

Mono Class D Amplifier with Integrated Boost Controller For 2-Cell Battery Application

General Description

The VA9105 is a cost-effective, space saving filterless Class D mono audio power amplifier featured with integrated of one current-mode boost controller. VA9105 is capable of delivering continuous 20W output at 18V boosted supply within 10% distortion at 8Ω load. With the filter-less output filter design and fully differential input, VA9105 is ideal to provide excellent sound quality with good RF noise immunity on portable electronics devices.

VA9105 integrates a current-mode boost controller with fast response and high efficiency. With 6V to 13.2V input voltage, it could boost the lower input voltage such as single cell Li-ion battery output to higher and then makes the audio amplifier operates at higher voltage to reduce the distortion.

The VA9105 is available in cost-effective TSSOP-28 green package with exposed pad.

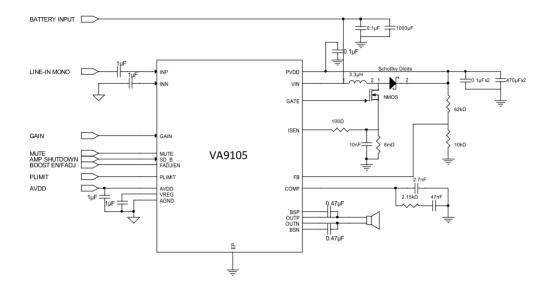
Features

Mono Class D Amplifier

- Operation Voltage from 6V to 20V
- 8Ω Speaker:
 - · 20W@18V with 8.5% THD+N
- Fully Differential Input
- Programmable Two Gains
- Configurable Output Power Limit
- Excellent EMI Performance
- Short Circuit and Thermal protection

Boost Controller

- Input Voltage From 6V to 13.2V
- Adjustable output Voltage: from 6V to 20V
- Up to 90% Efficiency
- Adjustable PWM Frequency


Package

 RoHS 2.0 compliant TSSOP-28 Green Package with Exposed Pad

Typical Application

Applications

- Battery Powered Portable Speakers

1

Pin Assignments And Descriptions

TSSOP-28EP						
	Top	View	_			
COMP $==$	1.	28	3	GATE		
FB ⊏	2	27		FADJ/EN		
$GND \sqsubseteq \!$	3	26	5	ISEN		
SD_B □□□	4	25	<u> </u>	VIN		
AGND	5	24	\vdash	PVDD		
AGND □□□	6	23	—	BSN		
GAIN □□	7	22		OUTN		
AVDD □□	8	21		OUTN		
AGND	9	20		BSN		
VREG □□	10	19		BSP		
PLIMIT $ ightharpoonup$	11	18	—	OUTP		
INN □□	12	17	_	OUTP		
INP □□□	13	16	<u> </u>	BSP		
MUTE □□	14	15		PVDD		
			_			

Pin No.	Pin	I/O/P	Function Description		
1	COMP	-	Compensation. Use a RC/C network to do proper loop compensation.		
			Output Feedback. Connect the external resistor divider network from output to this pin		
2	FB	1	to sense output voltage. The FB pin voltage is regulated to internal 1.26V reference volt-		
			age.		
3	GND	Р	Ground. Connect to exposed pad.		
4	SD_B	1	Amplifier shutdown control terminal. Low active. TTL Logic levels with compliance AVDD.		
5	AGND	Р	Analog Ground.		
6	AGND	Р	Analog Ground.		
7	GAIN	I	Gain selection bit. Pull it low for 26dB gain and pull it high for 36dB gain. TTL logic level with compliance to AVDD.		
8	AVDD	Р	Analog Power Supply.		
9	AGND	Р	Analog Power Ground.		
10	VREG	0	Internal Regulated Voltage Output.		
11	PLIMIT		Power Limit Level Adjust. Connect a resistor divider from VREG to GND to set power		
11	PLIIVII I	!	limit. Connect to VREG directly for no power limit.		
12	INN	1	Audio signal negative audio signal input.		
13	INP	1	Audio signal positive audio signal input.		
14	MUTE	1	Mute signal for fast disable/enable of outputs (HIGH = outputs Hi-Z,		
17	MUTE I		LOW = outputs enabled). Low voltage level compliance to VREG.		
15	PVDD	Р	Power Stage supply.		
16	BSP	-	Bootstrap I/O for positive channel high-side switch.		
17	OUTP	0	Right channel positive output.		
18	OUTP	0	Right channel negative output.		
19	BSP	-	Bootstrap I/O for positive channel high-side switch.		
20	BSN	-	Bootstrap I/O for negative channel high-side switch.		
21	OUTN	0	Negative output.		
22	OUTN	0	Negative output.		
23	BSN	-	Bootstrap I/O for negative channel high-side switch.		
24	PVDD	Р	Power Stage supply.		
25	VIN	P	Boost Controller Supply Input.		
26	ISEN	0	Current Sense. Use an external resistor in series with ground to measure the voltage drop.		
27	FADJ/EN	ı	Boost Frequency Adjust/Synchronization/Shutdown. A resistor connected from this pin to ground simply sets the oscillator frequency. An external clock signal at this pin will synchronize the controller to the clock. Pull on this pin for \geq 30 μ s will turn the device off and the boost controller will then very few current about 10 μ A from the supply.		
28	GATE	0	Gate Drive. Connect this terminal to the gate pin of the external MOSFET.		
EP	GND	Р	System Ground,		

Absolutely Maximum Ratings

Over operating free-air temperature range, unless otherwise specified (* 1)

Symbol	Parameter	Limit	Unit
V _{IN} (VIN)	Boost Controller Supply voltage	-0.3 to 30	V
V _{DD} (PVDD, AVDD)	Amplifier supply voltage	-0.3 to 30	V
V _{IN} (COMP, FADJ, FB, INN, INP, MUTE, PLIMIT)	Amplifier Input voltage	0 to 6	٧
V _{IN} (SD_B, GAIN)	Boost Input Voltage	0 to 30	V
V _{ISEN}	Current Sense Input	-0.4 to 0.6	V
T _A	Operating free-air temperature range	-40 ~ +85	۰C
TJ	Operating junction temperature range	-40 to +150	۰C
T_{STG}	Storage temperature range	-65 to 150	۰C
$R_{(LOAD)}$	Minimum load resistance	8	Ω
Electrostatic discharge	Human body model	±2	kV
Electrostatic discharge	Machine model	±200	V

^{(*1):} Stress beyond those listed at "absolute maximum rating" table may cause permanent damage to the device. These are stress rating ONLY. For functional operation are strongly recommend follow up "recommended operation conditions" table.

Recommended Operating Conditions

Over operating free-air temperature range, unless otherwise specified.

Symbol	Parameter	Test Condition	Specifi	Unit	
Syllibol	raiametei	rest Condition	Min	Max	Oilit
V _{IN}	Boost controller supply voltage	$V_{DD}=18V$	6	13.2	V
V_{DD}	Amplifier supply voltage		6	20	V
V _{IH(HIGH)}	High level input voltage (SD_B, GAIN)	V _{DD} =6V	2.0	V_{DD}	٧
V _{IH(LOW)}	Low level input voltage (MUTE)	V _{DD} =6V	2.0	5	٧
V _{IL}	Low Level Input Voltage (SD_B, GAIN, MUTE)		-	0.4	٧
Rı	Analog External Input Resistor		39	-	kΩ

Electrical Characteristics

 $T_{A}=25\text{°C, V}_{IN}=7\text{V, V}_{DD}(A_{VDD}/P_{VDD})=18\text{V, R}_{L}=8\Omega,\,GAIN=26dB,\,unless\,\,otherwise\,\,noted.}$

Symbol	Parameter	Test Con	dition	Specification			Unit
Syllibol	raiametei	rest con	idition	Min	Тур.	Max	Oilit
V _{os}	Output offset voltage (measured differentially)	$V_{l} = 0V$			1.5	15	mV
I _Q	Quiescent current (For AMP)	SD_B=2V,	No load		50		mA
I _{SD}	Shutdown current (For AMP)	•	SD_B=0.4V, FADJ=3V, No load		400	600	μA
t _{ON}	Shutdown turn-on time	SD_B=2V			20		ms
t _{OFF}	Shutdown turn-off time	SD_B=0.4V			2		μs
f _{osc}	Internal oscillation frequency				250		kHz
А	Amplifier gain	GAIN=0			26		dB
	Ampiliter gain	GAIN=1			36		
R _{DS(ON)}	Drain-Source ON resistance	$V_{DD}=12V$,	High Side		100		mΩ
NDS(ON)	Diami Source ON resistance	$I_{\text{OUT}} = 500 \text{mA}$	Low Side		100		11122
V_{REG}	Regulator output	$I_{VREG} = 100 \mu A, V_{DD} = 6 \sim 20 V$			5.8		V
t _{DC-DET}	DC detect time				450		ms
t _{HYSTERSIS}	OTP hystersis				20		$^{\circ}$
I _{OCP}	Over-current trap threshold				7		Α

⁽¹⁾ Design center value.

Operating Characteristics

 $T_{A}=25\,^{\circ}\!C,~V_{IN}\!\!=\!7V,~V_{DD}(A_{VDD}/P_{VDD})\!\!=\!1\,8V,~R_{L}\!\!=\!8\Omega,~GAIN\!\!=\!\!26dB,~unless~otherwise~noted.$

Symbol	Parameter	Test Condi	tion	Sp	ecificati	on	Unit	
Syllibol	raiailletei	rest Condition		Min	Тур.	Max	Jille	
Po	Output power	$f=1 \text{ kHz}, R_L=8\Omega *$	THD+N=1%		17.5		W	
	Total harmania dia	,	THD+N=10%		21.6			
THD+N	Total harmonic dis- tortion plus noise	$P_0=10W$, $R_L=8\Omega$, $f=1kH$	łz		0.06		%	
V _{OS}	Offset voltage				20		mV	
K _{SVR}	Supply ripple rejec- tion ration	Input AC–Grounded, $C_i=1\mu F$, $f=1kHz$			65		dB	
SNR	Signal-to-Noise ratio	A–weighted, THD+N=1%, R_L =8 Ω			78		dB	
Vn	Output voltage noise	$C_i=1\mu F$, $f=20Hz$ to $20kHz$, A-weighted, Input AC-Grounded			160		μV_{RMS}	
CMRR	Common mode re- jection ratio	V_{DD} =18V, V_{IC} =1 V_{PP}	f=120Hz		63		dB	
Zı	Input impedance				60		kΩ	

^(*) Heat-sink is required.

Functional Descriptions

Gain Settings

The gain of the VA9105 can be set by the GAIN pin. The gain ratios listed in Table 1 are implemented by changing the taps on the feedback resistors in the preamplifier stage.

The input resistance is depended on the gain setting. Since the gain setting is determined by the ratio of the internal feedback resistive network, the variation of the gain is small. But the absolute value of the input resistance may shift by $\pm 20\%$ at the same gain. In actual design cases, 80% of nominal value should be assumed as the input resistance of VA9105 in the input network of whole

GAIN	Gain Ratio	Resistance	Range
1	36dB	9kΩ	7.2kΩ~10.8kΩ
0	26dB	30kΩ	24kΩ~36kΩ

amplifier.

Table 1. Gain Setting

Amplifier Input Impedance

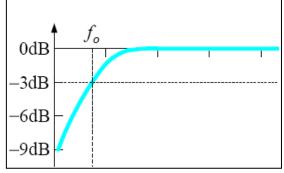


Figure 2. Cut-off point of high-pass filter

In most cases, no extra resistor needs to be added on the input of VA9105. The actual input resistor is already determined while selecting the gain. If a single capacitor is used in the input high-pass filter, the cut-off frequency *fo* may vary with the change of gain setting. The -3dB point of the cut-

off frequency can be calculated by the following equation,

$$fo = \frac{1}{2\pi \times R_{\perp} \times C_{\perp}}$$
 (Hz) Equation (2)

where the R_I values is

given in Table 1.

Shutdown Operation

The VA9105 employs a state of shutdown mode to reduce supply current to the absolute minimum level during periods of nonuse for power conservation. This terminal should be held high during normal operation when the amplifier is in normal operating. Pulling low causes the output drivers shutdown and the amplifier to enter a low-current state. Do not leave it unconnected, because there is no weakly pulling resistor inside the amplifier.

Remember that to place the amplifier in the shutdown state prior to removing the power supply voltage so that power-off pop noise can be eliminated.

VREG Supply

The V_{REG} Supply is used to bias the gates of the output full-bridge upper half MOSFETs. It could be used to supply the PLIMIT pin and related voltage divider circuit. Add at least $1\mu F$ capacitor to ground at this pin.

Speaker Protection

Due to the nature of Class D amplifiers, the speakers may have DC current if the audio inputs get DC voltage in any case. An output DC fault will make internal fault function in low state and shuts down the audio amplifier and change the state of output into high impedance.

Functional Descriptions (cont.)

To resolve the case of DC input, it is good to treat it as very low frequency sine wave much lower than audio band such as 2Hz. Based on this criteria, a DC detect fault shall be issued when the output differential duty-cycle of either channel exceeds 14% for more than 500ms at the same polarity. This feature protects the speakers away from large currents.

The minimum differential input DC voltages required to trigger the DC detection fault are listed in Table 2.

A _V (dB)	V _{IN} (mV, Differential)
36	17
26	56

Table 2. DC detect fault threshold To resume the normal operation, it is necessary to power off the amplifier and then power on, cycling SD_B can not resume normal operation.

Short Circuit Protection

VA9105 has protection from over-current conditions caused by a short circuit on the output stage. The short circuit protection fault is reported on the internal fault function to low state. The amplifier outputs are switched to a high impedance state when the short circuit protection latch is engaged. The latch can be cleared by cycling the SD_B pin through the low state.

Thermal Protection

Thermal protection on the VA9105 prevents damage to the device when the internal die temperature exceeds 150°C. There is a ± 30 °C tolerance on this trip point from device to device. Once the die temperature exceeds the thermal set point, the

device enters into the shutdown state and the outputs are disabled. This is not a latched fault. The thermal fault is cleared once the temperature of the die is reduced by 30°C. VA9105 will be back to normal operation at this point with no external system interaction.

Thermal protection fault will not be reported on the internal fault function terminal.

Power Limit Operation

The voltage at PLIMIT terminal (pin 11) can be used to limit the power to levels below that which is possible based on the supply rail. Add a resistor divider from VREG to ground to set the voltage at the PLIMIT terminal. An external reference may also be used if precise limitation is required. Also add a 1µF capacitor from this pin to ground.

The PLIMIT circuit sets a limit on the output peak-to-peak voltage. The limiting is done by limiting the duty cycle to fixed maximum value. This limit can be thought of as a "virtual" voltage rail which is lower than the supply connected to power rail. This "virtual" rail is 5 times the voltage at the PLIMIT pin. This output voltage can be used to calculate the maximum output power for a given maximum input voltage and speaker impedance.

$$P_{OUT} = \frac{\left(\left(\frac{R_L}{R_L + 2 \times R_S}\right) \times V_P\right)^2}{2 \times R_L}$$

$$V_P=5 \times PLIMIT \text{ voltage if PLIMIT} < 5 \times V_P$$

 $P_{OUT} \text{ (with } 10\% \text{ THD)} = 1.25 \times P_{OUT}$

where R_S is the total series resistance including $_{RDS}$ $_{(ON)}$ and any resistance in the output filter. R_L is the load resistance. V_P is the peak amplifier of the

Functional Descriptions (cont.)

output possible within the supply rail.

V _{DD} (V)	$R_L(\Omega)$	PLIMIT(V)	Po@THD+N (W)		
	K _L (12) P	PLIMIT(V)	10%	1%	
12	8	0.93	1.328	1.005	
12	8	1.107	1.923	1.452	
12	8	1.33	2.955	2.118	
12	8	1.434	3.527	2.536	

Table 3. PLIMIT value vs. Output Power

Due to the VREG driving ability limitation, it is not recommended to use this pin to drive other circuits except PLIMIT resistor network. The recommended resistor network is shown on Figure 3.

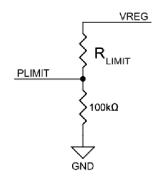


Figure 3. PLIMIT Pin Voltage Divider

Use the simple voltage divider to determine the voltage on PLIMIT pin from VREG pin by the following equation:

$$V_{PLIMIT} = V_{VREG} \frac{100 \, k\Omega}{100 \, k\Omega + R_{LIMIT}}$$

In order to maintain the regulation of VREG pin well please apply higher resistor value such as $100k\Omega$ on low side resistor but should not less than $50k\Omega$.

Application Information

Output Filter

Design the VA9105 without the filter if the traces from amplifier to speaker are short (< 10cm), where the speaker is in the same enclosure as the amplifier is a typical application for class D without a filter. Many applications require a ferrite bead filter at least. The ferrite filter reduces EMI above 30MHz. When selecting a ferrite bead, choose one with high impedance at high frequencies, but low impedance at low frequencies, be aware of its maximum current limitation.

Use an LC output filter if there are low frequency (<1 MHz) EMI sensitive circuits and there are long wires from the amplifier to the speaker.

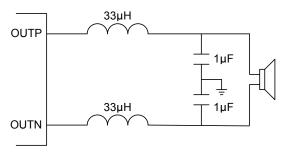


Figure 4. Typical LC Output Filter, Speaker Impedance= 8Ω

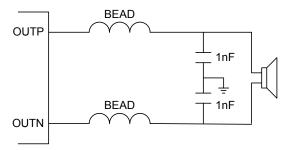


Figure 5. Typical Ferrite Chip Bead Output Filter

Inductors used in LC filters must be selected carefully. A significant change in inductance at the peak output current of the VA9105 will cause increased distortion. The change of inductance at currents up to the peak output current must be

less than $0.1\mu H$ per amp to avoid this. Also note that smaller inductors than $33\mu H$ may cause an increase in distortion above what is shown in preceding graphs of THD versus frequency and output power.

Like the selection of the inductor in LC filters, the capacitor must be selected carefully, too. A significant change in capacitance at the peak output voltage of the VA9105 will cause increased distortion. LC filter capacitors should be double of DC voltage ratings of the peak application voltage (the power supply voltage) at least. In general, it is strongly recommended using capacitors with good temperature performance like X7R series.

Output Snubbers

In Figure 6, the 330pF capacitors in series with 10Ω resistors connected with the outputs of the VA9105 are snubber circuits. They smooth switching transitions and reduce overshoot and ringing. With these networks, THD+N can be improved at lower power levels and EMC can be reduced 2~4 dB at middle frequencies. They increase quiescent current by 3mA~11mA depending on supply voltage.

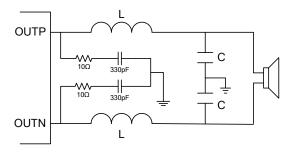


Figure 6. Output Snubber Circuits

Low ESR Capacitors

Low ESR capacitors are high recommended for this application. In general, a practical capacitor can

Application Information (cont.)

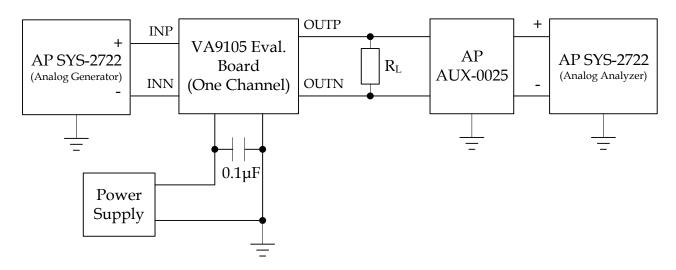
be modeled simply as a resistor in series with an noise, a larger low ESR aluminum electrolytic caideal capacitor. The voltage drop across this un-pacitor of $470\mu\text{F}$ or greater placed near the audio wanted resistor can eliminate the effects of the power amplifier is suggested. The $470\mu\text{F}$ capacities capacitor. Place low ESR capacitors on supply tor also serves as local storage capacitor for supcircuitry can improve THD+N performance.

Boot-Strap Capacitors

The full H-bridge output stages use only MOS transistors. Therefore, they require bootstrap capacitors for the high side of each output to turn on correctly. A $0.47\mu F$ ceramic capacitor, rated for at least 25V, must be connected from each output to its corresponding boot-strap input. Specifically, one $0.47\mu F$ capacitor must be connected from OUTP to BSP, and one $0.47\mu F$ capacitor must be connected from OUTN to BSN.

The bootstrap capacitors connected between the BSP or BSN pins and corresponding output function as a floating power supply for the high side N-channel power MOSFET gate drive circuitry. During each high side switching cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-side MOSFETs turned on.

Decoupling Capacitors


VA9105 requires appropriate power decoupling to minimize the output total harmonic distortion (THD) and improves EMC performance. Power supply decoupling also prevents intrinsic oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling can be achieved by using two different types of capacitors which target different types of noise on the power supply lines. For higher frequency spikes, or digital hash on the rail, a good low ESR ceramic capacitor, for example 0.1µF to 10µF, placed as close as possible to all PVDD pins works best. For filtering lower frequency

noise, a larger low ESR aluminum electrolytic capacitor of $470\mu F$ or greater placed near the audio power amplifier is suggested. The $470\mu F$ capacitor also serves as local storage capacitor for supplying current during heavy power output on the amplifier outputs. The PVDD terminals provide the power to the output transistors, so a $470\mu F$ or larger capacitor should be placed by PVDD terminals as near as possible. And $0.1\mu F$, $10\mu F$ ceramic capacitor on each PVDD terminal is also recommended.

Typical Characteristic

Test Setup Connection Diagram

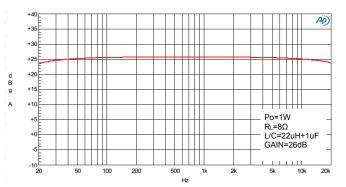

^{*} Remove all L/C (BEAD) filter components on board before performing all measurements.

Figure No.	Description
7	Frequency Response (7V to 18V [†] @26dB)
8	Noise (8Ω@26dB)
9	SNR (8Ω@26dB)
10	THD+N vs. Frequency (7V to 18V@26dB)
11	THD+N vs. Output Power (7V to 18V@1kHz)
12	THD+N vs. Output Power (7V to 18V)
13	THD+N vs. Output Power vs. Analog Input
14	Efficiency vs. Output Power

^(†) Boost V_{IN} =7V, Amplifier V_{DD} =18V.

Typical Characteristic (cont.)

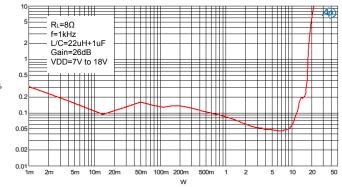
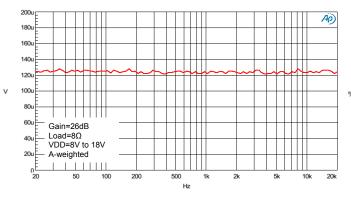



Figure 7. Frequency Response (7V to 18V@26dB) Figure 11. THD+N vs. Output Power (7V to 18V@1kHz)

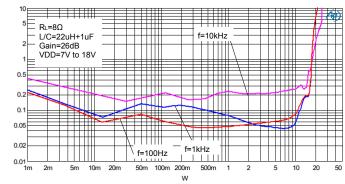
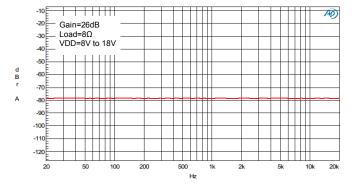



Figure 8. Noise (8Ω@26dB)

Figure 12. THD+N vs. Output Power (7V to 18V)

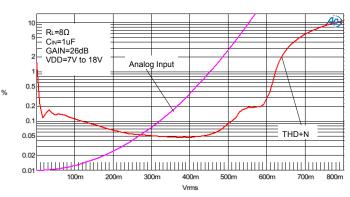
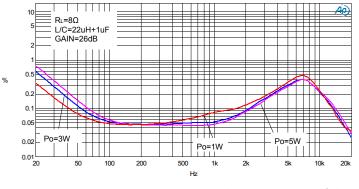



Figure 9. SNR (8Ω@26dB)

Figure 13. THD+N vs. Analog Input (7V to 18V)

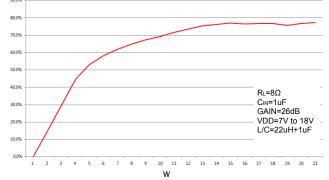
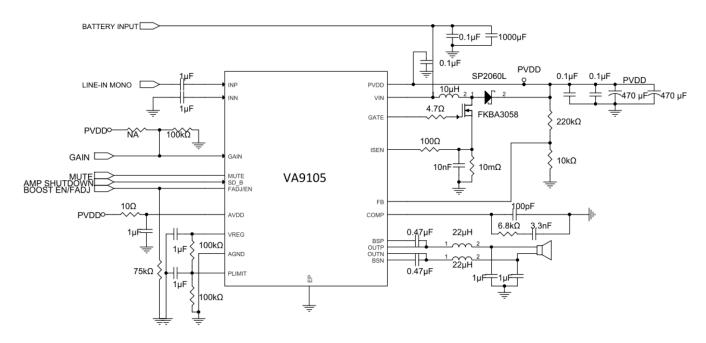
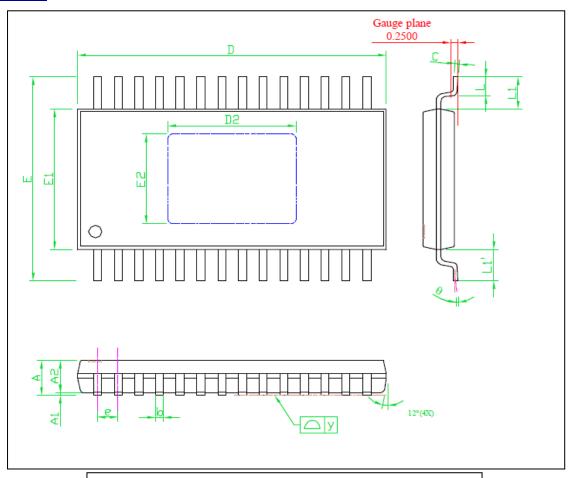



Figure 10. THD+N vs. Frequency (7V to 18V@26dB)

Figure 14. Efficiency vs. Output Power

Reference Input:

 V_{IN} =7V (Norminal), V_{DD} = 17.3V, Load=8 Ω , Gain=26dB


Result:

Po=20W, $I_{IN}=3.92A$, THD+N=8.5%

Package Information

TSSOP-28EP

NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS
- 2. TOLERANCE ±0.1 mm UNLESS OTHERWISE SPECIFIED
- 3. COPLANARITY: 0.1 mm
- 4. REFER TO JEDEC MO-153

SYMBOLS	DIMENS	IONS IN MILLI	METER	DIM	ENSIONS IN IN	ICH	
JIMBOLJ	MIN	NOM	MAX	MIN	NOM	MAX	
A		_	1.15	_		0.045	
A1	0.00		0.10	0.000		0.004	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
C	0.09		0.20	0.004		0.008	
D	9.60	9.70	9.80	0.378	0.382	0.386	
D2	3.70	3.80	3.90	0.146	0.150	0.154	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
E2	2.70	2.80	2.90	0.106	0.110	0.114	
e		0.65			0.026		
L	0.45	0.60	0.75	0.018	0.024	0.030	
y			0.10	_		0.004	
θ	0°		8°	0°		8°	
L1-L1'			0.12	_		0.005	
L1		1.00REF		0.039REF			

Contact Information

Viva Electronics Incorporated

10F-1, No. 32, Gaotie 2nd Rd., Zhubei City, Hsinchu County, Taiwan, R.O.C.

Tel: 886-3-6579508 Fax: 886-3-6579509

WWW: http://www.viva-elec.com.tw

Sales: sales@viva-elec.com.tw

FAE Support: fae@viva-elec.com.tw

IMPORTANT NOTICE

Viva Electronics Incorporated reserves the right to make changes without further notice to any products or specifications herein. Viva Electronics Incorporated does not assume any responsibility for use of any its products for any particular purpose, nor does Viva Electronics Incorporated assume any liability arising out of the application or use of any its products or circuits. Viva Electronics Incorporated does not convey any license under its patent rights or other rights nor the rights of others.