

DATA SHEET

AUTOMOTIVE GRADE SURGE CHIP RESISTORS (LEAD FREE)

SR_P series 0.5%, 1%, 5%, 10%, 20% sizes 0201/0402/0603/0805/1206

YAGEO

SCOPE

This specification describes SR0201 to SR1206 chip resistors made by thick film process.

APPLICATIONS

- Total lead free without RoHS exemption
- Telecommunications
- Power supplies
- Car electronics

FEATURES

- AEC-Q200 qualified
- Superior to RC series in pulse withstanding voltage and surge withstanding voltage.
- MSL class: MSL I
- Halogen free epoxy
- Reduce environmentally hazardous waste
- High component and equipment reliability

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

SR XXXX X X X XX XXXX P (2) (3) (4) (5) (6) (7) (I)

(I) SIZE

0201/0402/0603/0805/1206

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $1 = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKAGING TYPE

R = Paper taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL & POWER

07 = 7 inch dia, Reel 7W = 7 inch dia. Reel & 2 x standard power

7T = 7 inch dia. Reel & 3 x standard power

47 = 7 inch dia. Reel & $4 \times$ standard power

(6) RESISTANCE VALUE

 $|\Omega \le R \le |M\Omega|$

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter P is lead free (without RoHS exemption).

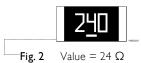
Resistance rule of number	of global part
Resistance coding rule	Example
XRXX (1 to 9,76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	$10R = 10 \Omega$ $97R6 = 97.6 \Omega$
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (Ι to 9.76 Κ Ω)	$1K = 1,000 \Omega$ $9K76 = 9760 \Omega$
XXKX (10 to 97.6 K Ω)	$10K = 10,000 \Omega$ $97K6 = 97,600 \Omega$
XXXK (100 KΩ)	100Κ = 100,000 Ω

ORDERING EXAMPLE

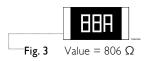
The ordering code for an SR0805 chip resistor, value $10 \text{ K}\Omega$ with ±5% tolerance, supplied in 7-inch tape reel is: SR0805JR-0710KP.

Chip Resistor Surface Mount

SR_P | SERIES | **0201/0402/0603/0805/1206**


<u>MARKING</u>

SR0201/0402



No Marking

SR0603

1%, 0.5%,E24 exception values 10/11/13/15/20/75 of E24 series

1%, 0.5%, E96 refer to EIA-96 marking method, including values 10/11/13/15/20/75 of E24 series

SR0805 /1206

Both E-24 and E-96 series: 4 digits, \pm 0.5% & \pm 1%

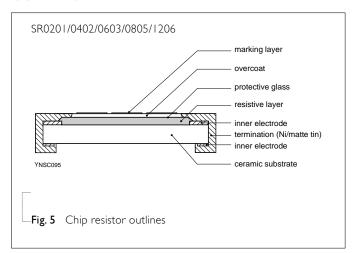
First three digits for significant figure and 4th digit for number of zeros

NOTE

For further marking information, please refer to data sheet "Chip resistors marking".

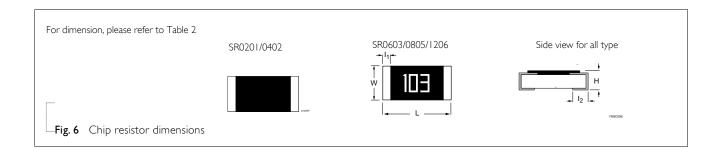
TAPING REEL & POWER

Table I


		PC	OWER, W (P70)		
TYPE			CODING		
	07	7W	7 T	47	
0201	1/20	1/10	-	1/5	
0402	1/16	1/8	1/5	-	
0603	1/10	1/5	1/4	-	
0805	1/8	1/4	1/3	1/2	
1206	1/4	1/2	3/4	-	

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value. The whole element is covered by a protective overcoat. The top of overcoat is marked with the resistance value. Finally, the two external terminations (Ni/matte tin) are added, as shown in Fig. 5.


OUTLINES

<u>DIMENSIONS</u>

Table 2

TYPE	L (mm)	W (mm)	H (mm)	I ₁ (mm)	I ₂ (mm)
SR0201	0.60±0.03	0.30±0.03	0.23±0.03	0.12±0.05	0.15±0.05
SR0402	1.00±0.05	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
SR0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
SR0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
SR1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.45±0.20

ELECTRICAL CHARACTERISTICS

Table 3

					CHARAC	TERISTICS	
TYPE	POWER	resistance range	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance
•	1/20W						$ \Omega \le R \le 0\Omega $
SR0201	1/10W			25V	50V	50V	-100~+350ppm°C 10Ω < R ≤ IMΩ
	1/5W		-				± 200 ppm°C
	I/I6W_						
SR0402	1/8W			75V	100V	100V	
	1/5W	E24 5%, 10%, 20% $I\Omega \leq R \leq IM\Omega$ E24/E96 0.5%, 1% $I\Omega \leq R \leq IM\Omega$					
	1/10W						
SR0603	1/5W			75V	150V	150V	
	1/4W		–55 °C to +155 °C _				$1\Omega \le R \le 10\Omega$
	1/8W		_				± 200 ppm°C
SR0805	1/4W			150//	2001	2001/	$10\Omega < R \le 1M\Omega$ ± 100 ppm°C
3KU8U3	1/3W			150V	300V	300V	± 100 ppm C
	1/2W						
	1/4W						
SR1206	1/2W			200 V	400 V	500V	
	3/4W						

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

 Table 4
 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	SR0201/0402	SR0603/0805/1206
Paper taping reel (R)	7" (178 mm)	10,000	5,000

NOTE

1. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

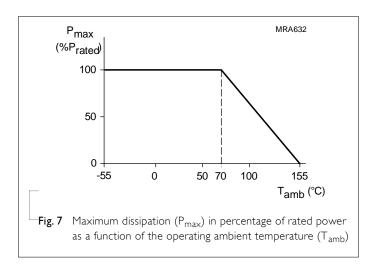
POWER RATING

Each type rated power at 70 °C: SR0201: I/20W, I/10W, I/5W SR0402: I/16W, I/8W, I/5W SR0603: I/10W, I/5W, I/4W SR0805: I/8W, I/4W, I/3W, I/2W SR1206: I/4W, I/2W, 3/4W

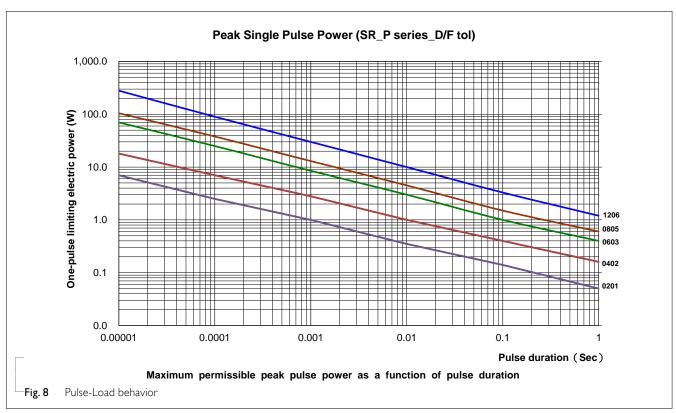
RATED VOLTAGE

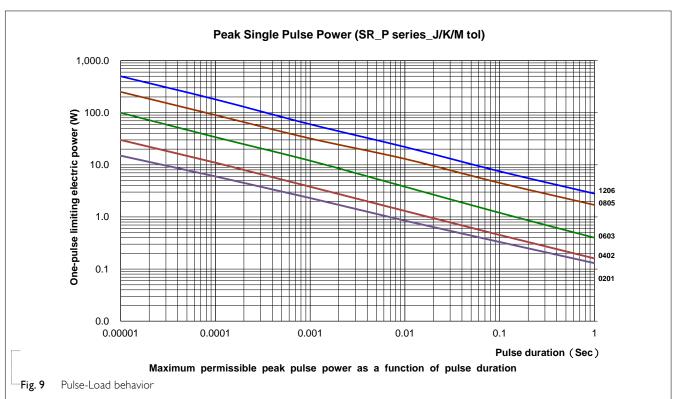
The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$


or max. working voltage whichever is less

Where


V = Continuous rated DC or AC (rms) working voltage (V)


P = Rated power (W)

 $R = Resistance value (\Omega)$

PULSE LOAD BEHAVIOR

TESTS AND REQUIREMENTS

Table 5 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at T_A = 155 °C, unpowered	$\pm(2.0\% + 0.05\Omega)$ for D/F tol $\pm(3.0\% + 0.05\Omega)$ for others
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for I 0d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (2.0\% + 0.05\Omega)$ for others
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	I,000 hours; 85 °C / 85% RH I 0% of operating power Measurement at 24±4 hours after test conclusion.	$\pm (1.0\% + 0.05 \Omega)$ for D/F tol $\pm (3.0\% + 0.05 \Omega)$ for others
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm (2.0\% + 0.05\Omega)$ for D/F tol $\pm (3.0\% + 0.05\Omega)$ for others
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	±(1.0%+0.05Ω) No visible damage
Thermal Shock	MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (1.0\% + 0.05\Omega)$ for others
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, I pos. + I neg. discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	±(3.0%+0.05Ω)
Solderability - Wetting	AEC-Q200 Test 18 J-STD-002	Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds.	Well tinned (≥95% covered) No visible damage

Chip Resistor Surface Mount | SR_P | SERIES | 0201/0402/0603/0805/1206

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 100mm x 40mm glass epoxy resin PCB (FR4) Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60 seconds	±(1.0%+0.05Ω)
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C Formula: T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$ Where t_1 =+25 °C or specified room temperature t_2 =-55 °C or +125 °C test temperature R_1 =resistance at reference temperature in ohms R_2 =resistance at test temperature in ohms	Refer to table 2
Short Time Overload	IEC60115-1 8.1	2.5 times of rated voltage or maximum $\pm (2.0\% \pm 0.05 \Omega)$ overload voltage whichever is less for 5 sec at room temperature	

Chip Resistor Surface Mount SR_P SERIES 0201/0402/0603/0805/1206

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Jan. 20, 2022	-	- Add size 0201
Version 0	Feb. 03, 2021	-	- New product datasheet

SERIES

0201/0402/0603/0805/1206

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

