

深圳市索瑞达电子有限公司

承认书 SPECIFICATION FOR APPROVAL

客户名称: Customer Name:	标 准	
客户料号: Customer P/N:		
产 品 名 称: Product Name:	功率电感	
索瑞达料号: Sorede P/N:	SNR.252012.SYB系列	

地址:深圳市观澜镇福城街道新塘村8号源创园陆号A6栋3楼.

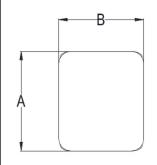
Address: 3Rd Floor, Building A6, Yuanchuangyuanlu, No. 8 Xintang Village,

Fucheng Street, Guanlan Town, Shenzhen.

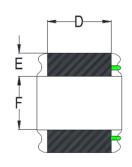
电话 Tel: 0755-29803356 传真 Fax: 0755-29803506

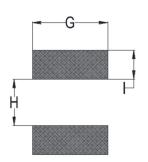
电子邮件 E-mail: sorde@vip.163.com

网址 http://www.szsorede.com


修改履历表

Modify Resume


16-1 E 16	Wiodity Resume	14-1-21-1-1
修改日期	修改明细	修改后版本号
Date modified	Modify Details	Version No.
2021-07-06	文件新制订 File formulation	A
2024-04-23	系列特性更新。	A1

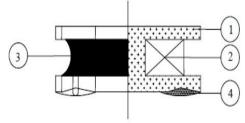

文件编号 File Number	SRD-WI-5376	版本号 Version Number	A1	页码 page	1/8

1、外形尺寸 Dimension:

单位Unit: mm

A	2.5+0.3/-0.1			
В	2.0±0.35/-0.05			
С	1.25MAX			
D	2.15Ref			
Е	0.80Ref			
F	1.00Ref			
G	2.20Ref			
Н	0.90Ref			
I	0.85Ref			

2、产品品名构成 Product Spec. Model

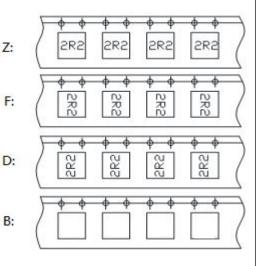

<u>SNR.252012</u>. <u>S Y B 2R2</u> <u>M T 00</u> a b c d e f g h i

- a: 系列名称Series name
- b: 产品尺寸Product dimensions (AxBxC)
- C: 形状Shape (T:12边形12-Sided、B:8边形8-Sided、S:4边形4-Sided)
- d: 密封方式Sealing way (L: 冷封Cold seal Y: 热封Heat seal)
- e: 印字方向 Lettering direction ▶
- f: 电感值Inductance Value

(1R0:1.0uH; 100: 10uH; 101:100uH)

- g:电感公差Inductance Tolerance (K:10%; M:20%; N:30%)
- h: 包装Package(T:磁带/卷轴Tape/Reel、B: 散装Bulk)
- i: 编号Numbering (标准standard)

3、结构Structure



| 4、材料清单MATERIAL LIST

NO.	PARTS	MATERIAL	UL FILE NO.	TEMP. CLASS
1	CORE	Ni-Zn CORE OR EQUIVALENT	NA	NA
2	WIRE	POLYURETHANE ENAMELLED COPPER WIRE OR EQUIVALENT	E258243	180℃
3	ADHESIVE	EPOXY RESIN OR EQUIVALENT	NA	NA
4	SOLDER	Sn99.3-Cu0.7 OR EQUIVALENT	NA	NA

*NA:NOT APPLICABLE.

Lettering direction

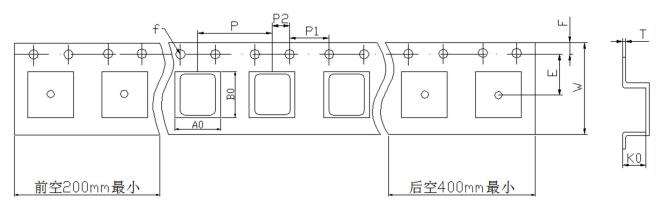
文件编号 File Number	SRD-WI-5376	版本号 Version Number	A1	页码 page	2/8
---------------------	-------------	-----------------------	----	------------	-----

5、电性能参数表 Electrical Characteristics List

0.24	1/0.1	28		
			4.05	3.50
	1/0.1	40	4.00	3.00
0.47	1/0.1	40	3.60	2.90
0.56	1/0.1	40	3.30	2.80
0.68	1/0.1	45	3.28	2.60
0.82	1/0.1	60	2.60	2.45
1.0	1/0.1	60	2.45	2.40
1.5	1/0.1	84	2.05	1.90
2.2	1/0.1	110	1.90	1.80
3.3	1/0.1	155	1.50	1.40
4.7	1/0.1	228	1.35	1.20
6.8	1/0.1	325	1.00	0.90
8.2	1/0.1	480	0.90	0.80
10	1/0.1	480	0.79	0.75
15	1/0.1	625	0.65	0.55
18	1/0.1	1000	0.55	0.50
22	1/0.1	1020	0.50	0.45
33	1/0.1	1400	0.38	0.37
47	1/0.1	2000	0.30	0.29
	0.68 0.82 1.0 1.5 2.2 3.3 4.7 6.8 8.2 10 15 18 22 33	0.68 1/0.1 0.82 1/0.1 1.0 1/0.1 1.5 1/0.1 2.2 1/0.1 3.3 1/0.1 4.7 1/0.1 6.8 1/0.1 8.2 1/0.1 10 1/0.1 15 1/0.1 18 1/0.1 22 1/0.1 33 1/0.1	0.68 1/0.1 45 0.82 1/0.1 60 1.0 1/0.1 60 1.5 1/0.1 84 2.2 1/0.1 110 3.3 1/0.1 155 4.7 1/0.1 228 6.8 1/0.1 325 8.2 1/0.1 480 10 1/0.1 480 15 1/0.1 625 18 1/0.1 1000 22 1/0.1 1020 33 1/0.1 1400	0.68 1/0.1 45 3.28 0.82 1/0.1 60 2.60 1.0 1/0.1 60 2.45 1.5 1/0.1 84 2.05 2.2 1/0.1 110 1.90 3.3 1/0.1 155 1.50 4.7 1/0.1 228 1.35 6.8 1/0.1 325 1.00 8.2 1/0.1 480 0.90 10 1/0.1 480 0.79 15 1/0.1 625 0.65 18 1/0.1 1000 0.55 22 1/0.1 1020 0.50 33 1/0.1 1400 0.38

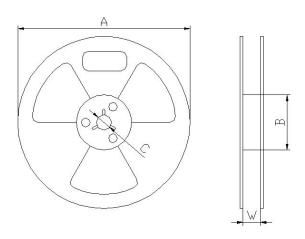
[※]公差Tolerance: N:±30%、M:±20%、K:±10%.

额定电流: 电感量比初始值下降35%Max或电感器表面温度上升≦ 40℃的电流值,以较小者为准(参考周围环境温度 25℃)。 The rated DC current is that which cause at 35%Max inductance reduction from the initial value or inductor surface temperature to rise by ≤ 40 °C, whichever is smaller (Reference ambient temperature 25°C)。

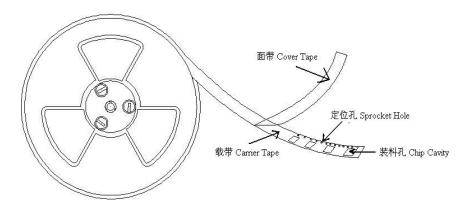

[※]工作温度Operating temperature rang: -40 $^{\circ}$ to +125 $^{\circ}$ (Including Self-heating)

[※]储存温度Storage termperature rang: -40 ℃ to +125℃

文件编号	SRD-WI-5376	版本号	A1	页码	3/8
File Number		Version Number		page	


6、产品包装 Packaging

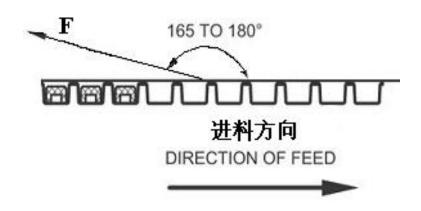
1) 载带包装示意图 Tape packing diagram


ITEM	W	A0	В0	K0	P	Е	F	D0	P1	P2	T
DIM	8.00	2.35	2.65	1.40	4.00	3.50	1.75	1.50	4.00	2.00	0.25
TOLE	±0.3	±0.1	±0.1	±0.1	±0.1	±0.1	±0.1	+0.1	±0.1	±0.1	±0.05

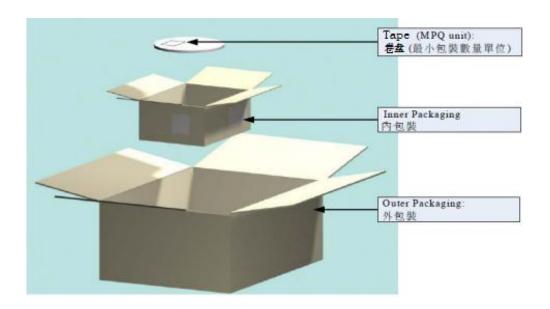
2)卷盘包装示意图 Tape packing diagram

А	180±0.5		
В	100±0.5		
С	13.5±0.5		
W	8.5±0.5		

3) 卷盘包装示意图 Tape packing diagram



文件编号	SRD-WI-5376	版本号	A1	页码	4/8
File Number		Version Number		nage	


4)剥离强度要求Peeling required

①F 力大小: 20~100g;

②面带剥离角度: 165°~180°。

5) 包装数量 Packing quantity

项目 (Project)	数量(PCS)	尺寸规格(Size:mm)
盘(Reel)	2000	7"
内盒 (Inner box)	20K	185mm*185mm*120mm
外箱 (Out box)	120K	395mm*385mm*205mm

文件编号 File Number SRD-WI-53		76	版本号 Version Number	A1	页码 page	5/8			
7. RELIABIL	TYTEST N	/IETHOD							
MECHANIC									
TESTITEM	SPECIF	ICATION	TEST DETAILS						
Substrate bend	lir △ L/Lo≦±5	5%	The sample shall be soldered onto the printed circuit board						
			in figure 1 and a load applied unitil the figure in the arrow						
	There shall	be	direction is made approximately 3mm.(keep time 30 seconds)						
	no mechan	ical	PCB dimension shall the page 7/9						
	damage or	elec-	F(Pressurization)						
	trical dame	ge.			П				
	R5 45±2 45±2								
						10/20			
			PRESSURE ROD						
				figure-1		R340			
Vibration		5%	The sam	ple shall be soldered	onto the printed o	circuit board			
			and when a vibration having an amplitude of 1.52mm						
	There shall	be	and a frequency of from 10 to 55Hz/1 minute repeated should						
	no mechan	ical	be applied to the 3 directions (X,Y,Z) for 2 hours each.						
	damage.		(A total of 6 hours)						
Solderability	New solder		Flux (rosin, isopropyl alcohol{JIS-K-1522}) shall be coated						
Coluciasiii	More than	90%	over the whole of the sample before hard, the sample shall						
			then be preheated for about 2 minutes in a temperature of						
			$130{\sim}150^{\circ}{\rm C}$ and after it has been immersed to a depth 0.5mm						
			below for 3±0.2 seconds fully in molten solder M705 with						
				rature of 245±2°ℂ.					
			· ·	an 90% of the electroo	de sections shall	be couered			
			with new	solder smoothly whe	en the sample is t	aken out of			
			the solder bath.						

文件编号 File Number	SRD-WI-5376	版本号 Version Number	A1	页码 page	6/8				
MECHANICAL									
TESTITEM	SPECIFICATION								
Resistance to	There shall be Temperature profile of reflow soldering								
Soldering heat	no damage or								
(reflow soldering)	problems.	The specimen shall be condition shown in the atom the specimen shall be for 1 hour, after which the	Pre-heating 2 min passed through the above profile for 1 stored at standard	e reflow oven with time.	the				
L									
ELECTRICAL									
ELECTRICAL TEST ITEM	SPECIFICATION		TEST DETAI	LS					
TESTITEM	There shall be no other	DC 100V voltage shall b	(2000) 10 (2000)	0.000					
TESTITEM	BENDON BE DWINGSON, SCHOOLSMACKE, Wilder NO. 93 (2017)	DC 100V voltage shall be surface and the termina	e applied across	0.000					
TEST ITEM Insulation	There shall be no other		e applied across	this sample of top					
TEST ITEM Insulation resistance	There shall be no other	surface and the termina	e applied across I. e shall be more th	this sample of top nan 1 × 10 ⁸ Ω.					
TEST ITEM Insulation resistance Dielectric	There shall be no other damage or problems.	surface and the termina The insulation resistance	e applied across I. e shall be more the	this sample of top nan 1 × 10 ⁸ Ω.					
TEST ITEM Insulation resistance Dielectric withstand	There shall be no other damage or problems. There shall be	surface and the termina The insulation resistance AC 100V voltage shall be	e applied across I. e shall be more the	this sample of top nan 1 × 10 ⁸ Ω.					
TEST ITEM Insulation resistance Dielectric withstand	There shall be no other damage or problems. There shall be no other or problems.	surface and the termina The insulation resistance AC 100V voltage shall be	e applied across I. e shall be more the	this sample of top nan 1 × 10 ⁸ Ω.					
TEST ITEM Insulation	There shall be no other damage or problems. There shall be no other damage or	surface and the termina The insulation resistance AC 100V voltage shall be	e applied across I. e shall be more the e applied for 1 mi I of this sample	this sample of top nan 1 × 10 ⁸ Ω. nute acrosset the	top				
TEST ITEM Insulation resistance Dielectric withstand voltage	There shall be no other damage or problems. There shall be no other damage or problems.	surface and the termina The insulation resistance AC 100V voltage shall be surface and the termina	ne applied across I. e shall be more the applied for 1 minor of this sample med after the sam	this sample of top nan 1 × 10 ⁸ Ω. nute acrosset the ple has stabilized	top				
TEST ITEM Insulation resistance Dielectric withstand voltage Temperature	There shall be no other damage or problems. There shall be no other damage or problems. △L/L20°C ≦±10%	surface and the termina The insulation resistance AC 100V voltage shall be surface and the termina The test shall be perfore	ne applied across I. e shall be more the sample of - 40 to + 125°C	this sample of top nan 1 × 10 ⁸ Ω. nute acrosset the ple has stabilized and the value	top				

文件编号	SRD-WI-5376	版本号	A 1	页码	7/8
File Number	SKD-W1-33/0	Version Number	AI	page	770

			1	1	1 1 0				
ENVIROMENT CHARACTERISTICS									
TEST ITEM	SPECIFICATION								
High temperature	∆L/Lo≦±5%	The sample shall be left for 500hours in an atmospere with							
storage		a temperature of 125±2℃ and a normal humidity.							
	There shall be	Upon completion of the measurement shall be made after the							
	no mechanical	sample has been left in a normal temperature and normal							
	damage.	humidity for 1 hour.							
Low temperature	△L/Lo≦±5%	The sample shall be left for 500 hours in an atmosphere with							
storage		a temperature of -40±3℃.							
	There shall be	Upon co	mpletic	on of the test, the meas	surement shall be made				
	no mechanical	after the	sample	e has been left in a nor	mal temperature and				
	damage.	normal h	umidity	/ for 1 hour.					
Change of	△L/Lo≦±5%	The sample shall be subject to 5 continuos cycles, such as shown							
temperature		in the table 2 below and then it shall be subjected to standard							
	There shall be	stmospheric conditions for 1 hour, after which measurement							
	no other dama-	shall be made.							
	ge of problems								
		table 2							
				Temperature	Duration				
			1	−40 ±3 °C	10 min.				
				(Themostat No.1)					
			2	Standard	5 sec. or less				
				atmospheric	No.1→No.2				
			3	125±2℃	30 min.				
				(Themostat No.2)					
			4	Standard	5 sec. or less				
				atmospheric	No. 2→No. 1				
Moisuture storage		The sample shall be left for 500 hours in a temperature of							
moisulure storage			•	umidity(RH) of 90 \sim 959	·				
	There shall be			- , ,	surement shall be made				
	no mechanical	'	•						
	damage.	after the sample has been left in a normal temperature and normal humidity more than 1 hour.							
Test conditions:									

Test conditions:

The sample shall be reflow soldered onto the printed circuit board in every test.

文件编号	SRD-WI-5376	版本号	A1	页码	8/8
File Number		Version Number		page	

8、注意事项 Note

①本承认书保证我司产品作为一个单体时的质量情况。当我司产品被安装到贵司产品上时,请保证 贵司的产品已根据贵司的规范进行了有效评估和确认。

This product specification guarantees the quality of our product as a single unit. Please make sure that your product is evaluated and confirmed against your specifications when our product is mounted to your product.

②如果贵司对我司产品的使用已超过了本承认书所界定的产品功能,那么对于由此引发的失效, 我司将不予保证。

We cannot warrant against failure caused by any use of our product that deviates from the intended use as described in this product specification.

- ③为了保持终端电极的焊接性,并使包装材料保持良好状态,必须控制储存区的温度和湿度。
 To maintain the solderabilty of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.
 - ※建议的条件: -10~+40℃, 30~70%RH。

Recommended conditions: $-10 \sim +40 \,^{\circ}\text{C}$, $30 \sim 70 \,^{\circ}\text{RH}$.

※储存超过六个月的,应在实际使用前进行焊接检验。
In case of storage over 6 months, soldrability shall be checked before actual usage.

※即使在理想的储存条件下,产品的可焊性也随着时间的推移而降低。因此,产品应从交货时算起, 建议8个月之内使用完。

Even under ideal storage conditions, the weldability of the product decreases over time. therefore, the product should be From the time of delivery, it is recommended that it be used within 8 months.

④本承认书在客户收到30天之内,必须签章返回,逾期视为默认。

The Specification Approval should be sent back to the supplier with customer's on it within 30 days after receiving it, or we will take it as approved by customer's automatically.

⑤如有特殊规格要求,请事前联络我司技术部人员。

In case of special specifications please contact our technical department prior staff.