# MSKSEMI 美森科













ESD

TVS

TSS

MOV

GDT

PIFD

**ULN2003Axxxx-MS** 

**Product specification** 





#### **General Description**

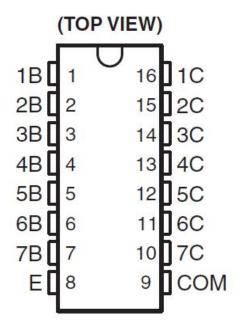
The ULN2003Axxxx-MS is high-voltage high-current Darlington transistor arrays each containing seven open collector common emitter pairs. Each pair is rated at 500mA. Suppression diodes are included for inductive load driving, the inputs and outputs are pinned in opposition to simplify board layout.

These devices are capable of driving a wide range of loads including solenoids, relays, DC motors, LED displays, filament lamps, thermal print-heads and high-power buffers.

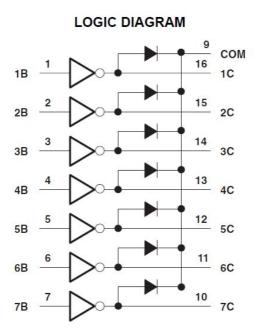
The ULN2003Axxxx-MS is available in both a small outline 16-pin package (DIP-16, SOP16, TSSOP16).

#### **Features**

- 500-mA-Rated Collector Current(single output)
- High-Voltage Outputs:50V
- Output Clamp Diodes


- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications

## **Encapsulation form and pin definition function**

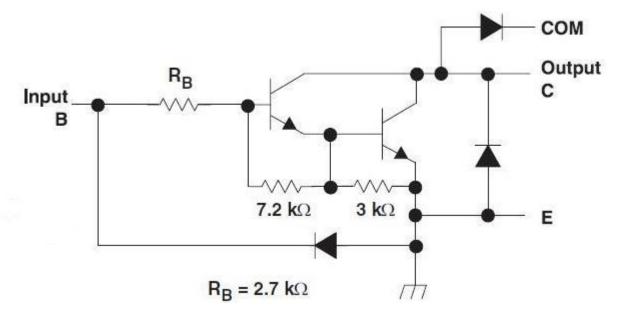

| PACKAGE OUTLINE | Marking              |
|-----------------|----------------------|
| rivitie         | ULN2003<br>******    |
| SOP-16          |                      |
| Richted         | MSK ****<br>ULN2003A |
| TSSOP16         |                      |
|                 | ULN2003AN<br>******  |
| DIP-16          |                      |



#### **Pin Assignments**



#### **Connection Diagram**




**Pin Descriptions** 

| Pin Number | Pin Name | Function                   |  |  |
|------------|----------|----------------------------|--|--|
| 1          | 1B       | Input pair1                |  |  |
| 2          | 2B       | Input pair1                |  |  |
| 3          | 3B       | Input pair1                |  |  |
| 4          | 4B       | Input pair1                |  |  |
| 5          | 5B       | Input pair1                |  |  |
| 6          | 6B       | Input pair1                |  |  |
| 7          | 7B       | Input pair1                |  |  |
| 8          | E        | Common Emitter<br>(ground) |  |  |
| 9          | СОМ      | Common Clamp<br>Diodes     |  |  |
| 10         | 7C       | Output pair7               |  |  |
| 11         | 6C       | Output pair6               |  |  |
| 12         | 5C       | Output pair5               |  |  |
| 13         | 4C       | Output pair4               |  |  |
| 14         | 3C       | Output pair3               |  |  |
| 15         | 2C       | Output pair2               |  |  |
| 16         | 1C       | Output pair1               |  |  |



### **Functional Block Diagram**



Note: All resistor values shown are nominal.

The collentor-emitter diode is a parasitic structure and should not be used to conduct current. If the collector(s) go below ground an external Schoottky diode should be added to clamp negative undershoots.

#### **Order Information**

| Designator      | Package | Packing type |
|-----------------|---------|--------------|
| ULN2003AIDR-MS  | SOP-16  | 3500         |
| ULN2003AIPWR-MS | TSSOP16 | 4000         |
| ULN2003AN-MS    | DIP-16  | 25           |



## **Absolute Maximum Ratings (1)**

At 25°C free-air temperature (unless otherwise noted)

| Symbol          | Parameter                                 |                             | Min | Max  | Unit |
|-----------------|-------------------------------------------|-----------------------------|-----|------|------|
| Vcc             | Collector to emitter voltage              |                             |     | 50   | V    |
| VR              | Clamp diode reverse voltage(2)            |                             |     | 50   | V    |
| Vı              | Input voltage(2)                          |                             |     | 30   | V    |
| lcp             | Peak collector current                    | See typical characteristics |     | 500  | mA   |
| lok             | Output clamp current                      |                             |     | 500  | mA   |
| lτE             | Total emitter-terminal current            |                             |     | -2.5 | Α    |
| T <sub>A</sub>  | Operating free-air temperature range      | ULN2003Axxx-MS              | -40 | +105 | °C   |
| ӨЈА             | Thermal Resistance Junction-to-Ambient(3) |                             |     | 63   |      |
| θ <sub>JC</sub> | Thermal Resistance Junction-to-Case(4)    |                             |     | 12   | °C/W |
| TJ              | Operating virtual junction temperature    |                             |     | +150 | °C   |
| Тѕтс            | Storage temperature range                 |                             | -65 | +150 | °C   |
| ESD             | Human Body Mode                           |                             |     | 3000 | V    |

(1) =Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated

conditions for extended periods may affect device reliability.

- (2) All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
- (3) Maximum power dissipation is a function of TJ(max),  $\theta$ JA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD =  $(TJ(max) TA)/\theta$ JA. Operating at the absolute maximum TJ of 150°C can affect reliability.
- (4) Maximum power dissipation is a function of TJ(max), θJC, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) TA)/θJC. Operating at the absolute maximum TJ of 150°C can affect reliability.

## **Recommended Operating Conditions**

| Symbol | Parameter                     | Min | Max  | Unit         |
|--------|-------------------------------|-----|------|--------------|
| VCC    | Collector to Emitter voltage  | -   | 50   | V            |
| TA     | Operating Ambient Temperature | -40 | +105 | $^{\circ}$ C |



Electrical Characteristics(TA=+25℃, unless otherwise specified)

|                  | Parameter Test Test Conditions                |          |                            |             | ULN2003Axxxx-MS |          | x-MS | Unit |
|------------------|-----------------------------------------------|----------|----------------------------|-------------|-----------------|----------|------|------|
|                  | Parameter                                     | Figure   | Test Conditions            |             | MIN             | N TYP MA |      |      |
|                  |                                               |          |                            | IC = 200 mA |                 |          | 2.4  |      |
| $V_{I(on)}$      | On-state input voltage                        | Figure 6 | VCE = 2 V                  | IC = 250 mA |                 |          | 2.7  | V    |
|                  |                                               |          |                            | IC = 300 mA |                 |          | 3    |      |
|                  |                                               |          | II = 250 μA,               | IC = 100 mA |                 | 0.9      | 1.1  |      |
| VcE(sat)         | VCE(sat) Collector-emitter saturation voltage | Figure 5 | II = 350 μA,               | IC = 200 mA |                 | 1        | 1.3  | V    |
|                  |                                               |          | II = 500 μA,               | IC = 350 mA |                 | 1.2      | 1.6  |      |
|                  |                                               | Figure 1 | VCE = 50 V,                | II = 0      |                 |          | 50   |      |
| I <sub>CEX</sub> | Collector cutoff current                      | Figure 2 | VCE = 50 V,<br>TA = +105°C | II = O      |                 |          | 100  | μA   |
| VF               | Clamp forward voltage                         | Figure 8 | IF = 350 mA                |             |                 | 1.7      | 2    | V    |
| I(off)           | Off-state input current                       | Figure 3 | VCE = 50 V,                | IC = 500 μA | 50              | 65       |      | μA   |
|                  |                                               |          | VI = 3.8                   | 5 V         |                 | 0.93     | 1.35 |      |
| II               | Input current                                 | Figure 4 | VI = 5 V                   |             |                 |          |      | mA   |
|                  |                                               |          | VI = 12 V                  |             |                 |          |      |      |
| ID.              | Clamp reverse current                         | Figure 7 | \/D 50\/                   |             |                 |          | 50   | μA   |
| IR               | Ciamp reverse current                         | VR       |                            | TA = 70°C   |                 |          | 100  | μΛ   |
| Ci               | Input capacitance                             |          | VI = 0,                    | f = 1 MHz   |                 | 15       | 25   | pF   |

**Switching Characteristics (**TA = +25°C, unless otherwise specified)

| Parameter |                                                      | Test Conditions                         | ULN2003Axxxx-MS |      |     | UNIT |  |
|-----------|------------------------------------------------------|-----------------------------------------|-----------------|------|-----|------|--|
|           |                                                      |                                         | MIN             | TYP  | MAX |      |  |
| tрцн      | Propagation delay time, low- to high-level output    | See Figure 9                            |                 | 0.25 | 1   | μs   |  |
| tphl      | Propagation delay time,<br>high- to low-level output | See Figure 9                            |                 | 0.25 | 1   | μs   |  |
| Vон       | High-level output voltage after switching            | VS = 50 V, IO = 300<br>mA, See Figure 9 | VS-20           |      |     | mV   |  |



### ParameterMeasurementInformation

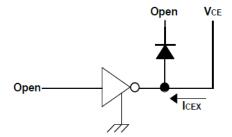



Fig.1 ICEX Test Circuit

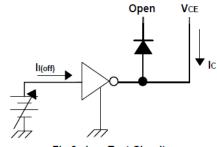



Fig.3 II(off) Test Circuit

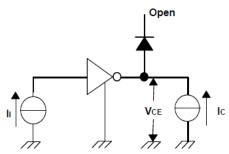



Fig. 5 hre, VCE(sat) Test Circuit

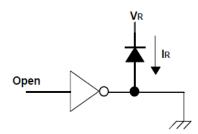



Fig. 7 IR Test Circuit

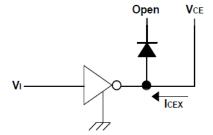



Fig.2 ICEX Test Circuit

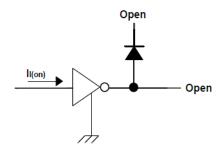



Fig.4 In Test Circuit

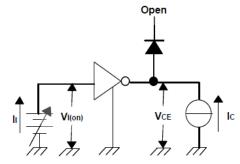



Fig. 6 VI(on) Test Circuit




Fig. 8 VF Test Circuit



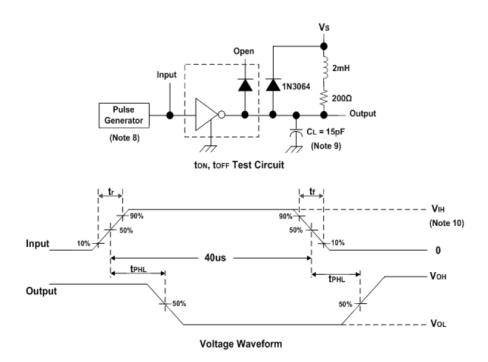
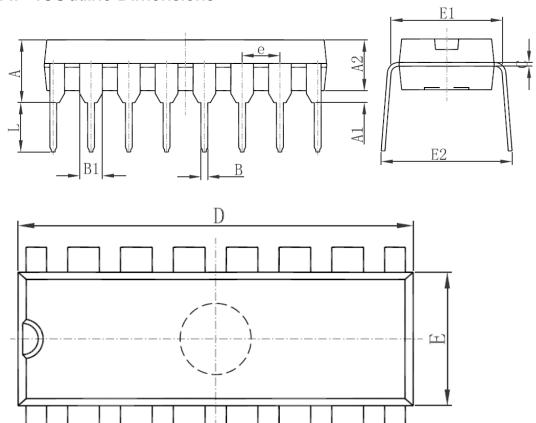



Fig. 9 Latch-Up Test Circuit and Voltage Waveform

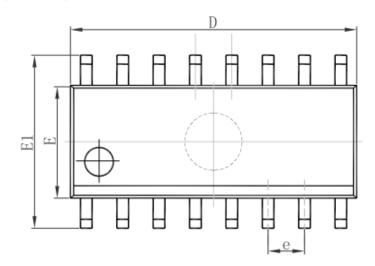
Notes: 8. The pulse generator has the following characteristics:

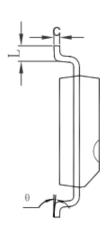

Pulse Width=12.5Hz, output impedance 50Ω, tr≤5ns, tr≤10ns.

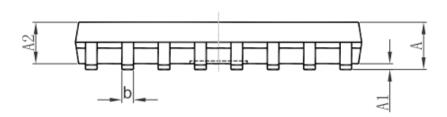
9.  $C_L$  includes prove and jig capacitance.

10. V<sub>IH</sub>=3V




# **DIP-16Outline Dimensions**

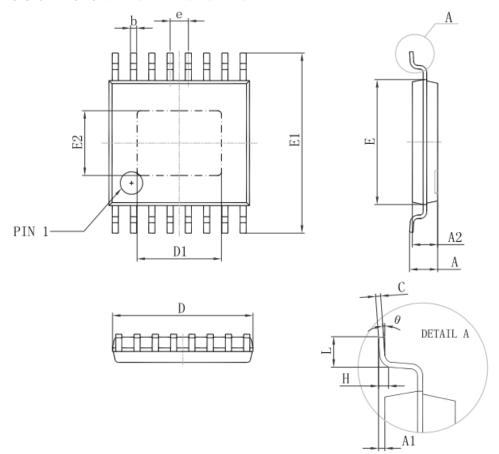




| Symbol     | Dimensions Ir | n Millimeters | Dimensions   | In Inches |
|------------|---------------|---------------|--------------|-----------|
| Symbol     | Min           | Max           | Min          | Max       |
| Α          | 3. 710        | 4. 310        | 0. 146       | 0. 170    |
| A1         | 0. 510        |               | 0. 020       |           |
| A2         | 3. 200        | 3.600         | 0. 126       | 0. 142    |
| В          | 0. 380        | 0. 570        | 0. 015       | 0. 022    |
| B1         | 1. 524 (BSC)  |               | 0. 060 (BSC) |           |
| С          | 0. 204        | 0. 360        | 0. 008       | 0. 014    |
| D          | 18. 800       | 19. 200       | 0. 740       | 0. 756    |
| E          | 6. 200        | 6. 600        | 0. 244       | 0. 260    |
| <b>E</b> 1 | 7. 320        | 7. 920        | 0. 288       | 0. 312    |
| е          | 2. 540 (BSC)  |               | 0. 100 (BSC) |           |
| L          | 3. 000        | 3. 600        | 0. 118       | 0. 142    |
| E2         | 8. 400        | 9. 000        | 0. 331       | 0. 354    |



## **SOP-16 Outline Dimensions**








| Cumb a l   | Dimensions Ir | n Millimeters | Dimensions | In Inches |
|------------|---------------|---------------|------------|-----------|
| Symbol     | Min           | Max           | Min        | Max       |
| Α          | 1. 350        | 1. 750        | 0. 053     | 0. 069    |
| A1         | 0. 100        | 0. 250        | 0. 004     | 0. 010    |
| A2         | 1. 350        | 1. 550        | 0. 053     | 0. 061    |
| b          | 0. 330        | 0. 510        | 0. 013     | 0. 020    |
| С          | 0. 170        | 0. 250        | 0. 007     | 0. 010    |
| D          | 9. 800        | 10. 200       | 0. 386     | 0. 402    |
| E          | 3. 800        | 4. 000        | 0. 150     | 0. 157    |
| <b>E</b> 1 | 5. 800        | 6. 200        | 0. 228     | 0. 244    |
| е          | 1. 270 (BSC)  |               | 0.050      | (BSC)     |
| L          | 0. 400        | 1. 270        | 0. 016     | 0. 050    |
| θ          | 0°            | 8°            | 0°         | 8°        |



### **TSSOP16 Outline Dimensions**



| Symbol | Dimensions In | Millimeters | Dimensions In Inches |        |
|--------|---------------|-------------|----------------------|--------|
| Symbol | Min           | Max         | Min                  | Max    |
| D      | 4. 900        | 5. 100      | 0. 193               | 0. 201 |
| D1     | 2. 900        | 3.100       | 0.114                | 0. 122 |
| E      | 4. 300        | 4.500       | 0. 169               | 0. 177 |
| b      | 0. 190        | 0.300       | 0.007                | 0.012  |
| С      | 0. 090        | 0.200       | 0.004                | 0.008  |
| E1     | 6. 250        | 6. 550      | 0. 246               | 0. 258 |
| E2     | 2. 200        | 2.400       | 0.087                | 0.094  |
| Α      |               | 1.150       |                      | 0.043  |
| A2     | 0.800         | 1.000       | 0.031                | 0. 039 |
| A1     | 0.020         | 0.150       | 0.001                | 0.006  |
| e      | 0.65 (        | BSC)        | 0.026(BSC)           |        |
| L      | 0.500         | 0.700       | 0.02                 | 0.028  |
| Н      | 0.25(TYP)     |             | 0.01(TYP)            |        |
| θ      | 1°            | 7°          | 1°                   | 7°     |



#### **Attention**

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.