

WS7010AF

Smart High-Side Power Switch Single Channel, 13.5mΩ, DFN5×6-14L, AEC-Q100 qualified

Application

- Suitable for resistive, inductive and capacitive loads
- Specially intended for automotive signal lamps
- Replaces electromechanical relays, fuses and discrete circuits

Basic Features

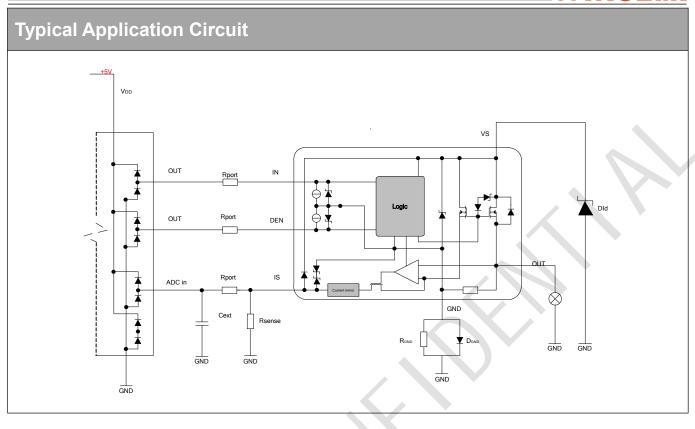
- Single channel device
- Standby current <2.0µA
- 3.3 V and 5 V compatible logic inputs
- RoHS compliant and lead free
- AEC-Q100 qualified

Package	e Information
Package	DFN5×6-14L
Marking	WS7010AF
W	

Product Summary

Parameter	Symbol	Value
Max. DC supply voltage	Vs	35V
Operating voltage range	V _{NOM}	4.5-28V
On-state resistance (per channel, Typ.)	Ron	13.5mohm
Nominal load current	I _{L(NOM)}	11A
Typical current sense ratio (I _L =8A)	К	3250
Current limitation (typ.)	I _{LIMH}	48A
Supply current in standby mode	I _{STBY}	<2.0µA

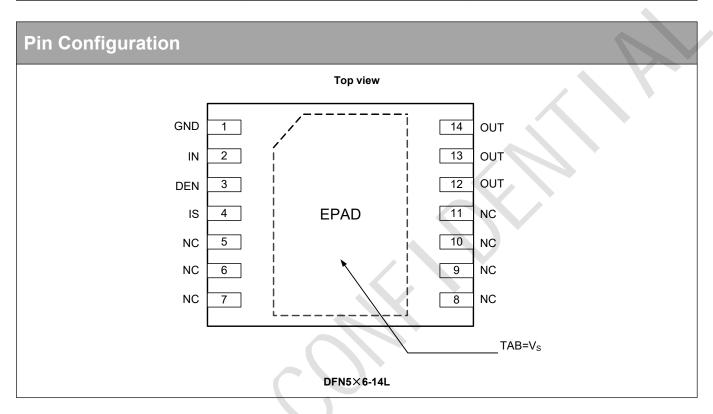
Diagnostic Functions


- Multiplexed analog feedback of load current with high precision proportional current mirror
- Off-state open load detection
- Output short to Vs detection

Protection Functions

- Undervoltage shutdown
- Overvoltage clamp
- Load current limitation
- Output short-circuit protection
- Self limiting of fast thermal transients
- Protection against loss of ground and loss of Vs
- Thermal shutdown indication
- Electrostatic discharge protection

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 1/23 High-side driver with current sense analog feedback for automotive applications



WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 2/23 www.winsemi.com A0

Ordering Information		
Package	Top Mark	Part No.
14 Din DENE V 6 141 Dh fron	WS7010AF	WS7010AF
14-Pin DFN5×6-14L, Pb-free	XXYMXX	WSTUTUAF

Pin Descr	ription	
Pin Name	Pin NO.	Pin Description
GND	1	Ground connection. Must be reverse battery protected by an external diode / resistor network.
IN	2	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.
DEN	3	Active high compatible with 3 V and 5 V CMOS outputs pin, it enables the IS diagnostic pin.
IS	4	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic:
NC	5/6/7/8/9/10/11	No connect.
OUT	12/13/14	Power outputs.
Vs	EPAD	Battery connection.

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 3/23 www.winsemi.com A0

Table 1. Suggested connections for unused and not connected pins

Connection / pin	IS	NC	OUT	IN	DEN
Floating	Not allowed	X ⁽¹⁾	X	×	Х
To ground	Through 1K resistor	Х	Not allowed	Through 15K resistor	Through 15K resistor

Note1: X do not care.

Current and Voltage Conventions OUT I_{DEN} DEN V_{DEN} V_{IN} Note2: $V_F = V_{OUT} - V_s$ during reverse battery condition.

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Fax: 0755-82506299 4/23 www.winsemi.com Tel: 0755-82506288 A0

Absolute Ma	aximum Ratings ^(Note3)		
Symbol	Parameter	Value	Unit
Vs	DC supply voltage	35	V
-Vs	Reverse DC supply voltage	0.3	V
-I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	OUT DC output current	Internally limited	А
V _{IN} , V _{DEN}	IN, DEN DC input voltage	-0.3 to 6.0	V
	IS pin DC output current	40	mA
I _{IS}	IS pin DC output current in reverse	-20	IIIA
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

Note3: Stressing the device above the rating listed in Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

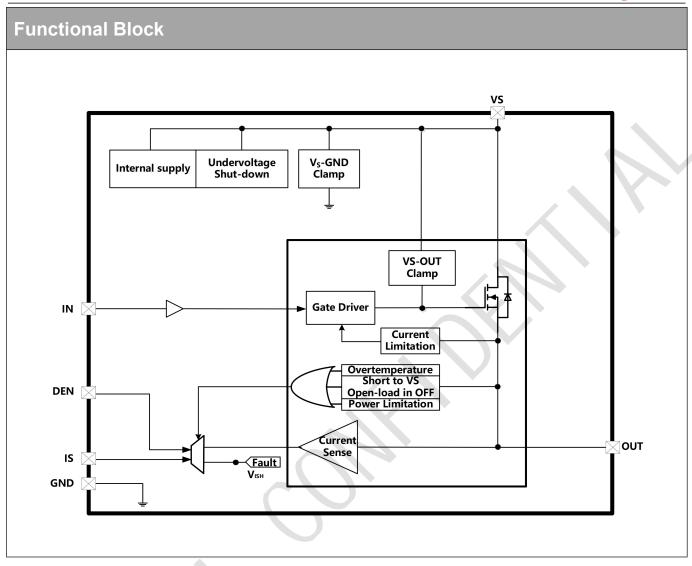
Thermal Resis	stance (Note4)		
Symbol	Parameter	Value	Unit
T _{JC}	Thermal Resistance Junction-to-Case	1.3	°C/W
T _{JA}	Junction-to-Ambient Thermal Resistance	28	°C/W

Note4: According to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was simulated on a 76.2 \times 114.3 \times 1.5 mm board with 2 inner copper layers (2 \times 70 μ m Cu, 2 \times 35 μ m Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

WINSEMI MICROELECTRONICS WINSEMI WINSEMI

ESD Suscepti	bility (Note5)		
Symbol	Parameter	Values	Unit
V _{ESD(HBM)} ³⁾	ESD Susceptibility all Pins (HBM)	±2	kV
V _{ESD(HBM)_OUT}	ESD Susceptibility OUT vs GND and V _S connected (HBM)	±4	kV
V _{ESD(CDM)} ⁴⁾	ESD Susceptibility all Pins (CDM)	±500	V
V _{ESD(CDM)_} CRN	ESD Susceptibility Corner Pins (CDM) (pins 1, 7, 8, 14)	±750	V

Note5:


- 1) Not subject to production test specified by design.
- 2) Maximum digital input voltage to be considered for Latch-Up tests: 5.5 V.
- 3) ESD susceptibility, Human Body Model "HBM", according to AEC Q100-002.
- 4) ESD susceptibility, Charged Device Model "CDM", according to AEC Q100-011.

EAS/EAR Sus	sceptibility (Note6)					
Sumbol	Symbol Parameter		Values		Unit	Note or Test
Symbol			Тур. Мах.		Unit	Conditon
Eas	Maximum Energy Dissipation Single Pulse			117	mJ	$I_L = 2*I_{L(NOM)_85}$ $T_{J(0)} = 150 \text{ °C}$ $V_S = 28 \text{ V}$
Ear	Maximum Energy Dissipation Repetitive Pulse			36	mJ	$I_L = I_{L(NOM)_85}$ $T_{J(0)} = 85^{\circ}C$ $V_S = 13.5 \text{ V}$ 1M Cycles
/_	Load Current			I _{LIMH}	Α	

Note6:: Not subject to production test - specified by design.

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Fax: 0755-82506299 6/23 www.winsemi.com Tel: 0755-82506288 A0

WINSEMI MICROELECTRONICS WINSEMI WINSEMI

Electrical Characteristics (Note7)

Pov	V/ 6 12	60		
	V = 1	-1-	 Lu.	

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Operating supply voltage	Vs		4.5	13	28	V
Under voltage shutdown	V _{USD}				4.5	V
Under voltage shutdown reset	V _{USDReset}				5	V
Under voltage shutdown hysteresis	V _{USDhyst}			0.3		V
		I _L =5A, T _j = 25°C		13.5		
On-state resistance	Ron	I _L =5A, T _j =150℃			28	mΩ
		I _L =5A, V _S =4.5V, T _j = 25℃			22	
Nominal load current	I _{L(NOM)}	T _A =25℃		11		Α
Nominal load current at T _A =85℃	I _{L(NOM)_85}	T _A =85℃, T _j < 150℃		8.5		Α
Inverse Current Capability	I _{L(INV)}	V _S <v<sub>OUT, V_{IN}=5V, T_A=25℃</v<sub>		11		Α
∕ _s clamp voltage	V _{clamp}	I _S =20 mA, 25°C < T _j < 150°C	35	42	48	V
		I _S =20 mA, T _j =-40 °C	33			V
		$V_S = 13V$, $V_{IN} = V_{OUT} = V_{DEN} = 0V$,			2.0	
Supply surrent in standby st V = 42 V		T _j =25℃			2.0	μA
Supply current in standby at V _S = 13 V	I _{STBY}	V _S =13V, V _{IN} =V _{OUT} =V _{DEN} =0V,			0.0	
		T _j = 125℃			6.0	μA
Ctandby made blanking time		V _S =13V, V _{IN} =V _{OUT} =0V	100	400	900	us
Standby mode blanking time	t _{D_} STBY	V _{DEN} =5 V to 0 V	100	400	800	
Supply current	I _{S(ON)}	V _S =13V, V _{DEN} =0V, V _{IN} =5V, I _L =0A		6	12	mA
Control stage current consumption in ON	I-way	Vs=13V, V _{DEN} =5V, V _{IN} =5V, I _L =5A			12	m ^
state	I _{GND(ON)}	VS-13V, VDEN-3V, VIN=3V, IL =3A			12	mA
Off state output ourrent at V-=12V	l	V_{IN} = V_{OUT} =0 V , V_{S} =13 V , T_{j} =25 $^{\circ}$ C	0	0.05	0.5	μA
Off-state output current at V _S =13V	$I_{L(off)}$	V_{IN} = V_{OUT} =0 V , V_{S} =13 V , T_{j} =125 $^{\circ}$ C	0		3.0	μΑ
OUT- V _S diode voltage at T _j =150℃	V _F	I _L =-0.2A, T _j =150℃			0.9	V

Switching/V_S = 13 V, -40 $^{\circ}\mathrm{C}$ < T_j< 150 $^{\circ}\mathrm{C}$, unless otherwise specified

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Turn-on delay time at T _j = 25 ℃	T _{d (on)}	- R _i =2.6Ω	10	40	120	us
Turn-off delay time at T_j = 25 $^{\circ}$ C	T _{d (off)}	RL=2.001	10	75	120	us
Turn-on voltage slope at T _j = 25℃	(dV _{OUT} /dt) _{on}	- R ₁ =2.6Ω	0.05	0.2	0.7	V/us
Turn-off voltage slope at T _j = 25 ℃	(dV _{OUT} /dt) _{off}	R _L =2.6Ω	0.05	0.25	0.7	v/us
Differential pulse skew(tphL - tplh)	t _{SKEW}	R _L =2.6Ω	-90	-	60	us

Logic input (IN, DEN)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic input low level voltage	V _{LOW}				0.9	V
Low level logic input current	I _{LOW}	V _{INL} =0.9V	0.5			uA
Logic input high level voltage	V _{HIGH}		2.1		6.0	٧
High level logic input current	I _{HIGH}	V _{INH} =2.1V			24	uA
Logic input hysteresis voltage	V _(hyst)		0.1	0.3	0.7	٧

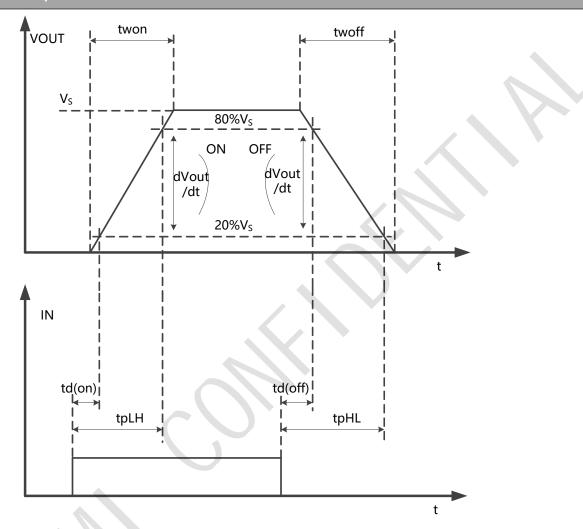
WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel : 0755-82506288 Fax: 0755-82506299 8/23 A0

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
		V _S =13V	24	48	72		
DC short circuit current	l _{LIMH}	4.5V < V _S < 18V			72	Α	
Short circuit current during themal cycling	I _{LIML}	V _S =13V, T _R < T _j < T _{TSD}		20			
Shutdown temperature	T _{TSD}		150	175	200	°C	
Thermal hysteresis	T _{HYST}			20		°C	
Dynamic temperature	ΔT_{J_SD}	T _j = -40℃, V _S =13V		60		°C	
Current limit thermal hysteresis	T _R			40		$^{\circ}$	
Turn-off output voltage clamp	V_{DEMAG}	$I_L=2A$, $L=6mH$, $T_j=-40^{\circ}C$	Vs-33			V	
Turn-on output voltage damp	▼ DEMAG	I_L =2A, L= 6mH, T_j =25 $^{\circ}$ C to 150 $^{\circ}$ C	Vs-35	Vs-38	Vs-43		
Current sense / 7 V < V_S < 18 V,	-40℃ < T _j <	150℃					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Uni	
Current sense clamp voltage	Viole	V _{DEN} =0V, I _{IS} =1mA		-15		V	
ourrent sense damp voltage	V _{IS_CL}	V _{DEN} =0V, I _{IS} = -1mA		7		V	
Current sense characteristics							
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Un	
lout/lis	K ₁	I _L =0.5A, V _{DEN} =5V	-50%	1600	+50%		
l _{out} /I _{is}	K ₂	I _L =1A, V _{DEN} =5V	-35%	2185	+35%		
l _{out} /l _{is}	K ₃	I _L =3A, V _{DEN} =5V	-15%	2915	+15%		
lout/lis	K ₄	I _L =8A, V _{DEN} =5V	-10%	3250	+10%		
	l _{iso}	IS disabled: V _{DEN} =0V	0		0.5	3 uA	
Current sense leakage current		IS disabled: -1V <v<sub>IS<5V</v<sub>	-0.5		3		
		IS enabled: V _{DEN} =5V, V _{IN} = 5V, I _L =0A	0		200		
		IS enabled: V _{DEN} =5V, V _{IN} = 0V, I _L =0A	0		2		
Output voltage for IS shutdown	V _{OUT_MSD}	V _{DEN} =5V, R _{SENSE} =2.7K, V _{IN} =5V; I _L =5A		5		V	
IS saturation voltage	V _{IS_SAT}	Vs=7V, R _{SENSE} =2.7K,V _{DEN} =5V,V _{IN} =5V, I _L =16A, T _j =150 °C	5			V	
IS saturation current	lis_sat	V_S =7V, V_{IS} =4V, V_{IN} =5V, V_{DEN} =5V, T_j =150°C	4			m/	
Output saturation current	lout_sat	$V_S=7V$, $V_{IS}=4V$, $V_{IN}=5V$, $V_{DEN}=5V$ $T_j=150~^{\circ}C$	20			А	
OFF-state diagnostic							
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Un	
OFF-state open load voltage detection threshold	V _{OL}	V _{DEN} =5V, V _{IN} =0V	2	3	4	٧	
OFF-state output sink current	I _{L(off2)}	$V_{IN} = 0 \text{ V}, V_{OUT} = V_{OL}, T_j = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$	-600	-300	-100	u <i>P</i>	
F-state diagnostic delay time from tostkon ing edge of IN		V _{DEN} =5V, V _{IN} = 5V to 0 V, V _{OUT} =4V					

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel : 0755-82506288 Fax: 0755-82506299 A0 9/23

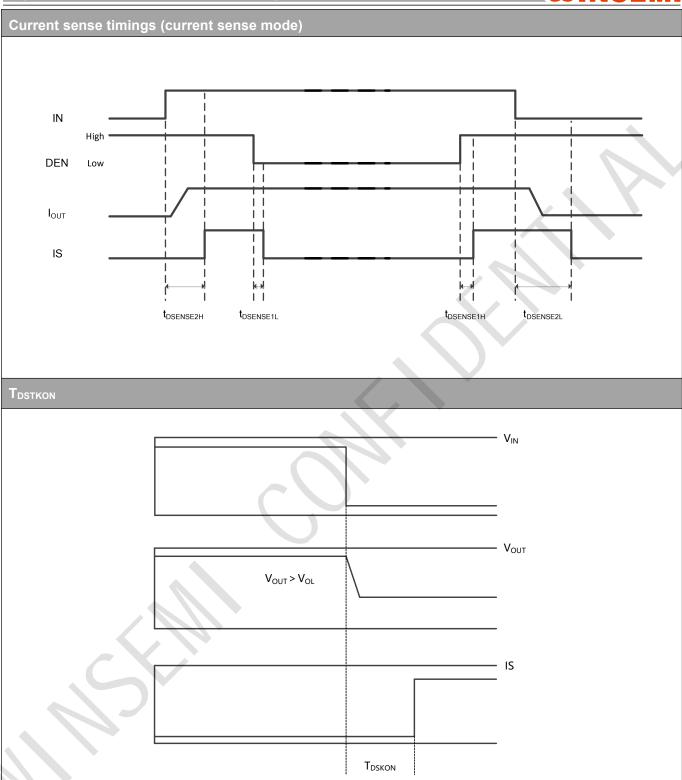
WS7010AF Product Description High-side driver with current sense analog feedback for automotive applications UINSEMI

Settling time for valid OFF-state open load diagnostic indication from rising edge of DEN	$t_{D_OL_V}$ $V_{IN}=0V, V_{OUT}=4V, V_{DEN}=0V \text{ to } 5V$				150	us
OFF-state diagnostic delay time from rising edge of V _{OUT}	t _{D_VOL}	V _{DEN} =5V,V _{IN} =0V, V _{OUT} =0V to 4V		5	30	us
Fault diagnostic feedback						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Current sense output voltage in fault condition	V _{ISH}	V _S =13V, R _{SENSE} =1K, V _{IN} =0V, V _{DEN} = 5V, I _L =0A,V _{OUT} =4V	5.0	6.0	6.6	V
Current sense output current in fault condition	I _{ISH} V _S =13V, V _{IS} =5V		20	40	60	mA
Current sense timings						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Current sense settling time from rising edge of DEN	t _{DSENSE1H}	V_{IN} =5V, V_{DEN} =0V to 5V, R_{SENSE} =1K, R_L =2.6 Ω			100	us
Current sense disable delay time from falling edge of DEN	t _{DSENSE1L}	V_{IN} =5V, V_{DEN} =5V to 0V, R_{SENSE} =1K, R_L =2.6 Ω		5	20	us
Current sense settling time from rising edge of IN	t _{DSENSE2H}	V_{IN} =0V to 5V, V_{DEN} =5 V, R_{SENSE} =1K, R_L =2.6 Ω		80	250	us
Current sense settling time from rising edge of I _{OUT} (dynamic response to a step change of I _{OUT})	Δt DSENSE2H	V_{IN} =5V, V_{DEN} =5V, R_{SENSE} =1K, I_{IS} =90% of $I_{IS.MAX}$, R_{L} =2.6 Ω			150	us
Current sense turn-off delay time from falling edge of IN	t _{DSENSE2L}	V _{IN} =5V to 0V, V _{DEN} =5V, R _{SENSE} =1K, R _L =2.6Ω		80	250	us


Note7: Except for the special test instructions, all electrical parameters are tested under TA= +25 °C. The minimum and maximum specification range of the specifications is guaranteed by the test, and the typical values are guaranteed by the design, test, or statistical analysis.

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 10/23 www.winsemi.com A0

Switching Status and Timing Relationship

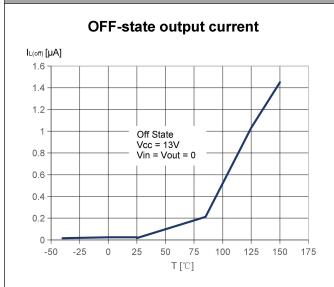

Switching time and pulse skew

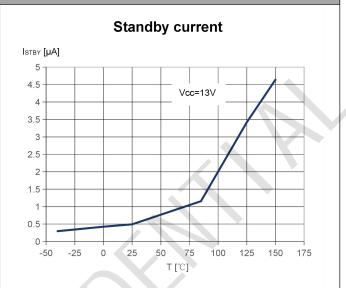
WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 11/23 A0

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 12/23

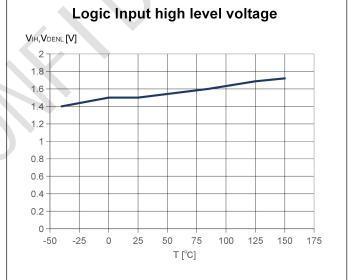
Table 2. Truth table

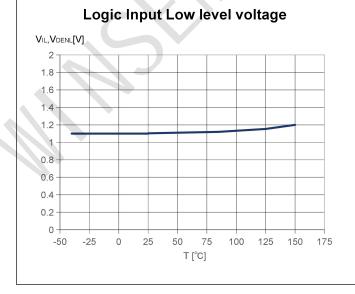
Table 2. Train cable									
Mode	Conditions	IN	DEN	OUT	IS	Comments			
Standby	All logic INs low	L	L	L	Hi-Z	Low quiescent current consumption			
	Nominal load connected;	L	See	L	See Table 3				
Normal	T _j < 150° C	Н	Table 3	Н	See Table 3	Outputs configured for auto-restart			
	Overload or short to GND	L		L	See Table 3				
Overload	causing: $T_{j} > T_{TSD} \text{ or }$ $\Delta T_{j} > \Delta T_{j_SD}$	Н	See Table 3 H	Н	See Table 3	Output cycles with temperature hysteresis			
Undervoltage	V _S <v<sub>USD</v<sub>	Х	Х	L	Hi-Z	Re-start when $V_S > V_{USD} + V_{USDhyst} (rising)$			
OFF-state	Short to V _S	L	See	Н	See Table 3				
diagnostics	Open-Load	L	Table 3	Н	See Table 3	External pull-up			
Negative output voltage	Inductive loads turn-off	L	See Table 3	<0	See Table 3				

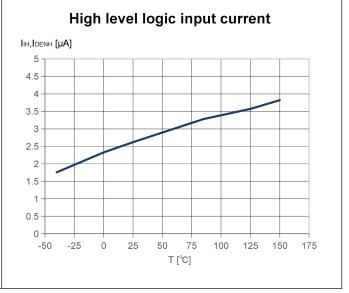

Table 3. Current sense output

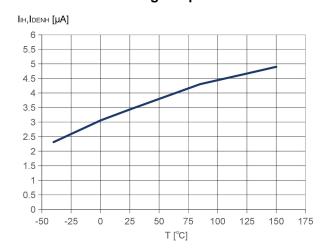

DEN	MUX Channel	Current sense output					
DEN		Normal	Overload	OFF-state	Negative output		
L		Hi-Z					
Н	Channel diagnostic	I _{IS} = I _{OUT} /K	$V_{\text{IS}} = V_{\text{ISH}}$	V _{IS} = V _{ISH}	Hi-Z		

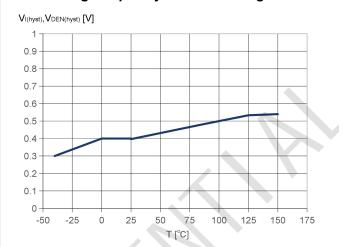
WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 13/23

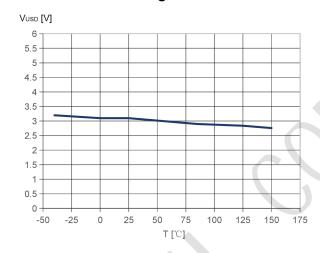


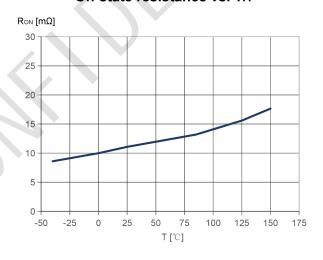

Electrical Characteristics Curves

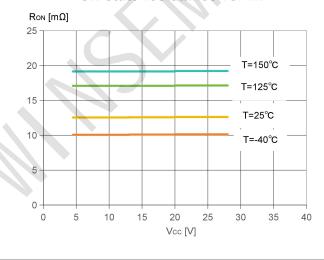


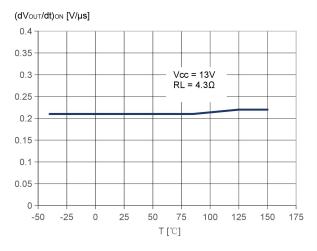



WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 14/23

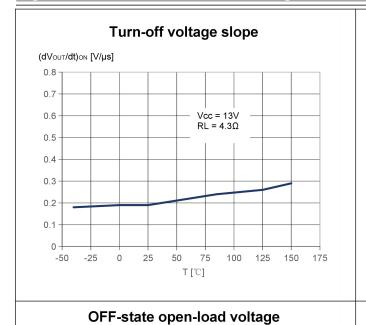

Low level logic input current

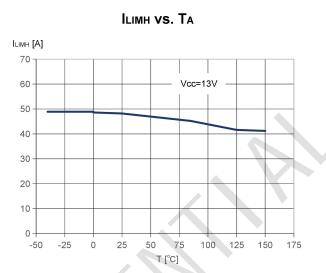

Logic Input hysteresis voltage

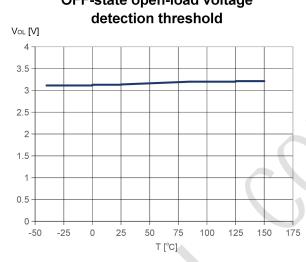

Undervoltage shutdown

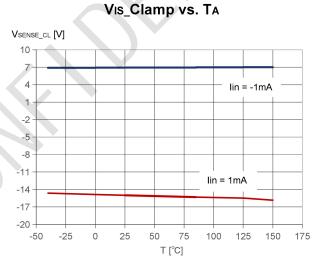

On-state resistance vs. TA

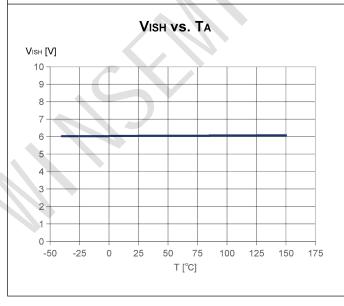
On-state resistance vs. TA

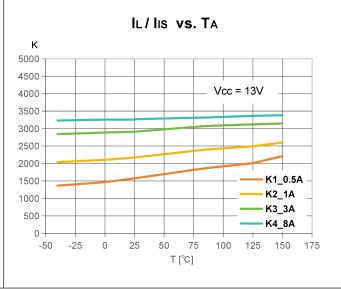

Turn-on voltage slope




WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS A0 15/23







WINSEMI MICROELECTRONICS WINSEMI WINSEMI

WS7010AF Product Description

High-side driver with current sense analog feedback for automotive applications

Functional Description

Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175 $^{\circ}$ C), it automatically switches off and the diagnostic indication is triggered.

Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.

Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG}, allowing the inductor energy to be dissipated without damaging the device.

Diode (D_{GND}) in the ground line

A resistor (typ.R_{GND}=4.7K) should be inserted in parallel to D_{GND} if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_S line, the control pins will be pulled negative. WS suggests to insert a resistor (R_{prot} =15K) in line both to prevent the micro-controller I/O pins from latching-up and to protect the HSD inputs. The value of these resistors is a compromise between the leakage current of micro-controller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of micro-controller I/Os.

IS - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (IS) delivering the following signals:

Current monitor: current mirror of channel output current

The signal are routed through an analog multiplexer which is configured and controlled by means of DEN pin, according to the address map in IS multiplexer addressing Table.

Current monitor

When current mode is selected in the IS, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{ISH}

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WWW.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 17/23

WS7010AF Product Description

High-side driver with current sense analog feedback for automotive applications

The current delivered by the current sense circuit, I_{IS} can be easily converted to a voltage V_{IS} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

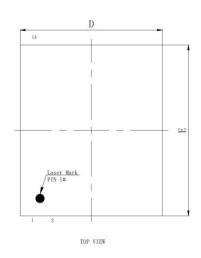
While device is operating in normal conditions (no fault intervention), VIS calculation can be done using simple equations.

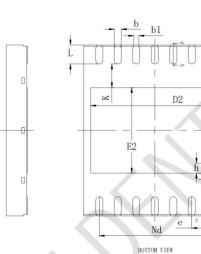
Current provided by IS output: $I_{IS} = I_{OUT}/K$

Voltage on R_{SENSE}: V_{IS} = R_{SENSE}*I_{IS} = R_{SENSE}* I_{OUT}/K

Where:

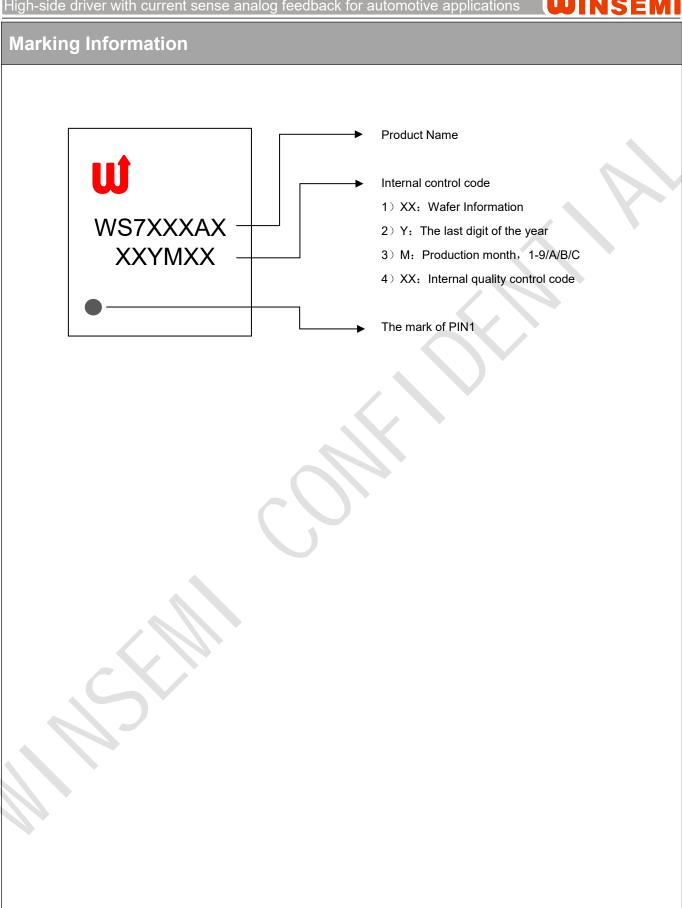
V_{IS} is voltage measurable on R_{SENSE} resistor


 $I_{\text{\scriptsize IS}}$ is current provided from IS pin in current output mode


WINSEMI MICROELECTRONICS WINSEMI W

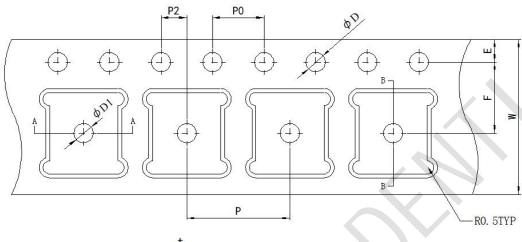
Package Outline

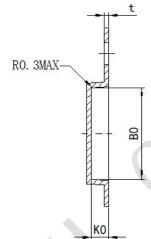
DFN5×6-14L

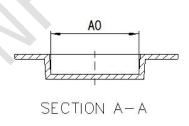


SYMBOL		MILLIMETER					
STIVIBUL	MIN	NOM	MAX				
Α	0.70	0.75	0.80				
A1	0	0.02	0.05				
b	0.20	0.25	0.30				
b1	0.18REF						
С	0.203REF						
D	4.90	5.00	5.10				
D2	4.40	4.50	4.60				
е	0.65BSC						
Nd	3.90BSC						
E	5.90	6.00	6.10				
E2	2.90	3.00	3.10				
L	0.62	0.67	0.72				
h	0.30	0.40					
K		0.83REF					
W _{SC}	0.01	-	0.09				
t _{sc}	0.08	-	0.18				

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 19/23




WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 20/23

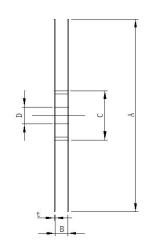


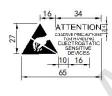
Tape and Reel Information

DFN5×6-14L Carrier tape

SECTION B-B

DFN5×6-14L Carrier Tape Dimensions


Description	Value (Unit: mm)		
E	1.75±0.10		
F	5.50±0.05		
P2	2.00±0.05		
D	1.50±0.1		
D1	1.50 MIN		
P0	4.00±0.10		
W	12.00±0.1		
Р	8.00±0.10		
A0	5.30±0.10		
В0	6.30±0.10		
КО	1.20±0.10		


WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 21/23 www.winsemi.com A0

DFN5×6-14L Reel (13 ")

DFN5×6-14L Reel Dimensions

Description	Value (Unit: mm)
Carrier width	12
A	329±1
В	12.4+2
С	100±1
D	13.3±0.3
t	2.0±0.3

Tape and Reel Information

Package	Reel	QTY/Reel	Reel/Inner Box	Inner Box/Carton	QTY/Carton	Inner Box Size (mm)	Carton Size (mm)
DFN5×6-14L	13 "	3000	1	8	24000	336×336×48	420×355×365

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 22/23 www.winsemi.com A0

WS7010AF Product Description

High-side driver with current sense analog feedback for automotive applications

CONTACT

Winsemi Microelectronics Co., Ltd.

ADD: Room 3101-3102, 31F, Building 8A, Shenzhen International Innovation Valley, Nanshan District, Shenzhen,

P.R. China.

Post Code: 518040 Tel: 86-0755-82506288 Fax: 86-0755-82506299 Website: www.winsemi.com

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 23/23