selecting the Resonant Capacitor (C_R)

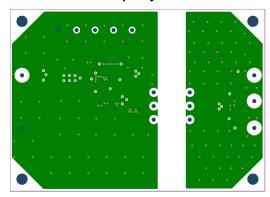
The resonant capacitance (C_R) can be calculated with Equation (4):

$$C_{R} = \frac{1}{4 \times \pi^{2} \times L_{R} \times f_{SW}^{2}}$$
 (4)

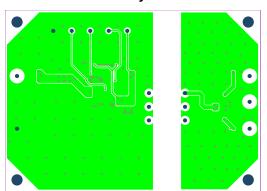
Where L_R is the transformer leakage inductance, reflected to the primary side.


PCB Layout Guidelines (9)

Efficient PCB layout is critical for stable operation. For the best results, refer to Figure 5 and follow the guidelines below:


- 1. Place the input capacitor, VCC capacitor, and BST capacitor as close to the corresponding pins as possible.
- 2. Place the R_{FREQ} as close to the FREQ pin as possible.
- Connect R_{FREQ} using short and direct traces. The other R_{FREQ} terminal should be connected to AGND.
- 4. Connect AGND to power ground through a single-point connection.
- 5. Minimize the switching node areas on both the primary and secondary sides to reduce EMI.
- 6. Place the input filter on the bottom layer to reduce EMI.

Note:


9) The recommended layout is based on Figure 6 on page 14.

Top Layer

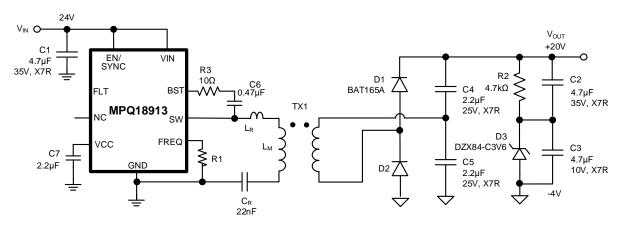
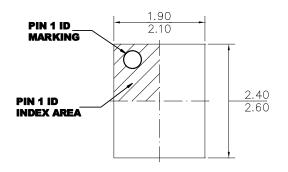
Mid-Layer 1

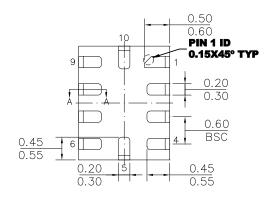
Mid-Layer 2



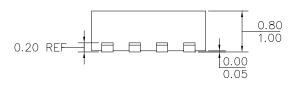
Figure 5: Recommended PCB Layout

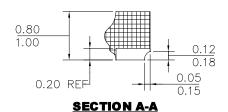
TYPICAL APPLICATION CIRCUIT

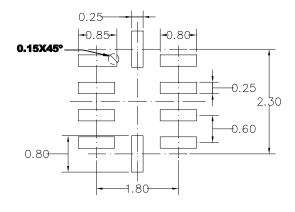




Figure 6: Typical Application Circuit (V_{IN} = 24V, V_{OUT} = +20V/-4V, 6W LLC, Start Up through VIN)

PACKAGE INFORMATION

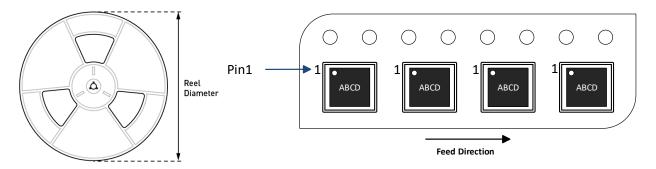

QFN-10 (2mmx2.5mm)




TOP VIEW

BOTTOM VIEW

SIDE VIEW


RECOMMENDED LAND PATTERN

NOTE:

- 1) THE LEAD SIDE IS WETTABLE.
- 2) ALL DIMENSIONS ARE IN MILLIMETERS.
- 3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
- 4) JEDEC REFERENCE IS MO-220.
- 5) DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Quantity/ Tray	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MPQ18913GRPE- AEC1-Z MPQ18913GRPE- A-AEC1-Z	QFN-10 (2mmx2.5mm)	5000	N/A	N/A	13in	12mm	8mm

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated	
1.0	5/24/2023	Initial Release	-	
1.01	7/18/2024	Updated R3 and C6 to be in series in Typical Application circuit diagram	1, 14	
		 Updated formatting for Equation (1) Updated "28" to "8" and "0.17nF" to "0.15nF" in Equation (3) Fixed formatting in Table 2, Figure 4, and Selecting the Transformer's Magnetizing Inductance section 	12	

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.