

L89 (HA)&L89 (HB)

Difference Introduction

GNSS Module Series

Version: 1.0

Date: 2022-09-08

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236

Email: info@quectel.com

Or our local offices. For more information, please visit:

<http://www.quectel.com/support/sales.htm>.

For technical support, or to report documentation errors, please visit:

<http://www.quectel.com/support/technical.htm>.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2022. All rights reserved.

About the Document

Document Information

Title	L89 (HA)&L89 (HB) Difference Introduction
Subtitle	GNSS Module Series
Document Type	Difference Introduction
Document Status	Released

Revision History

Version	Date	Description
-	2022-07-06	Creation of the document
1.0	2022-09-08	First official release

Contents

About the Document	3
Contents	4
Table Index.....	5
Figure Index	6
1 Introduction	7
2 Hardware Differences	8
2.1. General Information	8
2.2. Module Protection	9
2.2.1. Power-on Delay.....	9
2.2.2. Undervoltage Protection	10
2.2.3. Automatic Reset.....	10
2.3. RESET_N.....	11
2.4. Backup Mode	11
2.5. Supply Current	13
3 Software Difference	14
3.1. Firmware Version	14
3.1.1. PQTMVERNO	14
4 Appendix References	16

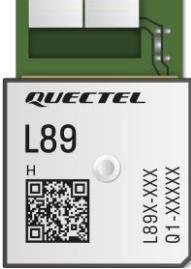
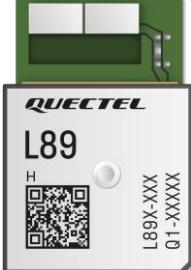
Table Index

Table 1: General Information.....	8
Table 2: Supply Current.....	13
Table 3: Firmware Version Differences	14
Table 4: Related Documents	16
Table 5: Terms and Abbreviations	16

Figure Index

Figure 1: Pin Assignment	9
Figure 2: Power-on Delay Sequence	10
Figure 3: Undervoltage Protection Sequence	10
Figure 4: Automatic Reset Sequence	11
Figure 5: L89 (HA) Sequence of Entering/Exiting Backup Mode	12
Figure 6: L89 (HB) Sequence of Entering/Exiting Backup Mode	12

1 Introduction



This document describes main differences between L89 (HA) and L89 (HB) modules in terms of hardware and software designs, including module protection functions, the RESET_N pin, Backup mode, supply current and firmware version.

2 Hardware Differences

2.1. General Information

The L89 (HA) and L89 (HB) modules are pin-to-pin compatible and have the same electrical characteristics.

Table 1: General Information

Module	Appearance	Packaging	Dimensions (mm)	Supply Voltage
L89 (HA)		16 LCC pins 29 LGA pins	26.4 × 18.4 × 6.8	VCC 3.1–4.3 V Typ. 3.3 V
				V_BCKP 2.2–4.3 V Typ. 3.3 V
				IO Voltage Typ. 3.0 V
L89 (HB)		16 LCC pins 29 LGA pins	26.4 × 18.4 × 6.8	VCC 3.1–4.3 V Typ. 3.3 V
				V_BCKP 2.2–4.3 V Typ. 3.3 V
				IO Voltage Typ. 3.0 V

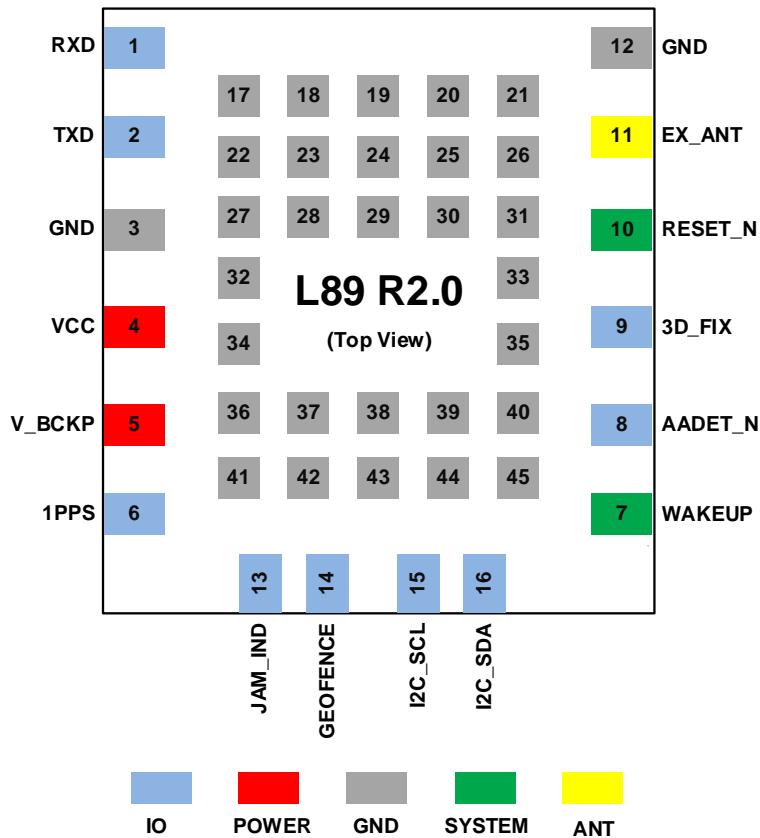


Figure 1: Pin Assignment

2.2. Module Protection

The L89 (HB) has an extra hardware watchdog timer (WDT), which provides features of power-on delay, undervoltage protection and automatic reset under abnormal conditions. The L89 (HA) does not support these features.

2.2.1. Power-on Delay

After the VCC is powered up for 200 ms, the internal LDO supplies power to the GNSS IC and the L89 (HB) module works normally, avoiding the impact of voltage jitter during power-up.

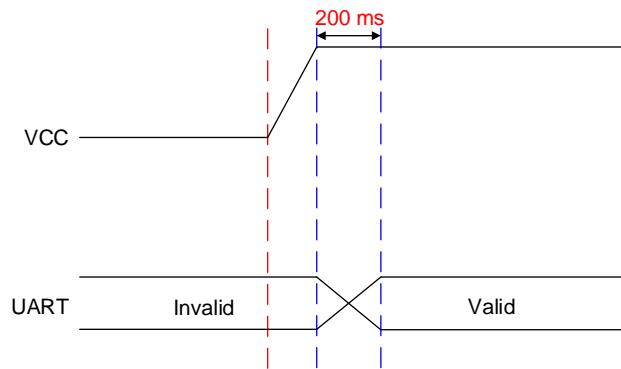


Figure 2: Power-on Delay Sequence

2.2.2. Undervoltage Protection

Undervoltage protection is activated if the VCC power supply of the module drops below the threshold, which is detected by the internal watchdog timer as undervoltage state. In this state, the internal LDO does not supply power to the GNSS IC, which in turn stops the operation of internal GNSS IC. The module enters Backup mode when the V_BCKP voltage is in the normal operating range; it is powered off automatically if the V_BCKP voltage drops below 2.2 V.

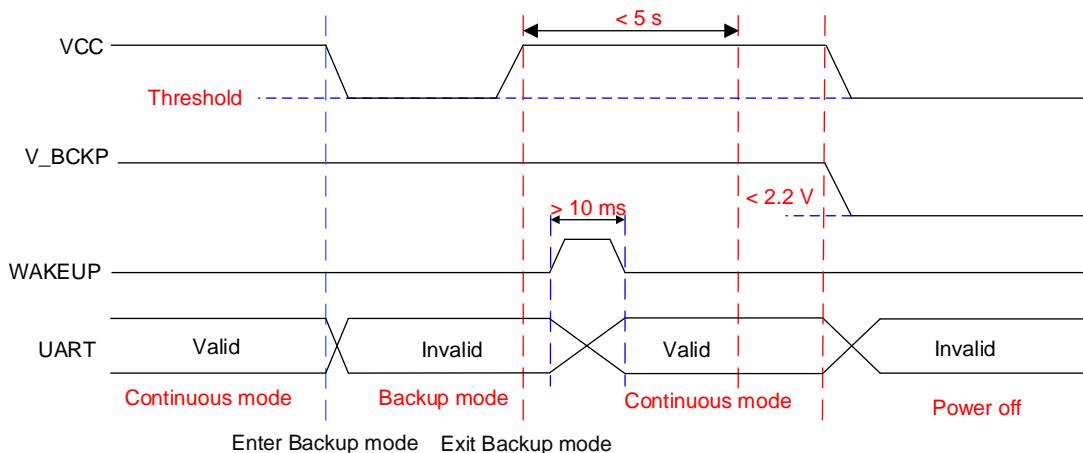


Figure 3: Undervoltage Protection Sequence

2.2.3. Automatic Reset

If the L89 (HB) module enters an abnormal state in which UART interface does not output data, after a 5-second delay, the watchdog timer automatically resets the module by driving the RESET_N pin low with an internal control circuit.

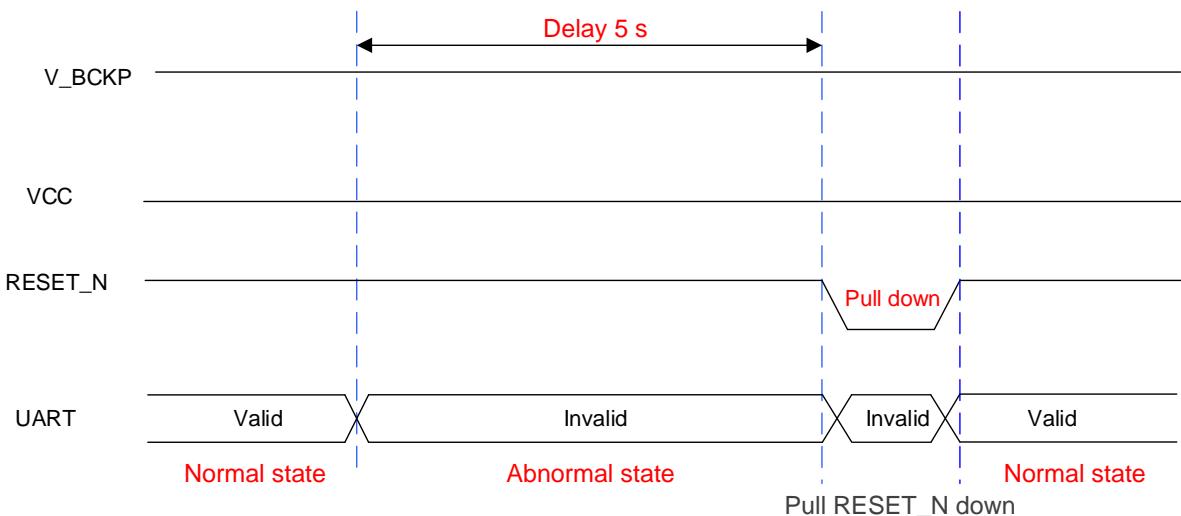


Figure 4: Automatic Reset Sequence

2.3. RESET_N

RESET_N is an input pin. The module can be reset by driving the RESET_N pin low for at least 100 ms and then releasing it.

- For L89 (HA), it is internally pulled up to 1.8 V with a 10 kΩ resistor by default.
- For L89 (HB), it is internally pulled up to V_BCKP with a 10 kΩ resistor by default.

No external pull-up circuit is allowed for this pin.

2.4. Backup Mode

The L89 (HA) and L89 (HB) modules enter/exit the Backup mode differently.

L89 (HA) module:

- Enter the Backup mode:
 1. Send **\$PAIR650** to shut down internal main power supply in sequence.
 2. Cut off the power supply to the VCC pin and keep the V_BCKP pin powered.
- Exit the Backup mode:
 1. Restore VCC.
 2. Pull WAKEUP high for at least 10 ms after the VCC power supply is restored.

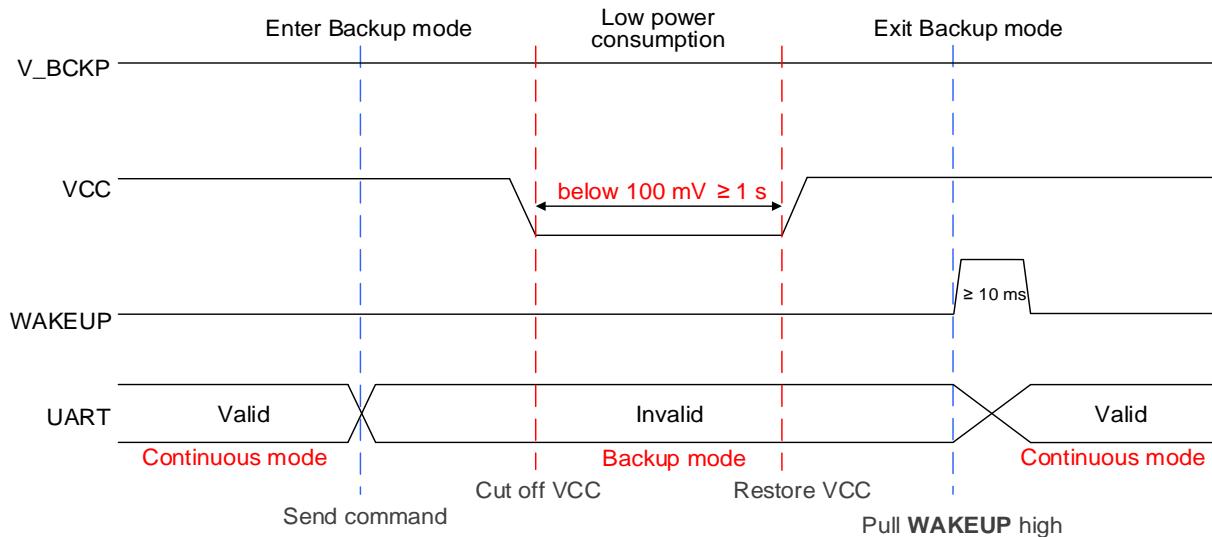


Figure 5: L89 (HA) Sequence of Entering/Exiting Backup Mode

L89 (HB) module:

- Enter the Backup mode:
 1. Send **\$PAIR650** to shut down internal main power supply in sequence.
 2. Cut off the power supply to the VCC pin within 5 s of a successful execution of the software command while keeping V_BCKP powered, otherwise the module will restart.
- Exit the Backup mode:
 1. Restore VCC.
 2. Pull WAKEUP high for at least 10 ms within 5 s after the VCC power supply is restored.

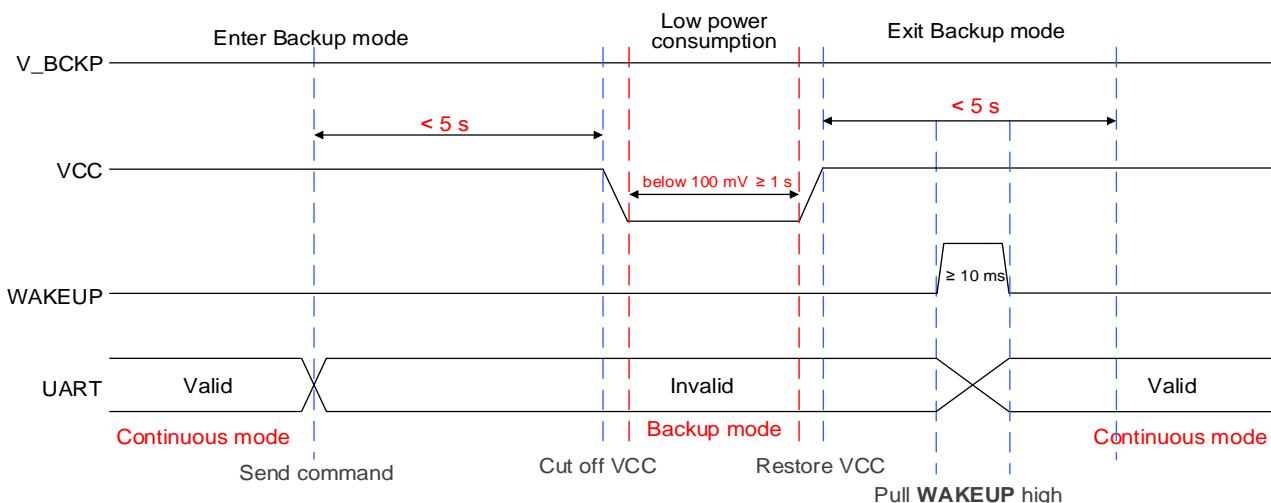


Figure 6: L89 (HB) Sequence of Entering/Exiting Backup Mode

2.5. Supply Current

Table 2: Supply Current

Parameter	Description	Condition	L89 (HA)		L89 (HB)	
			I _{Typ.} ¹	I _{PEAK} ¹	I _{Typ.} ¹	I _{PEAK} ¹
I _{VCC} ²	Current at VCC	Acquisition	32 mA	48 mA	32 mA	48 mA
		Tracking	32 mA	50 mA	32 mA	49 mA
I _{V_BCKP} ³	Current at V_BCKP	Continuous mode	10 µA	50 µA	10 µA	51 µA
		Backup mode	51 µA	108 µA	51 µA	108 µA

¹ Room temperature, measurements are taken with typical voltage.

² Used to determine the maximum current capability of power supply.

³ Used to determine the required battery current capacity.

3 Software Difference

3.1. Firmware Version

The firmware version differences are shown in the table below.

Table 3: Firmware Version Differences

Module	Firmware Version
L89 (HA)	L89HANRxxAxxS
L89 (HB)	L89HBNRxxAxxS

NOTE

x is a number between 0 and 9.

3.1.1. PQTVERNO

Queries software version.

Type:

Command

Synopsis:

\$PQTVERNO*<Checksum><CR><LF>

Parameter:

None

Result:

Returns the query result.

Query result message format:

```
$PQTMVERNO,<Type>,<Data>,<Time>*<Checksum><CR><LF>
```

Parameters included in the result:

Field	Format	Unit	Description
<Type>	Numeric	-	Software version number, which is different for L89 (HA) and L89 (HB). See Table 3 for details.
<Data>	Numeric	-	Build date of software version.
<Time>	Numeric	-	Build time of software version.

Example:

```
//L89HANR01A05S
$PQTMVERNO*58
$PQTMVERNO,L89HANR01A05S,2022/07/22,10:17:59*34

//L89HBNR01A01S
$PQTMVERNO*58
$PQTMVERNO,L89HBNR01A01S,2022/07/22,11:20:59*36
```

4 Appendix References

Table 4: Related Documents

Document Name
[1] Quectel L89 R2.0 Hardware Design
[2] Quectel L89 R2.0 GNSS Protocol Specification

Table 5: Terms and Abbreviations

Abbreviation	Description
ANT	Antenna
BDS	Chinese BeiDou Global Positioning System
DI	Digital Input
D(I)O	Digital Input and Output
DO	Digital Output
Galileo	Galileo Satellite Navigation System (EU)
GLONASS	Global Navigation Satellite System (the Russian GNSS)
GPS	Global Positioning System
GND	Ground
GNSS	Global Navigation Satellite System
IRNSS	India Regional Navigation Satellite System
I ² C	I ² C interface
LCC	Leadless Chip Carriers
LGA	Land Grid Array

Abbreviation	Description
NMEA	NMEA (National Marine Electronics Association) 0183 Interface Standard
PI	Power Input
1PPS	One Pulse Per Second
QZSS	Quasi-Zenith Satellite System
RXD	Receive Data (Pin)
TXD	Transmit Data (Pin)
UART	Universal Asynchronous Receiver & Transmitter
WDT	Watchdog Timer