MSKSEMI 美森科

ESD

ΓVS

TSS

MOV

GDT

PIFD

MTXS0101D

Product specification

Description

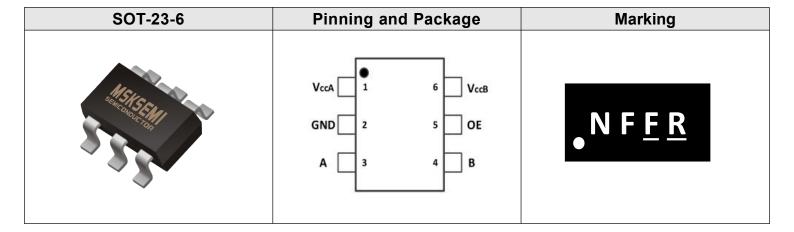
This one-bit non-inverting translator which is a bidirectional voltage-level translator and can be used to build digital switching compatibility between multi voltage systems. This IC uses two separate configurable power supply tracks that including A ports supporting operating voltages from 1.65 V to 3.6 V with tracking Vcca supply, and also including B ports supporting operating voltages from 2.3 V to 5.5 V with tracking Vcca supply.

The advantage above provides the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8-V, 2.5-V, 3.3-V, and 5- V voltage circuit points.

Placing output-enable (OE) input to low level, all I/Os are forced to high-impedance state that significantly lower the quiescent current consumption. In order to ensure the high-impedance state during power up or power down, OE pin should be tied to GND via a pulldown r

Features

- No direction -control
- Data rates24 Mbps (Push Pull)2 Mbps (Open)
- 1.65 V to 3.6 V on A port and 2.3 V to 5.5 V on B port (Vcca ≤ VccB)
- VCC isolation feature: If either VCC input is at GND, both ports are in the high -impedance state
- No power -supply sequencing required:
 either Vcca or V ccb can be ramped first
- Ioff supports partial -power -down mode operation
- Operating temperature range: -40°C to +85°C

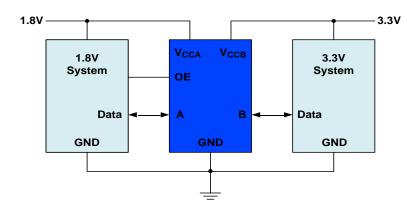

Applications

- Handset/Smartphone
- MART

- IPC
- GPIO

Reference News

SC70-6	Pinning and Package	Marking
	VccA	0101 • ****


Device Summary, Pin and Packages (Continued)

	Pin	I/O	Function
Name	DBVR/DCKR	1/0	runction
Vcca	1	-	A Port Supply Voltage. 1.65V≤VccA≤5.5V and VccA≤VccB
GND	2	-	Ground
А	3	I/O	Input/Output A. Referenced to V _{CCA} .
В	4	I/O	Input/Output B. Referenced to V _{CCB} .
OE	5	I	Output Enable(Active High).Pull OE low to place all outputs in 3-state mode. Referenced to V _{CCA} .
Vccb	6	-	B Port Supply Voltage. 2.3V≤Vccв≤5.5V

Order information

Orderable Device	Package	Packing Option
MTXS0101DCKR	SC70-6	3000PCS
MTXS0101DBVR	SOT-23-6	3000PCS

Circuit Diagram

Absolute Maximum Ratings

Parameters		Min	Max	Unit
Supply voltage, Vcca		-0.3	6.0	V
Supply voltage, Vccв		-0.3	6.0	V
Input voltage range,Vi	A port	-0.3	6.0	V
input voitage range, vi	B port	-0.3	6.0] V
Voltage range applied to any output in the high-impedance or	A port	-0.3	6.0	V
power-off state, Vo	B port	-0.3	6.0] V
Voltage range applied to any output in the high or low state, Vo	A port	-0.3	V _{CCA} +0.3	V
voltage range applied to any earparin the high or low state, ve	B port	-0.3	V _{CCA} +0.3] v
Input clamp current, lik	V _I <0		-50	mA
Output clamp current,l _{ок}	V _o <0		-50	mA
Continuous output current,lo			±50	mA
Continuous current through Vcca, Vccbor GND			±100	mA
Maximum junction temperature			150	°C
Storage temperature range		-65	150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

ESD Ratings

	ESD	Value	Unit		
V(ESD)	Electrostatic Discharge	Human-Body Model (HBM) ⁽¹⁾		±5K	V
(202)		Charged-Device Model (CDM)(2)	±2K	V	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed

⁽³⁾ The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Vccı is the supply voltage associated with the input port.Vcco is the supply Voltage associated with the output port.

Parameter	C	Conditions	Min	Тур	Max	Unit	
Supply voltage (1)		V _{CCA}	1.65		3.6	V	
Supply voltage ·		V_{CCB}	2.3		5.5	1 V	
Supply voltage (1) High-level input voltage(ViH) Low-level input voltage(VIL)(2) OE Input transition rise or fall rate(Δt/Δv) TA Operating free- air	A-port I/Os	V _{CCA} =1.65 V to 1.95 V V _{CCB} =2.3 V to 5.5 V	Vcci-0.2		Vccı		
		V _{CCA} =2.3 V to 3.6 V V _{CCB} =2.3 V to 5.5 V	Vcci-0.4		Vccı	V	
	B-port I/Os	V _{CCA} =1.65 V to 3.6V V _{CCB} =2.3 V to 5.5 V	Vcci-0.4		Vccı		
	OE input	V _{CCB} =1.65 V to 3.6 V V _{CCB} =2.3 V to 5.5 V	V _{CCI} ×0.8		5.5	-	
	A-port I/Os	V _{CCA} =1.65 V to 1.95 V V _{CCB} =2.3 V to 5.5 V	0		0.15	V	
	B-port I/Os	V _{CCA=} 1.65 V to 3.6 V V _{CCB} =2.3 V to 5.5 V	0		0.15	. V	
OE	OE input	V _{CCA} =1.65 V to 3.6 V V _{CCB} =2.3 V to 5.5 V	0		Vcca ×0.25	V	
Input transition rise or	A-port I/Os	push-pull driving			10		
-	B-port I/Os	push-pull driving			10	ns/V	
\ · /	Control input				10		
TA Operating free- air temperature		-	-40		85	°C	

⁽¹⁾ Vcca must be less than or equal to Vccb.

⁽²⁾ The maximum V_{IL} value is provided to ensure that a valid V_{OL} is maintained. The V_{OL} value is V_{IL} plus the voltage drop across the pass gate transistor.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) $^{(1)(2)(3)}$

Pa	rameter	Conditions	VCCA	Vccв	Temp	Min	Тур	Max	Uni	
Vона	PortA Output High Voltage	lo _H =-20 μA V _{IB} ≥ V _{CCB} – 0.4V	1.65V to 3.6V	2.3V to 5.5V	Full	Vcca×0.7			V	
Vola	PortA Output Low Voltage	l _{OL} =1mA V _{IB} ≤ 0.15 V	1.65V to 3.6V	2.3V to 5.5V	Full			0.3	V	
Vонв	Port B Output High Voltage	l _{oH} =-20 μA Via ≥ Vcca – 0.4V	1.65V to 3.6V	2.3V to 5.5V	Full	V _{CCA} ×0.7			V	
Volb	Port B Output Low Voltage	loL=1mA V _{IA} ≤ 0.15 V	1.65V to 3.6V	2.3V to 5.5V	Full			0.3	V	
ı	Input Leakage	OE	1.65V to 3.6V	2.3V to 5.5V	+25℃			±1	μA	
•	Current	92	1.00 1.00 1.00	2.07 10 0.07	Full			±1.5	μ,	
		A Ports	0V	0V to 5.5V	+25℃			±0.5		
bff	Partial Power Down	,		0.000	Full			±1	μA	
	Current	B Ports	0V to 3.6V	0V	+25 ℃			±0.5		
		D 1 010	0 0 0 0 0		Full			±1	±1	
loz	High-impedance State Output	A or B port	1.65V to 3.6V	2.3V to 5.5V	+25 ℃			±0.5	±0.5 μA	
	Current				Full			±1		
			1.65V to V _{CCB}	2.3v to 5.5V	Full			2.5		
I CCA	V _{CCA} Supply Current		V _I =V _O =open l _O =0	3.6v	0V	Full			2.5	μΑ
			0v	5.5V	Full			-1		
			1.65V to V _{CCB}	2.3v to 5.5V	Full			10		
Іссв	V _{CCB} Supply Current	V _{I=} V _O =open I _O =0	3.6v	0V	Full			-1	μΑ	
			0v	5.5V	Full			1		
сса + Іссв	Combined Supply Current	V _I =V _{CCI} or GND lo=0	1.65V to V _{CCB}	2.3v to 5.5V	Full			13	μΑ	
Iccza	V _{CCA} Supply Current	V _I =V _{CCI} or 0V I _O =0, OE=0V	1.65V to V _{CCB}	2.3v to 5.5V	Full			1	μΑ	
Іссzв	V _{CCB} Supply Current	V=Vcci or 0V lo=0, OE=0V	2.3v to 3.6V	2.3v to 5.5V	Full			1	μΑ	
G	Input Capacitance	OE	3.3V	3.3V	+25 ℃		2.5		PF	
Cio	Input-to-output Internal	A Port	3.3V	3.3V	+25 ℃		5		PF	
Sio	Capacitance	B Port	3.3V	3.3V	+25 ℃		5			

⁽¹⁾ Vcci is the VCC associated with the input port.

⁽²⁾ $\mbox{\sc Vcco}\,$ is the VCC associated with the output port

⁽³⁾ Vcca must be less than or equal to Vcca.

Timing Requirements

$V_{\text{CCA}}\text{=}1.8V\!\pm\!0.15V$

		Vccв=2.5V±0.2V	Vccb=3.3V±0.2V	Vссв=5V±0.2V	Unit	
		Тур	Тур	Тур		
Data Rate	Push-pull Driving	21	22	24	Mbps	
	Open-drain Driving	Typ Typ Typ ush-pull Driving 21 22 24 pen-drain Driving 2 2 2 Il Driving (Data Inputs) 47 45 41	2			
Pulse	Push-pull Driving (Data Inputs)	47	45	41	ns	
Duration(tw)	Open-drain Driving (Data Inputs)	500	500	500		

$V_{CCA}=2.5V\pm0.15V$

		Vccв=2.5V±0.2V	Vccв=3.3V±0.2V	Vссв=5V±0.2V	Unit
		Тур	Тур	Тур	
Data Rate	Push-pull Driving	20	22	24	Mbps
Baartato	Open-drain Driving	2	Typ Typ 20 22 24 2 2 2 50 45 41	- Wispo	
Pulse	Push-pull Driving (Data Inputs)	50	45	41	ns
Duration(tw)	Open-drain Driving (Data Inputs)	500	500	500	113

V_{CCA} =3.3 $V\pm0.15V$

		Vccв=3.3V±0.2V	Vccв=5V±0.2V	Unit
		Тур	Тур	
Data Rate	Push-pull Driving	23	24	Mbps
	Open-drain Driving	2	2	'
Pulse Duration(tw)	Push-pull Driving (Data Inputs)	43	41	ns
	Open-drain Driving (Data Inputs)	500	500	

Switching Characteristics:Vcc=1.8V±0.15V

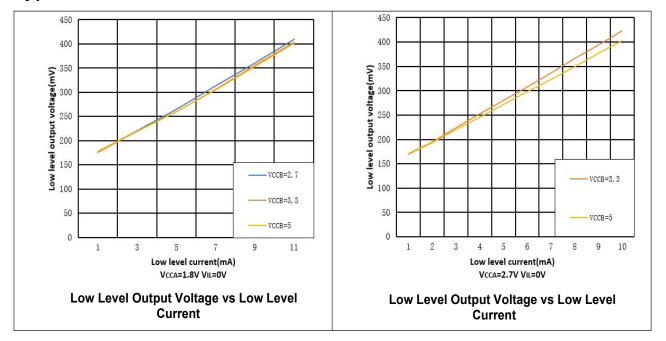
over recommended operating free-air temperature range (unless otherwise noted)

Parameter			Conditions		V _{ccB} =3.3V±0.2V	V _{ccB} =5V±0.2V	Units
	raianietei		Conditions	Тур	Тур	Тур	Offics
t _{PHL}	Propagation Delay Time	A to B	Push-pull Driving	5.6	5	5	ns
u III	High-to-low Output	7,102	Open-drain Driving	7.5	7.9	8.3	
tрын	Propagation Delay Time	A to B	Push-pull Driving	10.0	9.5	9	ns
	low-to-high Output		Open-drain Driving	181	170	154	
tрнL	Propagation Delay Time High-to-low Output	B to A	Push-pull Driving	7	7.1	7.2	
			Open-drain Driving	7.6	8.1	9.2	ns
tрLн	Propagation Delay Time low-to-high	Delay Time B to A	Push-pull Driving	7.6	6.9	6	ns
	Output		Open-drain Driving	163	145	118	
ten	Enable Time		OE to A or B		159	182	ns
tdis	Disable Time		OE to A or B	170	174	181	ns
+ .	Input Rise Time	A port	Push-pull Driving	13.4	11.9	10.6	no
trA	input Nise Time	rise time	Open-drain Driving	68	66	62	- ns
trв	Input Rise Time	B port	Push-pull Driving	13	12	11.6	ns
uв	input ruse rime	rise time	Open-drain Driving	66	65	50	1115
tfA	Input Fall Time	A port fall	Push-pull Driving	5.6	4.7	4.0	ns
UA	input i all time	time	Open-drain Driving	5.0	5.1	5.2	113
t _{fB}	Input Fall Time	B port fall	Push-pull Driving	Push-pull Driving 3.0	3.0	2.9	ns
чв	input i all time	time	Open-drain Driving	6.1	5.6	4.4	110
tsk(o)	Skew(time), Output	Cha	nnel-to-Channel Skew	0.5	0.5	0.5	ns
Max	ximum Data Rate		Push-pull Driving	22	23	24	Mbps
		(Open-drain Driving	2	2	2	

Switching Characteristics:Vcc=2.5V±0.15V

over operating free-air temperature range (unless otherwise noted)

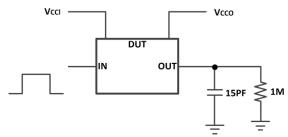
	Parameter		Conditions		V _{ccB} =3.3V±0.2V	V _{ccB} =5V±0.2V	Units
	raianietei		Conditions	Тур	Тур	Тур	Office
t _{PHL}	Propagation Delay Time	A to B	Push-pull Driving	3.5	3.5	3.2	ns
IPHL	High-to-low Output	Alob	Open-drain Driving	6.3	6.5	6.7	115
tрLн	Propagation Delay Time	A to B	Push-pull Driving	4.5	4.9	4.7	no
(PLH	low-to-high Output	Alob	Open-drain Driving	158	152	142	ns
tрнь	Propagation Delay Time	B to A	Push-pull Driving	3.7	3.9	4.6	
UPAL	High-to-low Output	BIOA .	Open-drain Driving	6	6.6	7.7	ns
tрLн	Propagation Delay Time	B to A	Push-pull Driving	4.8	4	2.5	ns
	low-to-high Output		Open-drain Driving	153	138	116	
ten	Enable Time		OE to A or B		41.8	130	ns
tdis	Disable Time		OE to A or B	175	181	182	ns
4 -	I (D) T	A port	Push-pull Driving	9.8	8.6	7.5	
trA	Input Rise Time	Rise Time	Open-drain Driving	79	77	65	ns
	Input Rise Time	B port	Push-pull Driving	9.8	8.7	8.1	
trв	Input Rise Time	Rise Time	Open-drain Driving	93	68	53	ns
	Input Fall Time	A port Fall	Push-pull Driving	4.6	4.1	3.6	ns
t _{fA}	Input rail fille	Time	Open-drain Driving	5.1	5.1	5.2	115
tғв	Input Fall Time	B port Fall	Push-pull Driving	4.5	4.0	4.0	ns
l1B	Input rail fille	Time	Open-drain Driving	6.9	7.4	7.8	115
tsk(o)	Skew(time), Output	Cha	nnel-to-Channel Skew	0.5	0.5	0.5	ns
Ma	ximum Data Rate		Push-pull Driving	22	24	24	Mbp
IVICE		(Open-drain Driving	2	2	2	


Switching Characteristics:Vcc=3.3V±0.15V

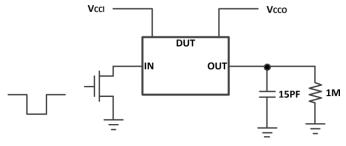
over recommended operating free-air temperature range (unless otherwise noted)

Parameter		Conditions		V _{ccB} =3.3V±0.2V	V _{ccB} =5V±0.2V	Units
			Conducts		TYP	
tрнL	Propagation Delay Time High-to-low Output	A to B	Push-pull Driving	2.1	2.2	- ns
			Open-drain Driving	5.9	6.1	
tрLH	Propagation Delay Time High-to-low Output	A to B	Push-pull Driving	1	3.3	- ns
			Open-drain Driving	138	131	
tрнь	Propagation Delay Time High-to-low Output	B to A	Push-pull Driving	2.3	2.6	ns
UTILE.			Open-drain Driving	5.4	6.6	
t _{PLH}	Propagation delay time low-to-high Output	B to A	Push-pull Driving	1.0	1.0	ns
			Open-drain Driving	133	115	
ten	Enable Time	OE to A or B		4.7	5.2	ns
tdis	Disable Time	OE to A or B		174	182	ns
trA	Input Rise Time	A port Rise Time	Push-pull Driving	7.4	6.6	ns
UTA			Open-drain Driving	75	67	
trв	Input Rise Time	B port Rise Time	Push-pull Driving	7.7	7.1	- ns
urs			Open-drain Driving	70	65	
t _{fA}	Input Fall Time	Aport Fall Time	Push-pull Driving	3.4	3.0	ns
ųA.			Open-drain Driving	5.1	5.1	
tres	Input Fall Time	Bport Fall Time	Push-pull Driving	3.5	3.2	ns
uB			Open-drain Driving	6.8	6.7	
tsk(o)	Skew(time), Output	Channel-to-Channel Skew		0.5	0.5	ns
Maximum Data Rate		Push-pull Driving		24	24	_ Mbps
		Open-drain Driving		2	2	

Typical Characteristics

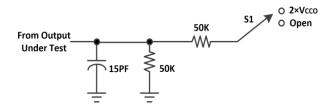


Parameter Measurement Information


Unless otherwise noted, all input pulsed are supplied by generators having the following characteristics:

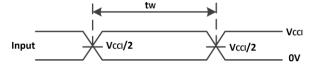
- PSRR 10MHz
- Zo=50 Ω
- dv/dt ≥1V/ns

Note: All input pulses are measured one at a time with one transition per measurement


Data Rate, Pulse Duration, Propagation Delay, Output Rise and Fall Time Measurement Using a Push-Pull Driver

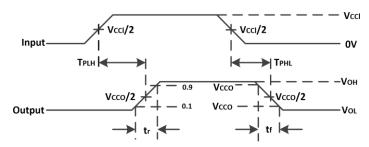
Data Rate, Pulse Duration, Propagation Delay, Output Rise and Fall Time Measurement Using an Open-Drain Driver

Parameter Measurement Information (Continued)

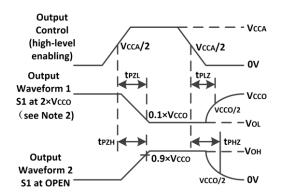


Load Circuit for Enable/Disable Time Measurement

Switch Configuration for Enable/Disable Timing


Test	S1	
t _{PZL} ⁽¹⁾ , t _{PLZ} ⁽²⁾	2×V _{cco}	
t _{PHZL} ⁽¹⁾ , t _{PZH} ⁽²⁾	Open	

- (1) t_{PZL} and t_{PZH} are the same as ten.
- (2) t_{PLZ} and t_{PHZ} are the same as tdis.

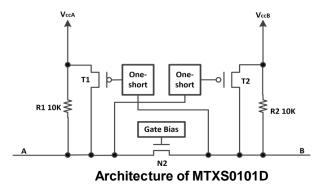


(1) All input pulses are measured one at a time, with one transition per measurement.

Voltage Waveforms Pulse Duration

Voltage Waveforms Propagation Delay Times

Voltage Waveforms Enable and Disable

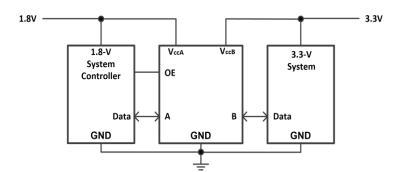


Overview

MTXS0101D is a one-bit Bi-direction voltage-level translator specifically designed for translating logic voltage levels. The A port can accept I/O voltages that cover from 1.65 V to 3.6 V range; The B port can accept I/O voltages from 2.3 V to 5.5 V. The device is a pass-gate architecture with edge-rate accelerators (one-shots) to improve the overall data rate. $10-k\Omega$ pullup resistors that usually used in open-drain applications have been integrated inside IC with the advantage saving an external resistor. Not only the IC is designed for open-drain applications, but also this device can translate push-pull CMOS logic outputs.

Architecture

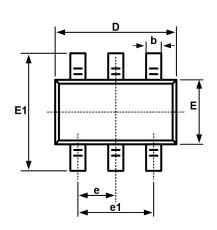
The MTXS0101D architecture (see Figure below) is a translator with Bi-direction-Sensing function that means a direction-control mechanism to control the direction of data flow from A to B or from B to A is not needed. These two bidirectional channels independently determine the direction of data flow without a direction-control signal. This auto-direction feature is realized by each I/O pin can be automatically reconfigured as either an input or an output.

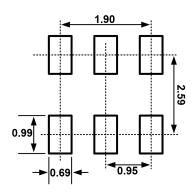


MTXS0101D employs two key circuits to enable this voltage translation.

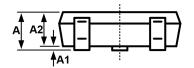
- 1. An N-Channel pass-gate transistor topology that ties A-port to B-port.
- 2. Output one-shot edge-rate accelerate circuitry to detect and accelerate rising edges on the A or B ports.

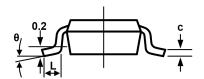
Application Information


MTXS0101D can be used in level-translation applications in interfacing devices or systems operating at different interface voltages with on another. The MTXS0101D is ideal for use in applications where an open-drain driver is connected to the data I/Os.

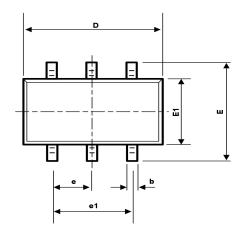


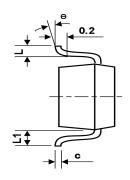
Typical Application Schematic

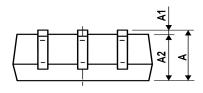



Package Outline SOT23-6

Recommended Land Pattern (Unit: mm)






Cumbal	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950BSC		0.037BSC	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
L1	0.600REF		0.024REF	
θ	0°	8°	0°	8°

Package Outline SC70-6

Symbol	Dimension In Millimeters		Dimensions In Inches	
- Cymbol	Min	Max	Min	Max
Α	0.	1.	0.	0.
A1	9000.	1000.	0350.	0430.
A2	0000.	1001.	0000.	0040.
b	9000.	0000.	0350.	0390.
С	1500.	3500.	0060.	0140.
D	1102.	1752.	0040.	0070.
E	0002.	2002.	0790.	0870.
E1	1501.	4501.	0850.	0960.
е	0.650TYP		0.026TYP	
e1	1501.	3501.	0450.	0530.
L	2000.	4000.	0470.	0550.
L1	260 0.525	SREF 460	010 0.02	IREF 018
θ	0°	8°	0°	8°

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.