

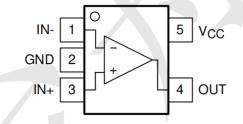
TS391RILT-TP

SINGLE DIFFERENTIAL COMPARATOR

WWW.TECHPUBLIC.COM

Features

- Output voltage compatible with DTL, ECL, TTL, MOS and CMOS Logic levels
- Low input bias current 25nA
- Low input offset current ±0.5nA
- Low input offset voltage ±2mV(typ)
- Input common mode range to ground level
- Differential input voltage range equal to power supply voltage
- Very low supply current drain (0.4mA) independent of supply voltage
- Wide single-supply range 2V~36V
- Split-supply range ±1V to ±18V


Applications

- Battery Charger
- Cordless Telephone
- Switching Power Supply

General Description

The is single precision voltage comparators capable of single-supply or split-supply operation. The specific ations as low as 2.0 mV make this device an excellent ground level with single-supply operation. Input offset-v oltage selection for many applications in consumer automotive, and It is designed to permit a common mode r ange-to- industrial electronics.

Pin Configuration

Pin Definition:

- 1. Input +
- 2. Ground
- 3. Input -
- 4. Output
- 5. Vcc

TS391RILT-TP

SINGLE DIFFERENTIAL COMPARATOR

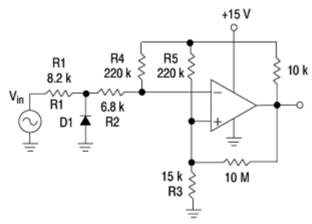
WWW.TECHPUBLIC.COM

Electrical Characteristics (V_{CC}=5V, T_A=25°C; unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (note 3)	V _{IO}		2	5	mV
Input Offset Current, I _{IN(+)} - I _{IN(-)} , V _{CM} =0V	I _{IO}			50	nA
Input Offset Current (note 4), I _{IN(+)} - I _{IN(-)} , V _{CM} =0V	I _{IB}			250	nA
Input Common Mode Voltage Range, Vcc=30V	V _{ICR}	-0	-	V _{CC} -1.5	V
Voltage Gain, R _L ≥15K, Vcc=15V, Vo=1V~11V	A _{VOL}	50	200	-	V/mV
Large Signal Response Time			200		0
Vin=TTL Logic Swing. Vref = 1.4V, V_{RL} =5V. R_L =5.1K Ω			300	4-/	nS
Response Time (note 6), V_{RL} =5V. R_L =5.1K Ω	t _{TLH}		1.3	1	uS
Output Sink Current, V _{IN} (-)=1V, V _{IN} (+)=0V, Vo≤1.5V	I _{SINK}	6.0	16	1	mA
Output Saturation Voltage,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		250	400	
V _{IN} (-)=1V, V _{IN} (+)=0V, I _{SINK} ≤4mA	V _{OL}		250	400	mV
Output Leakage Current, V _{IN} (-)=0V, V _{IN} (+)=1V, Vo=5V	I _{OL}		0.1		nA
Supply Current					
$R_L = \infty$, $V_{CC} = 5V$	Icc		0.4	1.0	mA
$R_L = \infty$, $V_{CC} = 36V$			1.0	2.5	

- Note 1. The max. Output current may be as high as 20mA, independent of the magnitude of V_{CC} , output short circuits to V_{CC} can cause excessive heating and eventual destruction.
- Note 2. This magnitude of input current will only occur if the input leads are driven more negative than ground or the negative supply voltage. This is due to the input PNP collector base junction becoming forward biased acting as an input clamp diode. There is also a lateral PNP parasitic transistor action on the IC chip. This phenomena can cause the output voltage of the comparators to go to the V_{CC} voltage level (or ground if overdrive is large) during the time the input is driven negative. This will not destroy the device and normal output states will recover when the inputs become -0.3V of ground or negative supply.
- Note 3. At output switch point, V_0 =1.4Vdc, R_S =0 Ω with V_{CC} from 5Vdc to 30Vdc, and over the full input common-mode
- Note 4. Due to the PNP transistor inputs, bias current will flow out of the inputs, this current is essentially constant independent of the output state, therefore, no loading changes will exist on the input lines.
- Note 5. Input common mode of either input should not be permitted to go more than 0.3V negative of ground or minus supply. The upper limit of common mode range is V_{CC} 1.5V but either or both inputs can betaken to as high as 30volts without damage.
- Note 6. Response time is specified with a 100mV step and 5.0mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.

Application information


This comparator feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitive coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation input resistors<10K Ω should be used. The addition of positive feedback (<10 mV) is also recommended.

It is good design practice to ground all unused pins. Differential input voltages may be larger than supply voltage without damaging the comparator's inputs. Voltages more negative than -0.3V should not be used.

WWW.TECHPUBLIC.COM

Application information (continues)

D1 prevents input from going negative by more than 0.6 V.

$$R1 + R2 = R3$$

$$R3 \le \frac{R5}{10} \text{ for small error in zero crossing.}$$

Figure 4. Zero Crossing Detector (Single Supply)

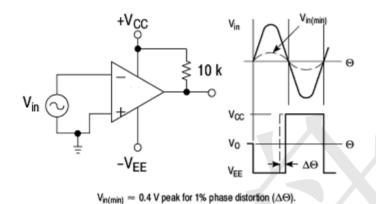


Figure 6. Time Delay Generator

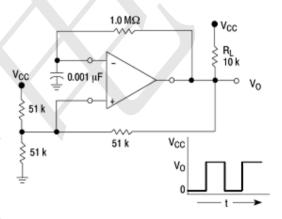
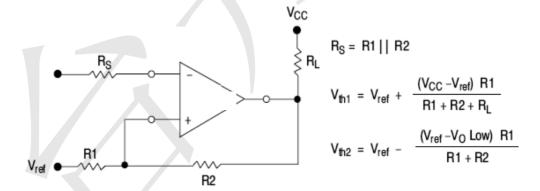
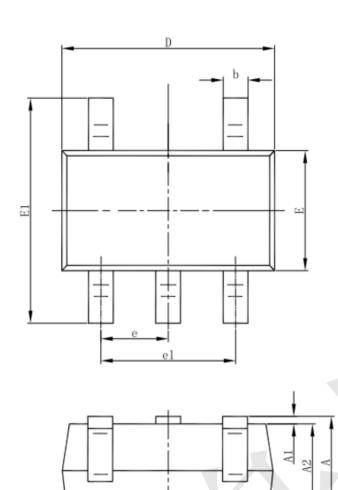
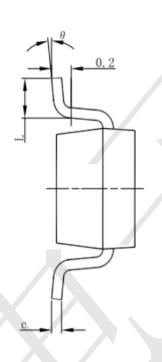



Figure 7. Free-Running Square-Wave
Oscillator





WWW.TECHPUBLIC.COM

Package informantion

SOT23-5

Cumb a I	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	