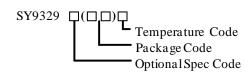


High Efficiency, 38V Maximum Input Single Inductor Synchronous Step Up/Down Regulator


General Description

The SY9329C is a high voltage synchronous Buck-Boost converter. The device operates over a wide input voltage range from 4V to 28V with 10A maximum average inductor current capability. The four-integrated low $R_{DS(ON)}$ switches minimize the conduction loss.

The SY9329C includes full protection features, such as output over current/short circuit protection, over voltage protection and thermal shutdown for reliable operating.

The device is available in compact QFN4×4-32 package.

Ordering Information

Ordering Number	Package type	Note
SY9329COFC	OFN4×4-32	

Features

- 4V to 28V Operating Input Voltage Range
- 38V Absolute Maximum Input Voltage
- Low $R_{DS(ON)}$ for Internal Switches: $25m\Omega$
- Internal Soft-start Limits the Inrush Current
- Hiccup Mode for Output Over Current, Short-Circuit and Over Voltage Protection
- Thermal Shutdown with Auto Recovery
- 250kHz/500kHz Selectable Switching Frequency
- 6A/10A Selectable Average Inductor Current Limitation
- 1.0V±1.5% Reference Voltage Accuracy
- Programmable Output Current Limitation with External Sensing Resistor
- Compact package: QFN4×4-32
- UL Certificate Number: E491480
- UL 2367 Certified
- IEC/EN 62368-1 Certified

Applications

- Docking Station
- Laptop
- High-end Power Bank
- Monitor
- Car Charger
- USB PD

Typical Application

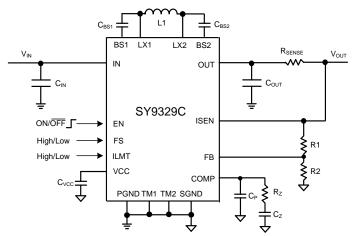


Fig.1 Typical Schematic Diagram

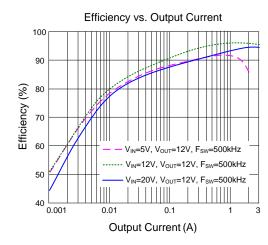
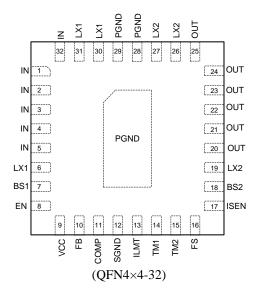



Fig.2 Efficiency vs. Output Current

Pinout (Top View)

Top Mark: BXXxyz (Device code: BXX; x=year code, y=week code, z= lot number code)

Pin Name	Pin Number	Description
IN	1,2,3,4,5,32	Power input pin, decouple this pin to PGND with at least a $10\mu F$ ceramic capacitor.
LX1	6,30,31	Switching node 1.
BS1	7	Boot-strap pin. Supply high side gate driver. Connect a $0.1\mu F$ ceramic capacitor between the BS1 and the LX1 pin.
EN	8	IC enable control pin, logic high enable. This pin is internally pulled high by 400nA pull-up current.
VCC	9	3.3V LDO output, power supply for internal driver and control circuits. Decouple this pin to SGND with a minimum of 2.2µF ceramic capacitor.
FB	10	Output feedback pin. Connect this pin to the center point of the output resistor divider to program the output voltage: $V_{OUT}=1V\times(R_1+R_2)/R_2$.
COMP	11	Compensation pin. Connect the RC network between this pin and the ground.
SGND	12	Signal ground.
ILMT	13	Average inductor current limitation threshold select pin. Connect this pin to VCC for 10A threshold, and connect this pin to SGND for 6A threshold.
TM1	14	Test pin. For factory use only. Connect this pin to SGND in application.
TM2	15	Test pin. For factory use only. Connect this pin to SGND in application.
FS	16	Switching frequency select pin. Connect this pin to VCC for 500kHz switching frequency, and connect this pin to SGND for 250kHz switching frequency.
ISEN	17	Current sense pin. Connect a resistor R_{SENSE} between OUT and ISEN to set the output current limitation threshold. $I_{OUT,LMT} = 30 \text{m/R}_{SENSE}$.
BS2 18		Boot-strap pin. Supply high side gate driver. Connect a $0.1\mu F$ ceramic capacitor between the BS2 and the LX2 pin.
LX2	19,26,27	Switching node 2.
PGND	28,29, Exposed Pad	Power ground.
OUT 20,21,22,23, Power output pin, decouple this pin to PGND with a capacitor.		Power output pin, decouple this pin to PGND with at least a 10µF ceramic capacitor.

Block Diagram

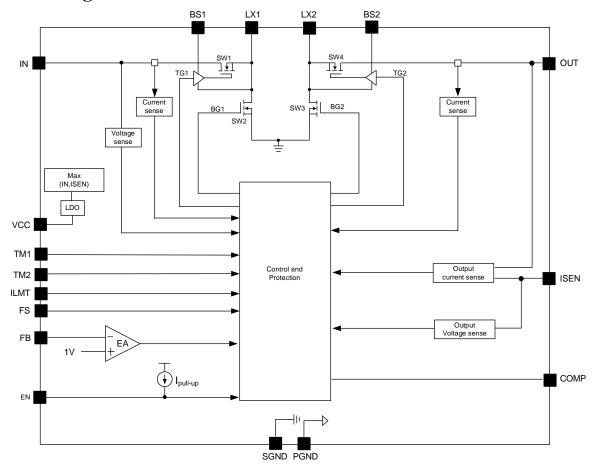


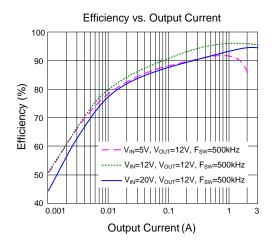
Fig.3 Block Diagram

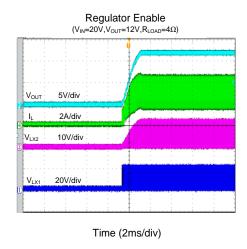
Absolute Maximum Ratings (Note 1)	
IN, LX1, LX2, OUT, ISEN, EN, FB, COMP	
BS-LX, VCC	
FS, ILMT	
Power Dissipation, P_D @ $T_A = 25^{\circ}C$ QFN4×4-32	4W
Package Thermal Resistance (Note 2)	
$ heta$ $_{ m JA}$	28°C/W
$ heta$ $_{ m JC}$	2.8°C/W
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	65°C to 150°C
Recommended Operating Conditions (Note 3)	
Input Voltage Range	4V to 28V
Junction Temperature Range	
Ambient Temperature Range	

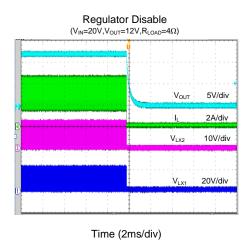
Electrical Characteristics

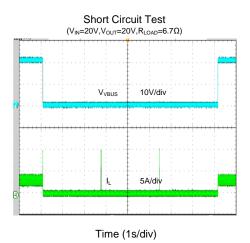
 $(V_{IN} = 12V, V_{OUT}=12V, T_A = 25^{\circ}C, unless otherwise specified)$

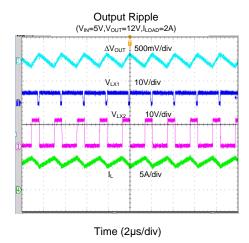
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{IN}		4		28	V
Input UVLO Threshold	$V_{IN,UVLO}$		2.9		3.5	V
UVLO Hysteresis	$V_{UVLO,HYS}$			0.2		V
VCC LDO Voltage	VCC	I _{LDO} =10mA	3.09	3.26	3.44	V
Quiescent Current	I_Q	EN=High, No switching			300	μA
Shutdown Current	I_{SD}	EN=Low			11.5	μA
Feedback Reference Voltage	V_{REF}		0.985	1	1.015	V
FB Input Current	I_{FB}		-50		50	nA
Output OVP Threshold	$V_{FB,OVP}$	FB voltage rising		120		$% V_{REF}$
Output OVP Delay Time	t _{OVP,DLY}			10		μs
Output UVP Threshold	$V_{FB,UVP}$	FB voltage falling		50		% V _{REF}
Output UVP Delay Time	t _{UVP,DLY}			200		μs
Internal Power MOSFET R _{DS(ON)}	R _{DS(ON)}			25		m Ω
Inductor Average Current Limit		ILMT connect to SGND		6		A
inductor Average Current Emilit	I_{AVG}	ILMT connect to VCC		10		A
Inductor Peak Current Limit	I_{PK}	ILMT connect to SGND	6.4	8.4	10.5	A
inductor reak current Limit		ILMT connect to VCC	9.2	13	16.5	A
EN Input Logic High	V_{ENH}		1.5			V
EN Input Logic Low	V_{ENL}				0.5	V
Output Current Limit Voltage Threshold	$V_{IOUT,LIM}$		33	37	41	mV
Oscillator Frequency	$f_{ m OSC}$	FS connect to VCC	425	500	575	kHz
2 7		FS connect to GND	190	250	320	kHz
Min On Time	t _{ON_MIN}			150		ns
Thermal Shutdown Temperature	T_{SD}			150		°C
Thermal Shutdown Hysteresis	T_{HYS}			15		°C
Soft-start Time	t_{ss}			1.5		ms

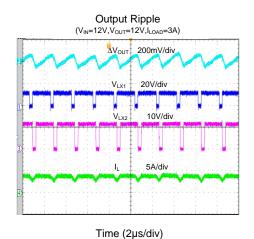

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

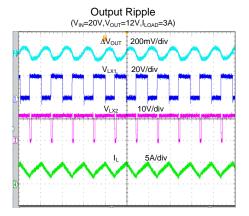

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a four-layer Silergy Evaluation Board.


Note 3: The device is not guaranteed to function outside its operating conditions.




Typical Performance Characteristics





Time (2µs/div)

Application Information

Input Under-voltage Lock-out

To prevent operation before all internal circuitry is ready and to ensure that the power and synchronous rectifier switches may be sufficiently enhanced, the IC incorporates input under-voltage lock-out (UVLO) protection. The device remains in a low current state and all switching is inhibited until $V_{\rm IN}$ exceeds the input UVLO (rising) threshold. At that time, if EN is enabled, the IC will start-up by initiating a soft-start ramp. If $V_{\rm IN}$ falls below the input UVLO (falling) threshold, switching will be suppressed again.

Enable Control

The EN input is a high-voltage capable input with logic-compatible threshold. When EN is driven above 1.5V normal device operation will be enabled. When driven < 0.5V the device will be shut down, reducing input current to < 11.5 μ A. EN is internally pulled high by 400nA pull-up current. In applications where EN is pulled high to the power input V_{IN}, a $10k\Omega$ to $100k\Omega$ resistor should be added between power input and EN.

Soft-start

The SY9329C incorporates an internal soft-start circuit to smoothly ramp the output to the desired voltage whenever the device enabled. Internally, the soft-start circuit clamps the output at a low voltage and then allows the output to rise to the desired voltage over approximately 1.5ms, which avoids high current flow and transients during startup.

External Bootstrap Capacitor Connection

This device integrates a floating power supply for the gate driver that operates the high-side power switch. Proper operation requires a 100nF low ESR ceramic capacitor to be connected between BS1 and LX1, BS2 and LX2. This bootstrap capacitor provides the gate driver supply voltage for the high-side N-channel power MOSFET switch.

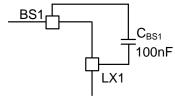


Fig. 4 External Bootstrap Capacitor Connection

VCC Linear Regulator

An internal linear regulator (VCC) produces a 3.3V supply from VIN which powers the internal gate drivers, PWM logic, analog circuitry and other blocks. Connect a 2.2µF low ESR ceramic capacitor from VCC to GND.

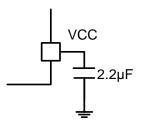


Fig. 5 VCC Regulator

Fault Protection Modes

1. Average Inductor Current Limit

The device incorporates an average inductor limit. When the average inductor current is greater than the threshold, the internal control loop will regulate the average inductor current by decreasing duty cycle. The IC resumes normal operation when the fault condition is removed. The average inductor current limit threshold is selectable by pulling ILMT pin low or to VCC.

2. Peak Inductor Current Limit

The device also incorporates a cycle-by-cycle "peak" current limit. Inductor current is measured in SW1 when it is on. If the current exceeds the current limit, both SW1 and SW3 turn off, and SW2 and SW4 turn on. The peak current limit threshold is selectable by pulling ILMT pin low or to VCC.

3. Short-circuit Protection

If $V_{OUT} < \sim 50\%$ of the set point and the device is in current limit (average or peak inductor current) continuously for approximately 200 μ s, the short-circuit protection mode will be initiated, and the device will shut down for approximately 2.6s. The device will then restart with a complete soft-start cycle. If the short circuit condition remains another 'hiccup' cycle of shutdown and restart will continue indefinitely unless the UVP threshold is reached.

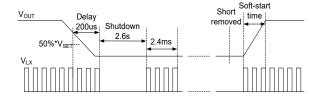


Fig. 6 Description of Short-circuit Protection

4. Output Over-voltage Protection (OVP)

This device includes output over-voltage protection (OVP). If the output voltage rises above the feedback regulation level, SW1 and SW3 turn off and the synchronous rectifier turns on. If the output voltage remains high, the SW2 and SW4 remain on until the inductor current reaches zero. If the output voltage continues to rise and exceeds the output over-voltage

threshold for more than $10\mu s$, the output over-voltage protection mode is triggered. The device resumes regulation once the overvoltage condition is removed.

5. Over-temperature Protection (OTP)

SY9329C includes over-temperature protection (OTP) circuitry to prevent over heating due to excessive power dissipation. This will shut down switching operation when the junction temperature exceeds 150°C. Once the junction temperature cools down by approximately 15°C, the IC will resume normal operation after a complete soft-start cycle. For continuous operation, provide adequate cooling so that the junction temperature does not exceed the OTP threshold.

Feedback Resistor Selection

Choose R_1 and R_2 to program the proper output voltage. To minimize the power consumption under light loads, it is desirable to choose large resistance values for both R_1 and R_2 . A value of between $10k\Omega$ and $100k\Omega$ is highly recommended for both resistors. The output voltage V_{OUT} is programmed by external voltage divider with the 1V internal voltage reference as given in equation (1).

$$V_{OUT} = 1V \times \frac{R_1 + R_2}{R_2}$$
OUT
$$R_1 = \frac{V_{OUT}}{R_2}$$

$$R_2 = \frac{C_{OUT}}{R_2}$$

Fig.7 V_{OUT} Programming

Output Current Limit

The SY9329C provides a function for output current limit by sensing the voltage drop between the OUT pin and the ISEN pin (as shown in fig.7). Once the differential voltage on R_{SENSE} exceeds the voltage threshold, the internal current control loop will regulate the output current by decreasing duty cycle until UVP or OTP is triggered. Noticing that the effects of RPIN and RWIRE cannot be ignored, the actual limit current ILIMIT can be calculated as given in Equation (2):

$$I_{LIMIT} = \frac{V_{OUT} - V_{ISEN}}{R_{SENSE} + R_{PIN} + R_{WRIE}}$$
(2)

where $R_{PIN} \approx 1.65 \text{m}\Omega$.

R_{WIRE} depends on PCB layout.

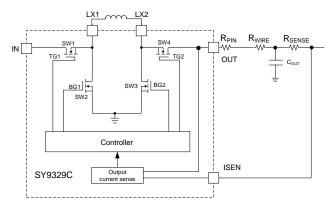
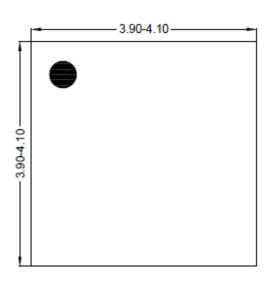
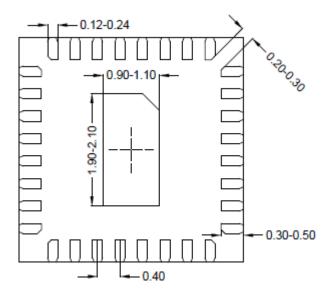
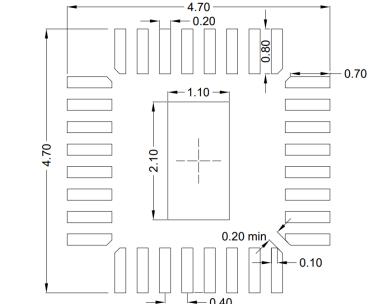




Fig.8 Description of Output Current Limit


QFN4×4-32 Package Outline Drawing

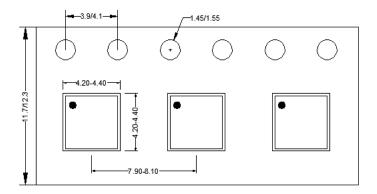
Top View

Bottom View

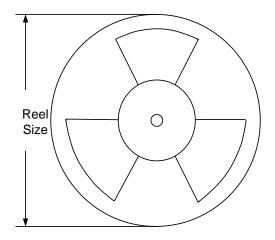
0.60-0.90

Side View

Recommended PCB layout (Reference only)


Notes: All dimension in millimeter and exclude mold flash & metal burr.

Taping & Reel Specification


1. Taping orientation

QFN4×4

Feeding direction →

2. Carrier Tape & Reel specification for packages

Package type	Tape width	Pocket	Reel size	Trailer *	Leader *	Qty per reel
1 ackage type	(mm)	pitch(mm)	(Inch)	length(mm)	length (mm)	(pcs)
QFN4×4	12	8	13"	400	400	5000

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change
Mar.15, 2021	Revision 0.9D	Add UL certification in Features (page 1)
May.6, 2020	Revision 0.9C	Update the Recommended PCB layout in the page9
Nov.19, 2018	Revision 0.9B	Update in Features: 1: change "4V to 28V Input Voltage Range" to "4V to 28V Operating Input Voltage Range"; 2: Add "38V Absolute Maximum Input Voltage" in Feature.
0 + 24 2010	D 0.04	Change "28V Input" to "38V Maximum Input" in the header.
Oct. 24, 2018	Revision 0.9A	change the Absolute Maximum Rating of IN, LX1, LX2, OUT, ISEN, EN, FB, COMP from "-0.3V to 30V" to "-0.3V to 38V"
July 10, 2018	Revision 0.9	Initial Release

IMPORTANT NOTICE

- 1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale
- 2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
- 3. **Limited warranty and liability.** Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
- 4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
- 5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
- 6. No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2021 Silergy Corp.

All Rights Reserved.