

1.5 Ω , Low Voltage SPDT Analog Switch

Descriptions

The FSW3157 is a single, bidirectional, singlepole/ double-throw (SPDT) CMOS analog switch that is designed to operate from a single 1.5V to 5.5V supply. It features high-bandwidth (-3dB @600MHz) and low on-resistance (1.5 Ω TYP), Targeted applications for audio switching.

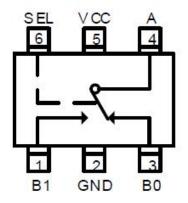
The FSW3157 features guaranteed on-resistance matching between switches and guaranteed onresistance flatness over the signal range. This ensures excellent linearity and low distortion when switching audio signals.

The FSW3157 is available in Green SOT23-6 and SOT363 package.

Features

- Supply Voltage Range: 1.5V to 5.5V
- On-Resistance: 1.5Ω (TYP) When A= 5V
- 1.8V Logic Compatible Control Pin
- A Overrides VCC to Achieve True Isolation Even When Supply Is Dead
- Low Quiescent Current (<2uA) With Very Wide Supply Range (1.5V ~ 5.5V)
- High Bandwidth: -3dB @600MHz
- ESD Tolerance: 2kV HBM
- Available in Green SOT23-6 and SOT363 Package

Applications


- Audio, Video, UART, USB2.0 Signal and Supply Routing
- Portable Instrumentation
- Battery-Operated Equipment
- Computer Peripherals
- Cell Phones
- PDAs
- MP3s

Order information

Mode	Package	Specified Temperature range	Ordering Number	Packing Option	
EGW2157	SOT23-6	-40°C to +85°C	FSW3157YSOT236G/TR	Tape and Reel,3000	
FSW3157	SOT363	-40°C to +85°C	FSW3157YSOT363G/TR	Tape and Reel,3000	

Pin Configuration

Pin#	Pin Name	Description	
1	B1	Analog/Digital Signal Port (Normally open)	
2	GND	Ground	
3	B0	Analog/Digital Signal Port (Normally closed)	
4	A	Common Signal Port	
5	VCC	Single Power Supply	
6	SEL	Logic Input Control	

Function Table

Logic Input	Function
SEL=0	B0=A
SEL=1	B1=A

Absolute Maximum Ratings⁽¹⁾

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	$-0.3 \sim 6.5$	V
Control Input Voltage	V _{SEL}	-0.3 ~ 6.5	V
Continuous Current Through A, B0, B1		± 100	mA
Peak Current Through A, B0, B1 (pulsed at 1ms 50% duty cycle)		± 200	mA
Storage Temperature Range	T _{STG}	-55 ~ 150	°C
Junction Temperature under Bias	TJ	150	°C
Lead Temperature (Soldering, 10 seconds)	TL	260	°C
Thermal resistance	R _{0JA}	350	°C/W

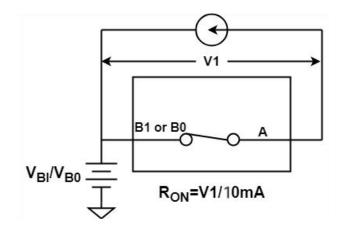
Note:

1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

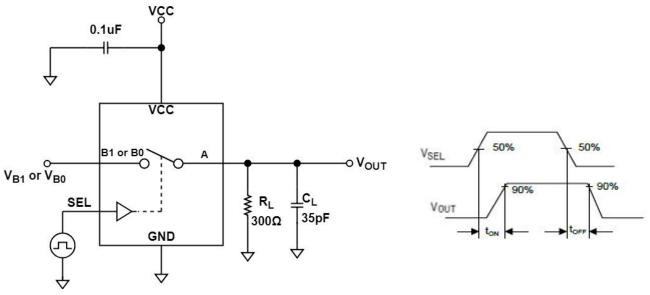
Recommend operating ratings

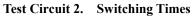
Parameter	Symbol	Value	Unit	
Supply Voltage Operating	V _{CC}	1.5 ~ 5.5	V	
Control Input Voltage	V _{SEL}	-0.3 ~ 5.5 V	V	
Input Signal Voltage	V _A	-0.3 ~ 5.5	V	
Operating Temperature	T _A	$-40 \sim 85$	°C	

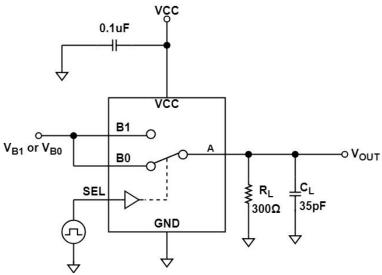
Electrical Characteristics

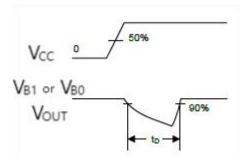

(T_A=25°C, VCC=3.3V, unless otherwise specified)

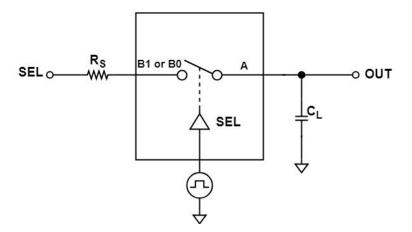
Parameter	Symbol	conditions	Min.	Тур.	Max	Unit
DC CHARACTERISTICS						
T . 1 . 1 . 1 . 1		VCC=3.3~5.5V	1.6			V
Input logic high level	VIH	VCC=1.5~3.3V	1.4			V
T (1 ' 1 1 1	X 7	VCC=3.3~5.5V			0.6	V
Input logic low level	VIL	VCC=1.5~3.3V			0.4	V
Supply quiescent current	Icc	I _A =0, V _{SEL} =0 or V _{SEL} =VCC			1.0	uA
т 'т ',	т	I _A =0, VCC=4.5V		1.0		
Increase in I_{CC} per input	I _{CCT}	V _{SEL} >1.8 or V _{SEL} <0.5			1.0	uA
Off state leakage from A to B0	т				125	
(or B1)	I _A	$V_A = 5.5V$, $V_{B0(or B1)} = 0V$			± 3.5	uA
	R _{ON1}	$V_A=0 \sim 1.5V$,			7.5	Ω
	R _{ON2}	$V_A = 1.5 \sim 2.0 V$			3.5	Ω
On-Resistance	R _{ON3}	$V_A=2.0 \sim 2.5 V$			3	Ω
	R _{ON4}	$V_A=2.5\sim4.0V$			2.5	Ω
	R _{FLAT1}	$V_A\!\!=\!\!0\sim 0.5V$		0.7		Ω
	R _{FLAT2}	$V_A = 0.5 \sim 2.0 V$		0.5		Ω
On-Resistance Flatness	R _{FLAT3}	$V_A\!\!=\!\!2.0\sim\!4.0V$		1.6		Ω
	R _{FLAT4}	$V_A = 4.0 \sim 5.5 V$		0.3		Ω
On-Resistance Matching Between Channels	ΔRON	V _A =0~5.5V		0.1	0.2	Ω
AC CHARACTERISTICS	I					
Turn-On Time	Ton	V _A =1.5V, C _L =35pF, RL=50Ω		200		nS
Turn-Off Time	T _{OFF}	V _A =1.5V, C _L =35pF, R _L =50Ω		200		nS
Break-Before-Make time	T _{BBM}	V _A =1.5V, C _L =35pF, R _L =50Ω		500		nS
-3dB Bandwidth	BW	$R_L=50\Omega, C_L=0pF$		600		MHZ
	OIDD	$F=1KHz, R_L=50\Omega$		-81		dB
Off isolation	OIRR	$F=10KHz, R_L=50\Omega$		-80		dB

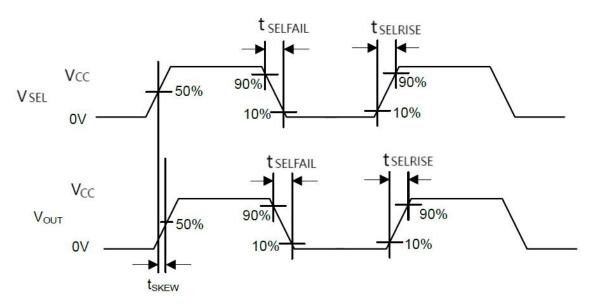



				_		····
Crosstalk	Xtalk	$F=1KHz, R_L=50\Omega$		-83		dB
CIOSSIAIK		F=10KHz, R_L =50 Ω		-82		dB
	THD	F=20Hz to 20KHz		-80		dB
Total Harmonic Distortion		$V_A=600 \text{mVp-p} @R_L=32\Omega,$				
CAPACITANCE						
Off capacitance	COFF	F=100KHz, VCC=3.3		5		pF
On capacitance	Con	F=100KHz, VCC=3.3		7		pF

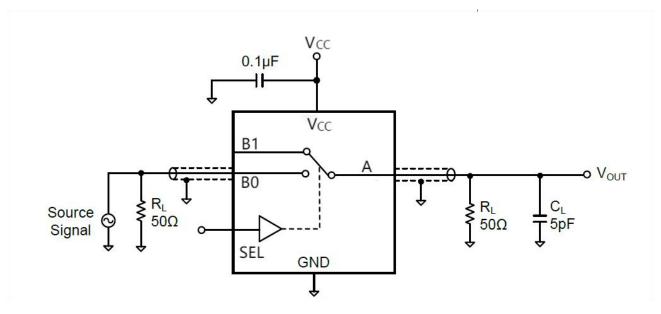

Test Circuits


Test Circuit 1. On-Resistance

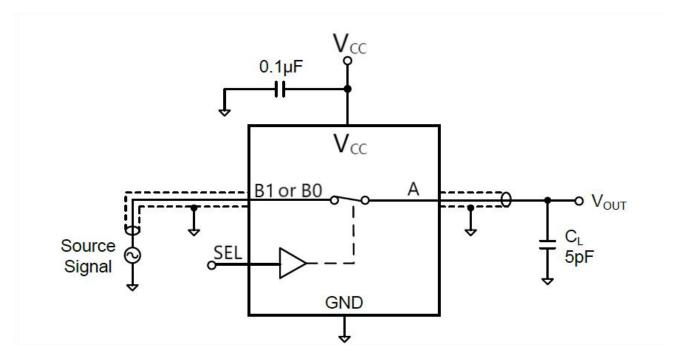




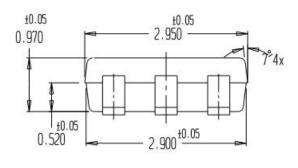
Test Circuit 3. Break-Before-Make Time Delay, t_D

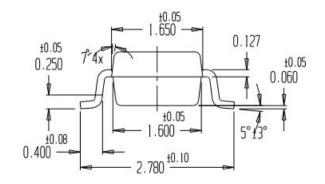


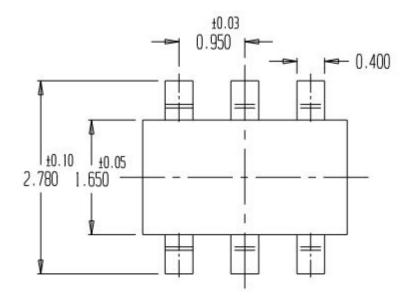
Rise Time Delay = |t_{SELRISE}-t_{OUTRISE}| Fall Time Delay = |t_{SELFALL}-t_{OUTFALL}| Rise Time to Fall Time Mismatch = |t_{OUTFALL}t_{OUTRISE}|



Test Circuit 5. Off Isolation

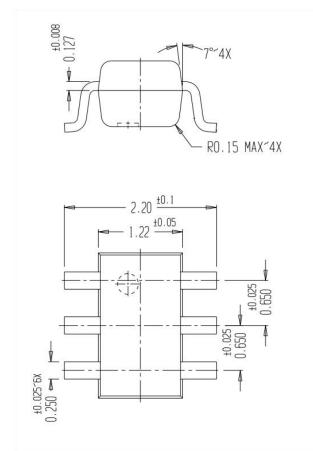


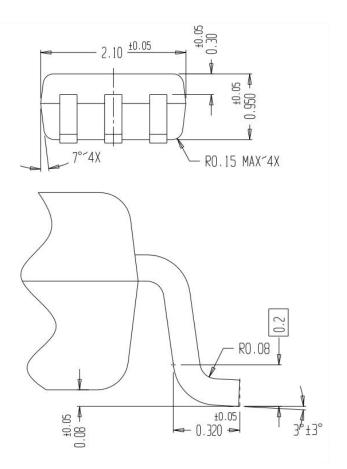

Test Circuit 6. -3dB Bandwidth



Package Outline Dimensions(All dimensions in mm.)

(1) Package Type: SOT23-6





(2) Package Type: SOT363

Important Notice And Disclaimer

• We reserves the right to change the instruction manual without prior notice.

• Any semiconductor product has a certain possibility of failure or malfunction under specific conditions. The buyer is responsible for complying with safety standards and taking safety measures when using our products for system design and overall manufacturing to avoid potential failure risks that may cause personal injury or property damage.

• The improvement of product quality is endless, our company will be dedicated to provide customers with better products.

Version Number	Revision	
first edition		
	1. Update the On-Resistance on page 3	
V1.0	2. Update the Test Circuit 1 on page 4	
	3. Update the Off state leakage from A to B0(or B1) on page 4	
N/2 0	1. Update the High Bandwidth on page 1&3	
V2.0	2. Update the Features and Descriptions on page 1.	
V3.0 1. Update the Important Notice And Disclaimer on page 9.		

Version Modification Record