

DESCRIPTION

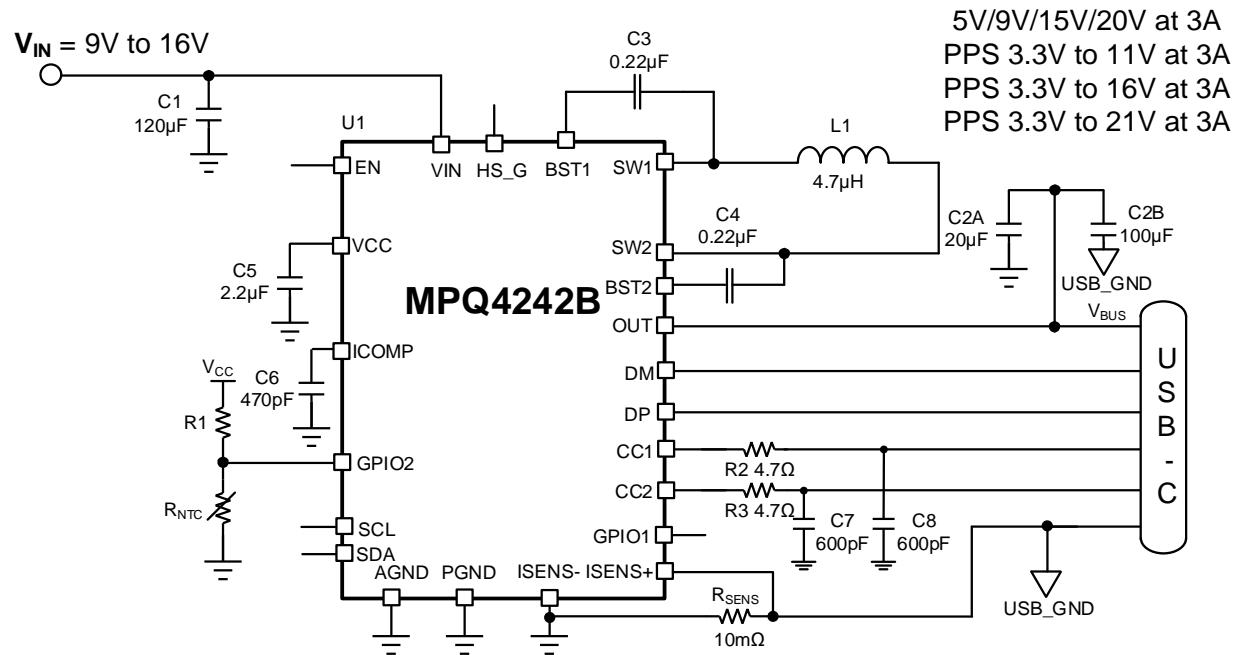
The MPQ4242B is a fully integrated power delivery (PD) solution for USB Type-C sourcing ports. It integrates a buck-boost converter with four power switches and a USB PD controller. The device supports up to 5A of continuous output current (I_{OUT}) under a certain input supply range.

The MPQ4242B's USB Type-C port supports USB PD revision 3.1 with PPS. It is backward compatible with DCP schemes for battery charging specification (BC1.2), 3A divider mode, and 1.2V/1.2V mode. The MPQ4242B also supports QC 2.0/3.0 and Huawei FCP mode.

The MPQ4242B provides a configurable PD power management state machine when the battery voltage (V_{BATT}) is low, or if an over-temperature condition occurs. When two MPQ4242Bs are used as dual PD ports, the internal power sharing logic can effectively distribute the total power.

Fault condition protections include I/O pin short protection for the BUS and VIN pins, CC over-current protection (OCP), current limiting with hiccup mode, output over-voltage protection (OVP), and thermal shutdown.

The MPQ4242B requires a minimal number of readily available, standard external components. It is available in a QFN-22 (4mmx5mm) package.


FEATURES

- All-In-One USB Power Delivery (PD) Solution for Automotive Sourcing Ports
- Integrated 4-Switch Buck-Boost Converter
- Integrated PD 3.1 Controller
- Wide 4.8V to 36V Operating Input Voltage (V_{IN}) Range
- 3.3V to 22.5V Output Voltage (V_{OUT}) Range
- Accurate Output CC Current Limit: $\pm 5\%$
- External High-Side MOSFET (HS-FET) can be Paralleled
- Low Quiescent Current (I_Q) when USB Type-C is Disconnected
- 250kHz / 420kHz Configurable Frequency with Spread Spectrum
- Supports USB PD R3.1, and PPS with 7 Power Data Object (PDO) List
- Passes USB-IF PD3.1 Certification Test (TID: 8822)
- Supports QC 3.0 Specification, Huawei FCP
- Supports DCP Schemes for BC1.2, 3A Divider Mode, and 1.2V/1.2V Mode
- CCx, DP, and DM Short to V_{BUS} / V_{BATT} Protection
- Battery Short to Ground Protection Driver
- I²C Slave Interface
- Output Line Drop Compensation
- Configurable PD Power Management during Low Battery Voltages or High Temperatures
- Supports Dual-Port PD Power Sharing
- PWM Duty Cycle Configurable LED Driver
- Up to 120 Minutes for EN Off Delay
- Available in a QFN-22 (4mmx5mm) Package with Wettable Flanks
- Available in AEC-Q100 Grade 1

APPLICATIONS

- USB PD Charging Ports
- USB Power Supplies
- USB PD Hubs

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking	MSL Rating
MPQ4242BGVE-0000-AEC1	QFN-22 (4mmx5mm)	See Below	1
MPQ4242BGVE-xxxx-AEC1**			
EVKT-MPQ4242B	-	-	-

* For Tape & Reel, add suffix -Z (e.g. MPQ4242BGVE-xxxx-AEC1-Z).

** "xxxx" is the configuration code identifier for the register setting stored in the OTP. Each "x" can be a hexadecimal value between 0 and F. Work with an MPS FAE to create this unique number.

*** The MPQ4242BGVE-0000-AEC1 is the default 60W PD version, which can be configured once by the one-time programmable (OTP) memory. Other suffix codes cannot be written with the OTP again.

TOP MARKING

MPSYWW
M4242B
LLLLLL
E

MPS: MPS prefix

Y: Year code

WW: Week code

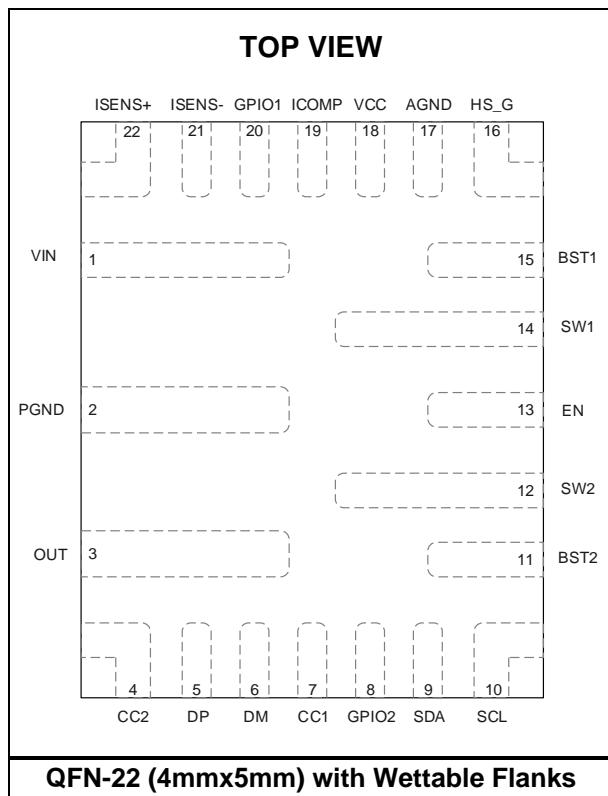
MP4242B: Part number

LLLLLL: Lot number

E: Wettable flank

EVALUATION KIT EVKT-MPQ4242B

EVKT-MPQ4242B kit contents (items below can be ordered separately):


#	Part Number	Item	Quantity
1	EVQ4242B-VE-00A	The MPQ4242B evaluation board	1
2	EVKT-USBI2C-02	Includes one USB-to-I ² C communication interface device, one USB cable, and one ribbon cable	1
3	MPQ4242BGVE-0000-AEC1	The MPQ4242B IC, which can be used for OTP configurations	2

Order directly from MonolithicPower.com or our distributors.

Figure 1: EVKT-MPQ4242B Evaluation Kit Set-Up

PACKAGE REFERENCE

PIN FUNCTIONS

Pin #	Name	Description	
1	VIN	Supply voltage. The MPQ4242B operates from a 4.8V to 36V unregulated input. An input capacitor (C_{IN}) is required to prevent large voltage spikes at the input. Place C_{IN} as close to the IC as possible. The VIN pin is the drain of the internal power device, and it is the power supply for the whole chip.	
2	PGND	Power ground. Place the PGND pin outside of the C_{IN} and output capacitor (C_{OUT}) ground path to prevent switching current spikes. PGND requires extra consideration during the PCB layout. Make the PGND connection with copper traces and vias.	
3	OUT	Buck-boost output pin. C_{OUT} is required to prevent large voltage spikes from appearing at the output in buck-boost and boost mode. Place C_{OUT} as close to the IC as possible.	
4	CC2	Configuration channel (CC). The CC2 pin discovers, configures, and manages connections across a USB Type-C cable.	
5	DP	D+ data line to USB connector. The DP pin is the input/output used for handshaking with portable devices. The pin can be trimmed for the ATTACH function. When the DP pin is trimmed as ATTACH, this pin pulls low if the device is attached.	
6	DM	D- data line to USB connector. The DM pin is the input/output used for handshaking with portable devices, and this pin can be trimmed as the FAULT function. When the DM pin is trimmed as FAULT, this pin pulls low if a fault occurs.	
7	CC1	Configuration Channel (CC). The CC1 pin discovers, configures, and manages connections across a USB Type-C cable.	
8	GPIO2	POL	USB Type-C polarity indication. The POL pin is an open drain. When CC1 is selected as the CC line, POL pulls low; when CC2 is selected as the CC line, POL is an open drain.
		NTC	NTC thermal-sense input.
		VCONN_IN	1W VCONN power supply input.
		LED_PWM	Output for the PWM driver to the LED.
		ATTACH	Output to indicate if the device is attached. The ATTACH pin is active low.
		POWER_SHARE2	Power sharing 2 input. The POWER_SHARE2 pin is active high. When this pin's voltage exceeds 1.87V, the PD power drops to the PS_PDP_THD setting.
9	SDA	I²C data line.	
10	SCL	I²C clock signal input.	
11	BST2	Bootstrap 2. Connect a 0.22 μ F capacitor between the SW2 and BST2 pins to form a floating supply across the high-side switch driver.	
12	SW2	Switch 2 output. Use a wide PCB trace to make the SW2 connection.	
13	EN	Enable control pin. Apply a logic high voltage on the EN pin to enable the IC. Pull EN to logic low to disable the IC. The EN pin has an internal 6 μ A pull-up.	
14	SW1	Switch 1 output. Use a wide PCB trace to make the SW1 connection.	
15	BST1	Bootstrap 1. Place a 0.22 μ F capacitor between the SW1 and BST1 pins to form a floating supply across the high-side switch driver.	
16	HS_G	High-side gate driver signal for an external N-channel MOSFET.	
17	AGND	Analog ground. Connect the AGND pin to PGND.	
18	VCC	Internal 5V LDO regulator output. Decouple the VCC pin with a 2.2 μ F capacitor.	
19	ICOMP	Compensation pin for the CC current limit loop. Decouple the ICOMP pin with a 470pF capacitor.	

PIN FUNCTIONS (*continued*)

Pin #	Name	Description										
20	GPIO1	GATE	Gate drive for the external low-side N-channel power MOSFET. The GATE pin is an open-drain structure. GATE pulls low to turn off the power MOSFET when the secondary current limit is triggered. If GATE is not selected, the GND short to V_{BATT} detection function is disabled.									
		POWER_SHARE1	Power sharing 1 input. The POWER_SHARE1 pin is active low. When this pin's voltage is low, the PD power drops to the value set by PS_PDP_THD.									
		FAULT	Fault indication. Open-drain output. If a fault occurs, the FAULT pin pulls low.									
		NTC2	Second NTC detection input. If the NTC2 pin is triggered, PDP reduces its power to the set power share value.									
		ATTACH_FLT_ALT	Attach and fault indicator. The ATTACH_FLT_ALT pin is an open-drain output. If no fault event has occurred, this pin pulls low for 12 μ s when a sink plug-in is detected. If a fault occurs, this pin pulls low. See the truth table below for more details.									
		IMON	Current monitor output. The IMON pin represents the signal between the ISENS+ and ISENS- pins.									
21	ISENS-	Negative node of current-sense signal input. Place a current-sense resistor between the PGND pin and the USB port's GND. Connect the ISENS- pin to the PGND side.										
22	ISENS+	Positive node of current-sense signal input. Place a current-sense resistor between the PGND pin and the USB port's GND. Connect the ISENS+ pin to the USB port's GND side.										

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾

Supply voltage (V_{IN})	-0.3V to +40V
V_{HS_G}	-0.3V to V_{IN} + 12V
V_{EN}	-0.3V to +40V
V_{OUT} , V_{CC1} , V_{CC2} , V_{DP} , V_{DM}	-0.3V to +24V
V_{SW1}	-0.3V (-5V for <10ns) to V_{IN} + 0.3V (+43V for <10ns)
V_{SW2}	-0.3V (-5V for <10ns) to V_{OUT} + 0.3V (29V for <10ns)
V_{BST1}	V_{SW1} + 6.5V
V_{BST2}	V_{SW2} + 6.5V
All other pins	-0.3V to +5.5V
Continuous power dissipation ($T_A = 25^\circ C$) ⁽²⁾	
QFN-22 (4mmx5mm)	4.55W
Junction temperature (T_J)	150°C
Lead temperature	260°C
Storage temperature	-65°C to +150°C

ESD Ratings ⁽³⁾

CC1/CC2/DP/DM (HBM) ⁽⁴⁾	$\pm 8kV$
Human body model (HBM)	$\pm 2kV$
Charged-device model (CDM)	$\pm 750V$

Recommended Operating Conditions ⁽⁵⁾

Supply voltage (V_{IN})	4.8V to 36V
Output voltage (V_{OUT})	3.3V to 22.5V
Output current.....	5A or 100W peak
Operating junction temp (T_J)	-40°C to +150°C

Thermal Resistance θ_{JA} θ_{JC}

EVQ4242B-VE-00A ⁽⁶⁾	27.5.....	5.2... °C/W
QFN-22 (4mmx5mm) ⁽⁷⁾	44.....	9... °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = $(T_J$ (MAX) - T_A) / θ_{JA} . Exceeding the maximum allowable power dissipation can cause excessive die temperature, and the device may go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) HBM, per JEDEC specification JESD22-A114; CDM, per JEDEC specification JESD22-C101, AEC specification AECQ100-011. JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.
- 4) HBM with regard to GND.
- 5) The device is not guaranteed to function outside of its operating conditions.
- 6) Measured on the MPQ4242B test board, 43mmx5mm, 4-layer PCB.
- 7) Measured on a JESD51-7, 4-layer PCB. The value of θ_{JA} given in this table is only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7 and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application.

ELECTRICAL CHARACTERISTICS

$V_{IN} = 12V$, $V_{EN} = \text{floating}$, $T_J = -40^\circ\text{C}$ to $+150^\circ\text{C}$, typical value is tested at $T_J = 25^\circ\text{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
Supply current (shutdown)	I_{IN}	$EN = 0V$, $T_J = 25^\circ\text{C}$		12	20	μA
		$EN = 0V$, $T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$		12	80	μA
Supply current (standby)	I_{Q_STB}	No device attached, set EN to 1b via the I^2C , $T_J = 25^\circ\text{C}$		150	200	μA
Supply current (quiescent)	I_{Q_BB}	Buck-boost non-switching, CC attached		4		mA
EN rising threshold	V_{EN_RISING}		-4%	1.3	+4%	V
EN hysteresis	V_{EN_HYS}			100		mV
EN pull-up current	I_{EN}	$V_{EN} = 2V$	3	6	9	μA
Thermal shutdown ⁽⁸⁾	T_{TSD}			175		$^\circ\text{C}$
Thermal hysteresis ⁽⁸⁾	T_{TSD_HYS}			20		$^\circ\text{C}$
V_{IN} under-voltage lockout (UVLO) threshold rising	$V_{IN_UVLO_RISING}$		-4%	4.3	+4%	V
V_{IN} UVLO threshold hysteresis	$V_{IN_UVLO_HYS}$			400		mV
VCC regulator	V_{CC}		4.75	5	5.25	V
VCC load regulation	V_{CC_REG}	$I_{CC} = 70\text{mA}$		3		%
VBUS_UV falling threshold 1	V_{BUS_UV1}		2.9	3	3.1	V
VBUS_UV falling threshold 2	V_{BUS_UV2}		-3%	4.5	+3%	V
Buck-Boost Converter						
Switch A (SWA) on resistance	$R_{DS_ON_A}$			16.3		$\text{m}\Omega$
Switch B (SWB) on resistance	$R_{DS_ON_B}$			41.5		$\text{m}\Omega$
Switch C (SWC) on resistance	$R_{DS_ON_C}$			15		$\text{m}\Omega$
Switch D (SWD) on resistance	$R_{DS_ON_D}$			15.3		$\text{m}\Omega$
VHS_G voltage	V_{HSG}		$V_{IN} + 10$			V
VHS_G source current ⁽⁸⁾	I_{HSG}			100		μA
VHS_G pull-down	R_{HS_DN}			3	6.5	Ω
Output voltage	V_{OUT0}		-3%	3.3	+3%	V
	V_{OUT1}		-2%	5	+2%	V
	V_{OUT2}		-1.5%	9	+1.5%	V
	V_{OUT3}		-1.5%	20	+1.5%	V
Output over-voltage protection (OVP)	V_{OVP}			114		%
OVP recovery hysteresis	V_{OVP_HYS}			10		%
Input OVP	V_{IN_OVP}	OTP trim option	21.4	22.4	23.4	V
Input OVP recovery hysteresis	V_{OVP_HYS}	OTP trim option		2		V
Switch leakage	$SWLKG$	$V_{EN} = 0V$, $V_{SW} = 36V$, $T_J = 25^\circ\text{C}$			1000	nA
		$V_{EN} = 0V$, $V_{SW} = 36V$, $T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$			80	μA

ELECTRICAL CHARACTERISTICS (continued)

$V_{IN} = 12V$, $V_{EN} = \text{floating}$, $T_J = -40^\circ\text{C}$ to $+150^\circ\text{C}$, typical value is tested at $T_J = 25^\circ\text{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
Line drop compensation	V_{LDC}	Set LINE_DROP_COMP to 01b via the I ² C, $V_{OUT} = 5V$, $I_{OUT} = 3A$ (only enabled when $V_{OUT} > 4.9V$)		150		mV
ISENS over-current (OC) threshold	I_{OC1}	OC threshold = 1A, $R_{SENS} = 10m\Omega$	9	10	11	mV
	I_{OC2}	OC threshold = 3A, $R_{SENS} = 10m\Omega$, $T_J = 25^\circ\text{C}$	29	30	31.5	mV
		OC threshold = 3A, $R_{SENS} = 10m\Omega$, $T_J = -40^\circ\text{C}$ to $+150^\circ\text{C}$	28.5	30	32.5	mV
SWA current limit	I_{LIMIT1}	Switch A, boost mode		20		A
SWB valley limit	I_{LIMIT2}	Switch B, buck mode		6.7		A
Oscillator frequency	f_{SW1}	Set FREQ to 00b via the I ² C	200	250	300	kHz
	f_{SW2}	Set FREQ to 01b via the I ² C	350	420	490	kHz
Frequency dithering span	f_{DITH_SPAN}	Set FREQ to 01b via the I ² C		± 11		%
Minimum on time ⁽⁸⁾	t_{ON_MIN}	Buck SWC		80		ns
Minimum off time ⁽⁸⁾	t_{OFF_MIN}	Buck SWB		60		ns
Soft-start time	t_{SS}	5V output from 10% to 90%, constant slew rate for other V_{OUT}	0.5	1.1	1.7	ms
Output discharge resistance	R_{DIS_OUT}			320		Ω
Mode Transition Threshold						
Buck to buck-boost transition threshold ⁽⁸⁾	V_{MODE_TH1}	V_{OUT} / V_{IN}		92		%
Boost to buck-boost transition threshold ⁽⁸⁾	V_{MODE_TH2}	V_{IN} / V_{OUT}		90		%
Ground N-Channel MOSFET Gate Driver						
GND short to battery threshold	V_{RGND}	$R_{SENS} = 10m\Omega$		135		mV
Short to battery retry delay ⁽⁸⁾	t_{SBP}			1		s
Gate pull-down resistance	R_{PD}			20	45	Ω
NTC, NTC2						
External thermal sense triggering voltage	V_{NTC_ETY}	$R_P = 43.2k\Omega$, $R_{NTC} = 4.79k\Omega$ (100°C)	8%	10%	12%	V_{CC}
External thermal sense recovery voltage 1	V_{NTC_RCY1}	Set NTC_HYSTESIS to 0b via the I ² C		20%		V_{CC}
External thermal sense recovery voltage 2	V_{NTC_RCY2}	Set NTC_HYSTESIS to 1b via the I ² C		30%		V_{CC}
GPIO1						
Power share input high	V_{IH_PS}		2			V
Power share input low	V_{IL_PS}				0.8	V
Power share pull-up resistance	I_{LKG_PS}	5V pull-up		1		$M\Omega$
Fault pull-down resistance	R_{PD_FAULT}			20	45	Ω
Fault leakage	I_{LKG_FAULT}				3	μA

ELECTRICAL CHARACTERISTICS (continued)

$V_{IN} = 12V$, $V_{EN} = \text{floating}$, $T_J = -40^\circ\text{C}$ to $+150^\circ\text{C}$, typical value is tested at $T_J = 25^\circ\text{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units	
GPIO2							
POL pull-down resistance	R_{PD_POL}	Connect CC1 to GND with a 5.1kΩ resistor			45	Ω	
POL leakage	I_{LKG_POL}	Connect CC2 to GND with a 5.1kΩ resistor			3	μA	
LED PWM output FREQ	f_{LED}		21	24	27	kHz	
LED_PWM output duty	D_{LED}			50		%	
Connected output	V_{ATTO}	USB Type-C connected, force 50μA			0.4	V	
Power share input threshold	V_{TH_PS}		1.52	1.87	2.22	V	
USB Charging Mode Identification							
BC1.2 DCP Mode							
DP and DM short resistance	$R_{DP_DM_SHORT}$	$V_{DP} = 0.8V$, $I_{DM} = 1mA$			30	70	Ω
Divider Mode							
DP output voltage	$V_{DIVIDER_DP}$	$V_{OUT} = 5V$	2.5	2.7	2.9	V	
DM output voltage	$V_{DIVIDER_DM}$	$V_{OUT} = 5V$	3.05	3.3	3.55	V	
DP output impedance	$R_{DIVIDER_DP}$			23		kΩ	
DM output impedance	$R_{DIVIDER_DM}$			17		kΩ	
1.2V/1.2V Mode							
DP/DM output voltage	$V_{DP_DM_1.2V}$	$V_{OUT} = 5V$	1.15	1.25	1.35	V	
DP/DM output impedance	$R_{DP_DM_1.2V}$			75		kΩ	
Quick Charge 3.0 Mode							
DP/DM low voltage	V_{QC_LOW}		0.2	0.3	0.4	V	
DP/DM high voltage	V_{QC_HIGH}		1.8	2	2.2	V	
QC mode entry voltage glitch time (QC identify) ⁽⁸⁾	t_{QC_GLITCH}			1000		ms	
DP output impedance	R_{DP_QC}			350		kΩ	
DM output impedance	R_{DM_QC}			20		kΩ	
Request voltage time ⁽⁸⁾	$t_{V_NEW_REQUEST}$		200			ms	
Output voltage change glitch time ⁽⁸⁾	$t_{GLITCH_V_CHANGE}$		20		60	ms	
Unplug V_{BUS} discharge time ⁽⁸⁾	$t_{VBUS_DISC_QC}$				500	ms	
Charging Downstream Port (CDP) Mode							
DM CDP output voltage	V_{DM_SRC}	$V_{DP} = 0.6V$, DM sink = 250μA	0.5	0.6	0.7	V	
DP rising lower window threshold for V_{DM_SRC} EN	V_{DAT_REF}		0.25	0.35	0.45	V	
DP rising lower window threshold hysteresis	$V_{DAT_REF_HYS}$			30		mV	
DP rising upper window threshold for V_{DM_SRC}	V_{LGC_SRC}		0.8	0.9	1	V	
DP rising upper window threshold hysteresis	$V_{LGC_SRC_HYS}$			50		mV	

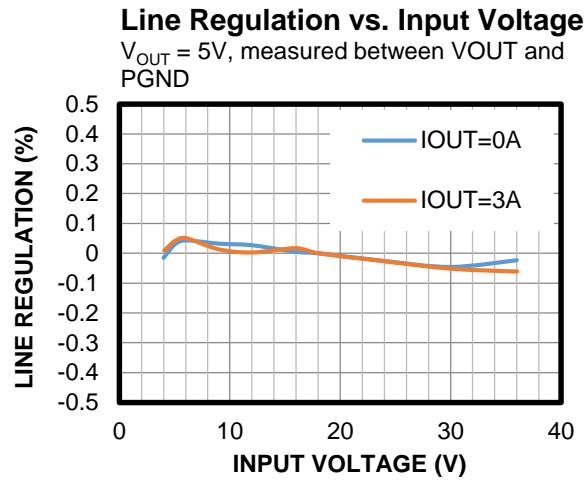
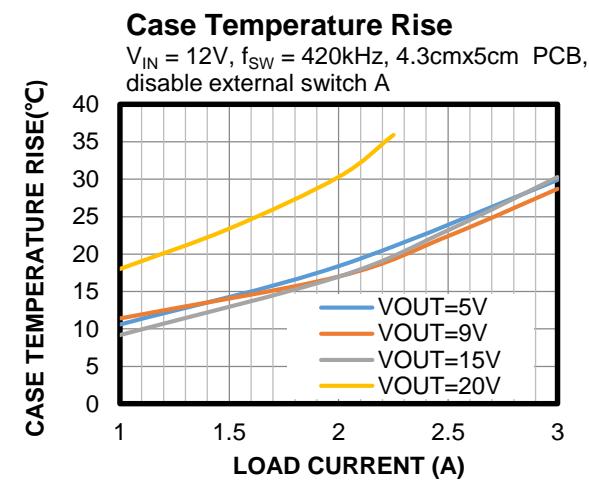
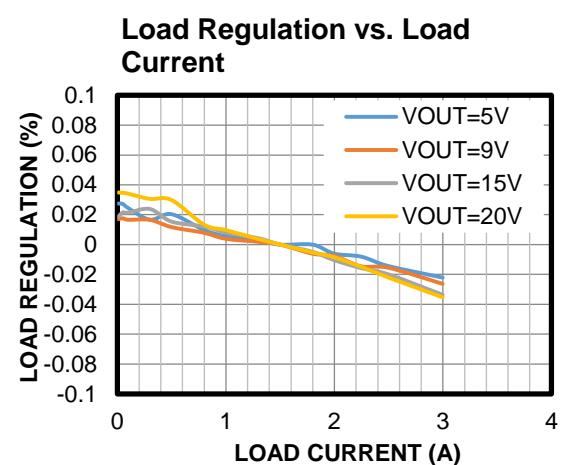
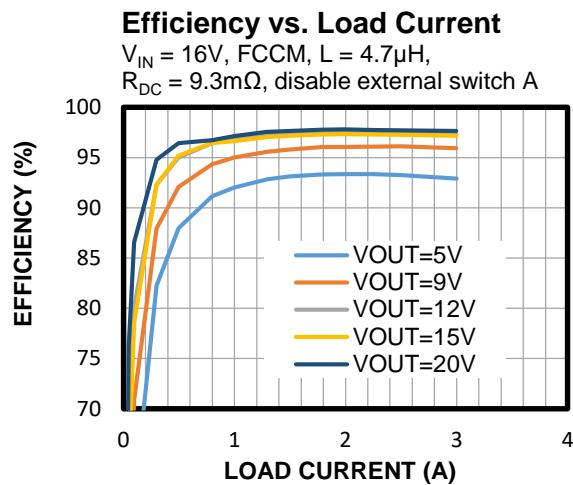
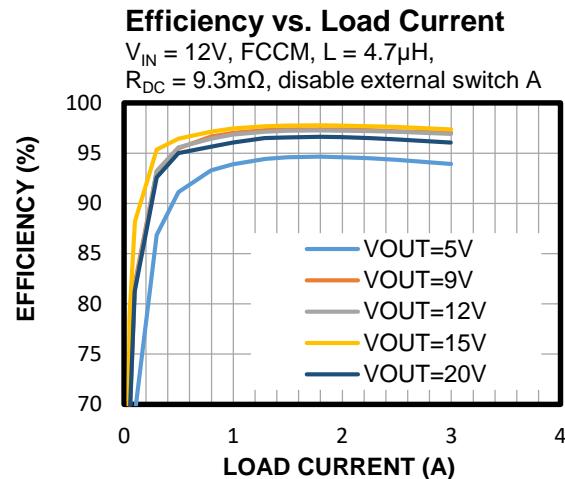
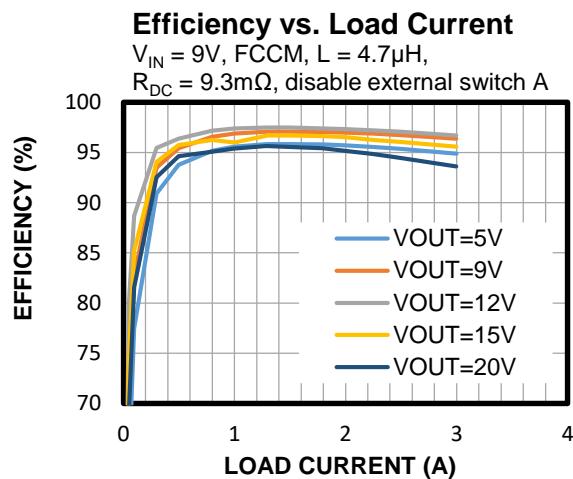
ELECTRICAL CHARACTERISTICS (continued)

$V_{IN} = 12V$, $V_{EN} = \text{floating}$, $T_J = -40^\circ\text{C}$ to $+150^\circ\text{C}$, typical value is tested at $T_J = 25^\circ\text{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
FCP Mode						
DM Tx high voltage ⁽⁸⁾	V_{FCPT_H}	$R_{LOAD} = 15\text{k}\Omega$	2.55		5	V
DM Tx low voltage ⁽⁸⁾	V_{FCPT_L}	$R_{LOAD} = 15\text{k}\Omega$			0.4	V
DM Rx high voltage	V_{FCPR_H}		1.5		5	V
DM Rx low voltage	V_{FCPR_L}				1	V
DM pull-low resistance	R_{LD_D-}			15		$\text{k}\Omega$
Unit interval of PHY ⁽⁸⁾	UI		144	160	176	μs
USB Type-C (CC1 and CC2 Pins)						
CC pull-up current 1 ⁽⁸⁾	I_{RP1}	$V_{BUS} = 5\text{V} @ 3\text{A}$, $T_J = 0^\circ\text{C}$ to 85°C	-8%	330	+8%	μA
CC pull-up current 2 ⁽⁸⁾	I_{RP2}	$V_{BUS} = 5\text{V} @ 1.5\text{A}$, $T_J = 0^\circ\text{C}$ to 85°C	-8%	180	+8%	μA
CC voltage to enable VCONN for 3A USB Type-C mode	V_{RA1}				0.75	V
CC voltage to enable VBUS for 3A USB Type-C mode	V_{RD1}		0.85		2.45	V
CC disconnect threshold for 3A USB Type-C mode	V_{OPEN1}		2.75			V
CC voltage to enable VCONN for 1.5A USB Type-C mode	V_{RA2}				0.35	V
CC voltage to enable VBUS for 1.5A USB Type-C mode	V_{RD2}		0.45		1.5	V
CC disconnect threshold for 1.5A USB Type-C mode	V_{OPEN2}		1.7			V
CC voltage falling de-bounce timer	$t_{CC_DEBOUNCE}$	VBUS enable deglitch	100	150	200	ms
CC voltage rising de-bounce timer	$t_{PD_DEBOUNCE}$	VBUS disable deglitch	5	10	15	ms
100mW VCONN output power	$P_{VCONN_100\text{mW}}$	Default	100			mW
1W VCONN output power	$P_{VCONN_1\text{W}}$	Set GPIO2 to 011b via the I ² C	1			W
USB PD						
Unit interval time ⁽⁸⁾	t_{UI}		3.03		3.7	μs
Transmitter						
End drive BMC time ⁽⁸⁾	t_{EDBMC}				23	μs
Falling time ⁽⁸⁾	t_{FALL}		300	400		ns
Rising time ⁽⁸⁾	t_{RISE}		300	400		ns
Hold low BMC time ⁽⁸⁾	t_{HLBMC}		1			μs
Logic high voltage	V_{LH}		1.05		1.2	V
Logic low voltage	V_{LL}				70	mV
Output impedance	Z_{TX}			45		Ω
Receiver ⁽⁸⁾						
CC receiver capacitance	$C_{RECEIVER}$				600	pF
Transitions for signal detection	$N_{TRANSITION}$		3			Edges

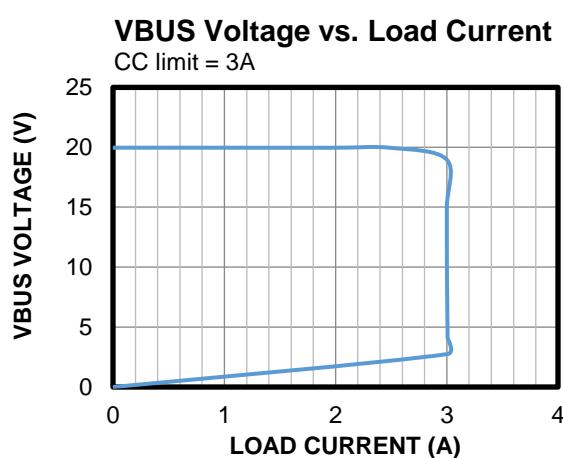
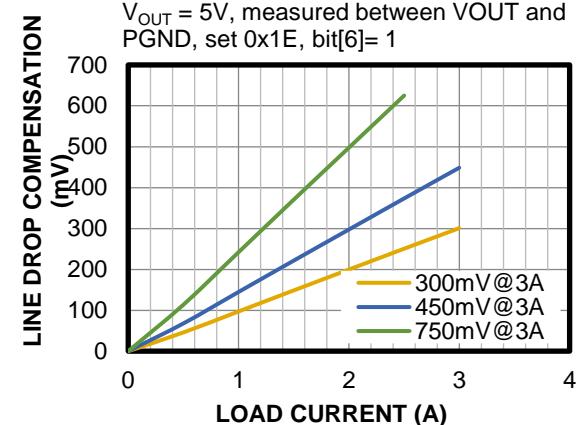
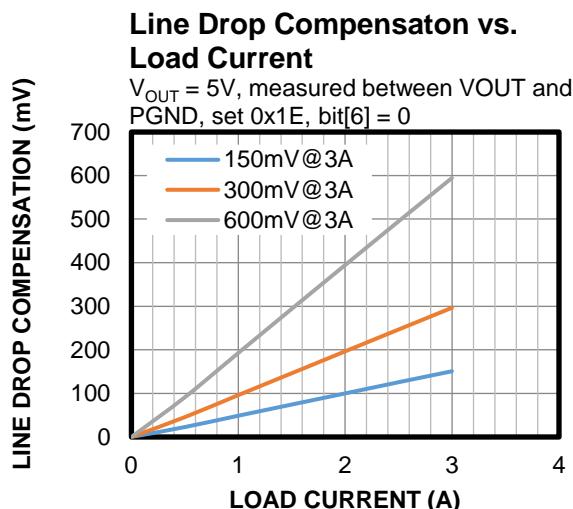
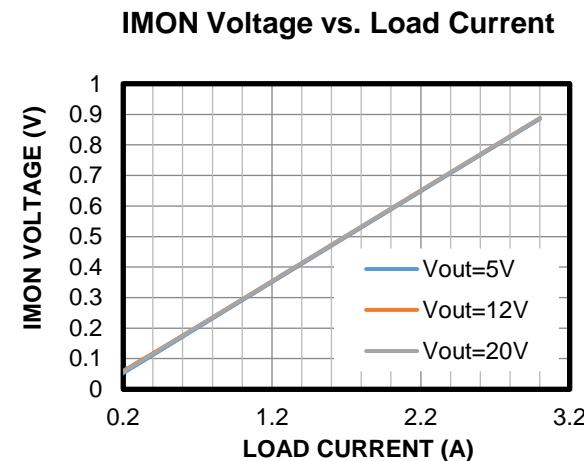
ELECTRICAL CHARACTERISTICS (continued)

$V_{IN} = 12V$, $V_{EN} = \text{floating}$, $T_J = -40^{\circ}\text{C}$ to $+150^{\circ}\text{C}$, typical value is tested at $T_J = 25^{\circ}\text{C}$, unless otherwise noted.







Parameter	Symbol	Condition	Min	Typ	Max	Units
Rx bandwidth limiting filter	t_{RX_FILTER}		100			ns
Time window for detecting non-idle	$t_{TRANSITION_WINDOW}$		12		20	μs
Receiver input impedance	Z_{BMC_RX}		1			$\text{M}\Omega$
I²C Interface Specifications ⁽⁸⁾						
Input logic high	V_{IH}	I ² C pull-up VDD can be 1.8V to 5V	1.26			V
Input logic low	V_{IL}				0.54	V
Output voltage logic low	V_{OUT_L}				0.45	V
SCL clock frequency	f_{SCL}			400		kHz
SCL high time	t_{HIGH}		60			ns
SCL low time	t_{LOW}		160			ns
Data set-up time	t_{SU_DAT}		10			ns
Data hold time	t_{HD_DAT}			70		ns
Set-up time for repeated start command	t_{SU_STA}		160			ns
Hold time for repeated start command	t_{HD_STA}		160			ns
Bus free time between a start and a stop command	t_{BUF}		160			ns
Set-up time for stop command	t_{SU_STO}		160			ns
Rising time of SCL and SDA	t_R		10		300	ns
Falling time of SCL and SDA	t_F		10		300	ns
Pulse width of suppressed spike	t_{SP}		0		50	ns
Capacitance bus for each bus line	C_B				400	pF
SCL low time	t_{LOW}		160			ns

Note:

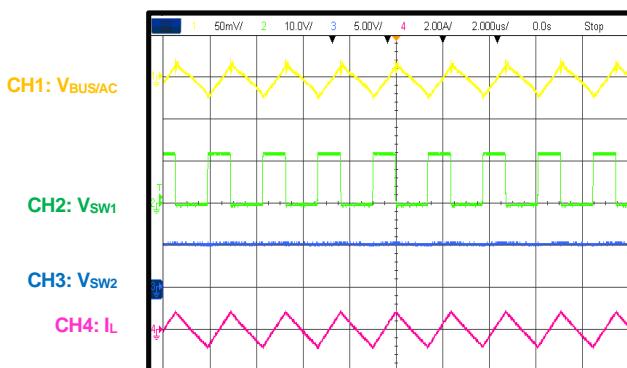
8) Guaranteed by characterization sample test.





TYPICAL CHARACTERISTICS

$V_{IN} = 12V$, $V_{OUT} = 5V$, $L = 4.7\mu H$, $T_A = 25^\circ C$, unless otherwise noted.

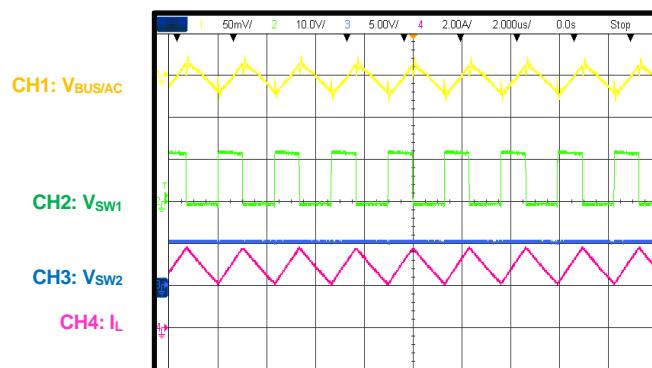
TYPICAL CHARACTERISTICS (continued)

$V_{IN} = 12V$, $V_{OUT} = 5V$, $L = 4.7\mu H$, $T_A = 25^\circ C$, unless otherwise noted.

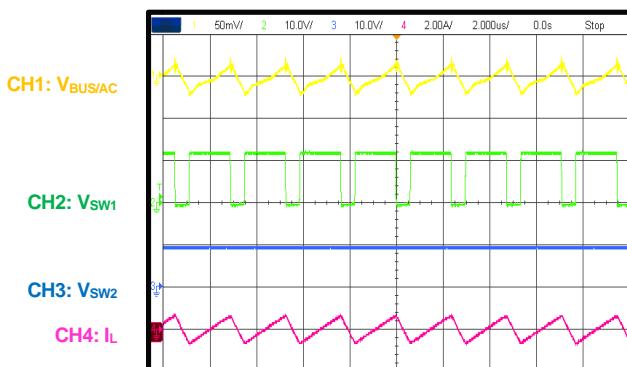


TYPICAL PERFORMANCE CHARACTERISTICS

$V_{IN} = 12V$, $V_{OUT} = 5V$, $L = 4.7\mu H$, $T_A = 25^\circ C$, unless otherwise noted.


Output Voltage Ripple

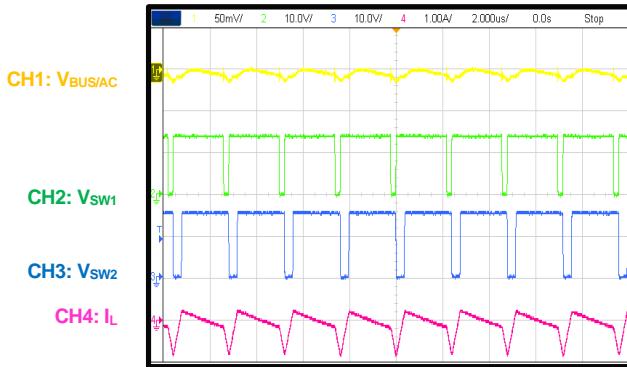
$V_{BUS} = 5V$, load = 0A


Output Voltage Ripple

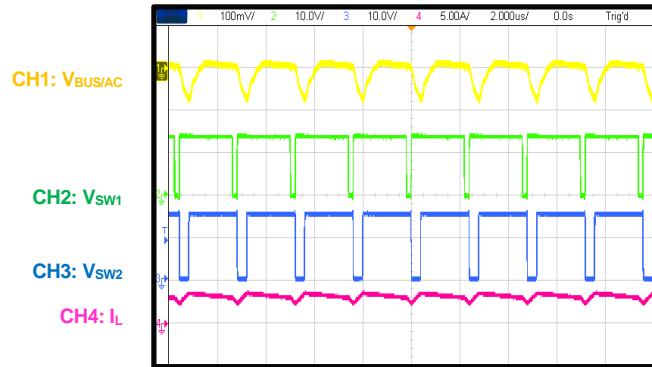
$V_{BUS} = 5V$, load = 3A


Output Voltage Ripple

$V_{BUS} = 9V$, load = 0A


Output Voltage Ripple

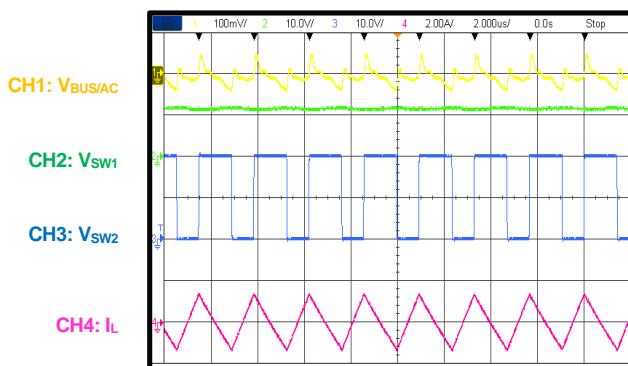
$V_{BUS} = 9V$, load = 3A


Output Voltage Ripple

$V_{IN} = 14V$, $V_{BUS} = 15V$, load = 0A

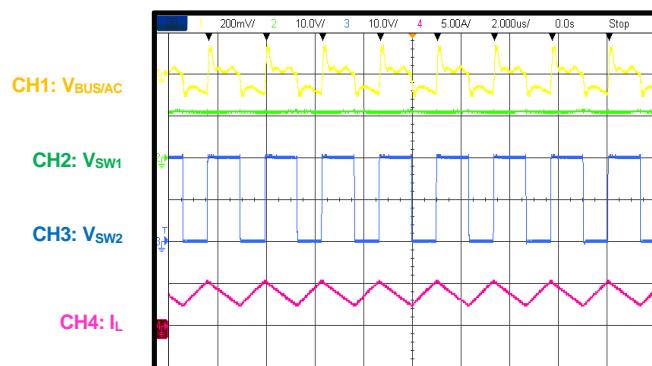
Output Voltage Ripple

$V_{IN} = 14V$, $V_{BUS} = 15V$, load = 3A



TYPICAL PERFORMANCE CHARACTERISTICS (continued)

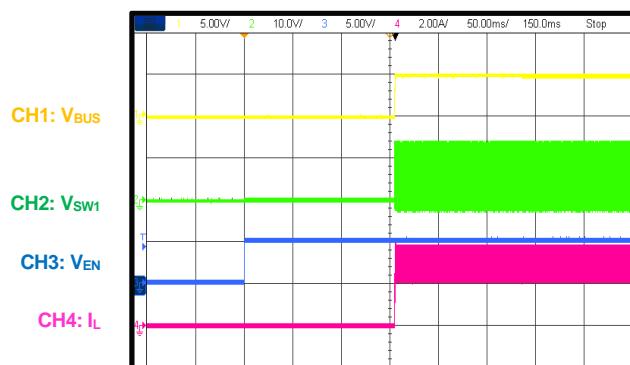
$V_{IN} = 12V$, $V_{OUT} = 5V$, $L = 4.7\mu H$, $T_A = 25^\circ C$, unless otherwise noted.


Output Voltage Ripple

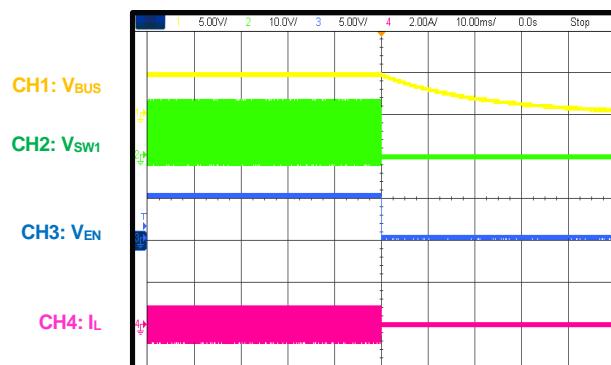
$V_{BUS} = 20V$, load = 0A

Output Voltage Ripple

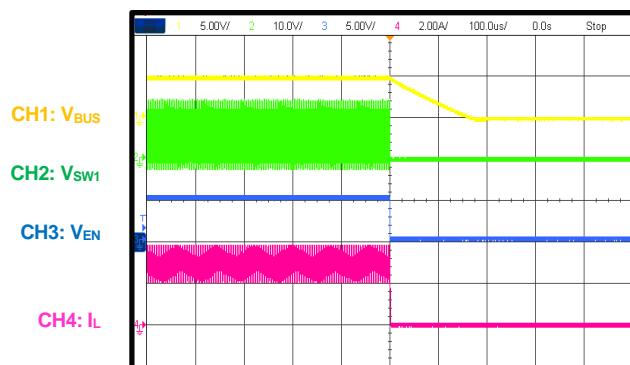
$V_{BUS} = 20V$, load = 2.25A


EN Pin Enabled

CC1 connected to a $5.1k\Omega$ R_D resistor,
load = 0A


EN Pin Enabled

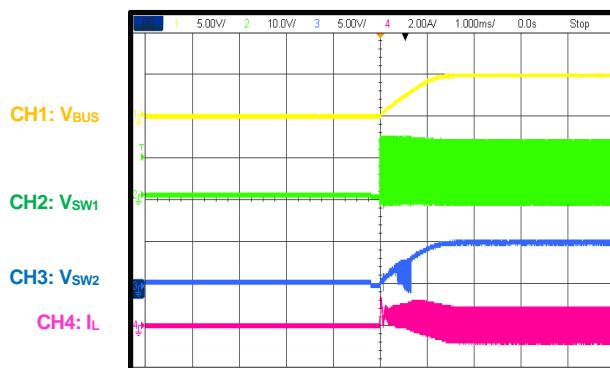
CC1 connected to a $5.1k\Omega$ R_D resistor,
load = 3A


EN Pin Disabled

CC1 connected to a $5.1k\Omega$ R_D resistor,
load = 0A

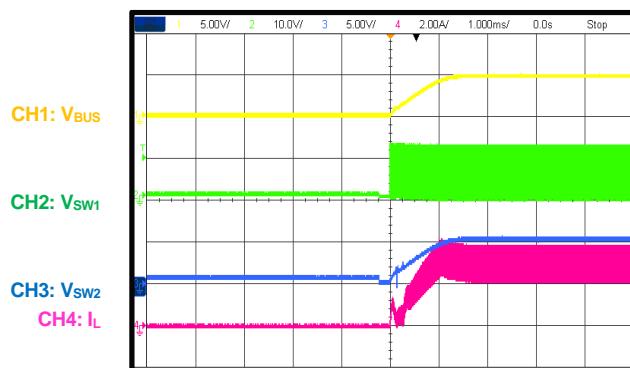
EN Pin Disabled

CC1 connected to a $5.1k\Omega$ R_D resistor,
load = 3A

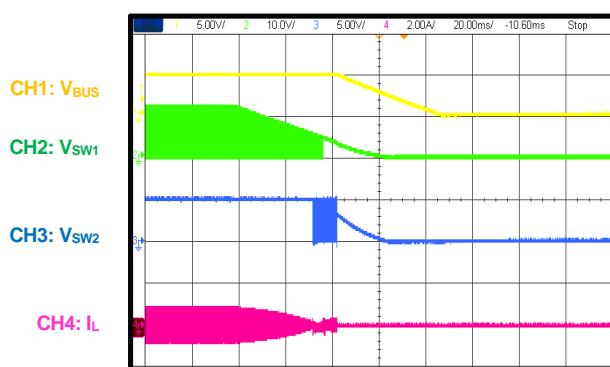


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

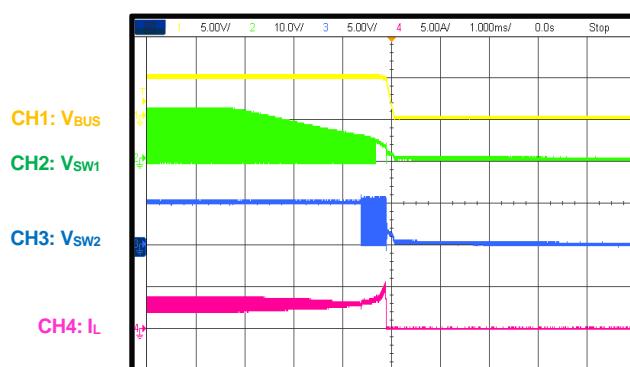
$V_{IN} = 12V$, $V_{OUT} = 5V$, $L = 4.7\mu H$, $T_A = 25^\circ C$, unless otherwise noted.


Input Start-Up

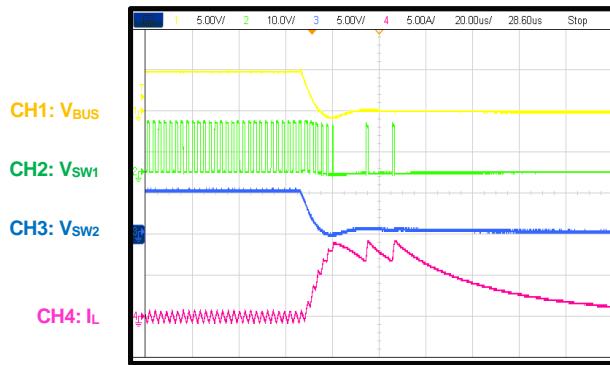
Load = 0A, CC1 connected to a $5.1k\Omega R_D$ resistor


Input Start-Up

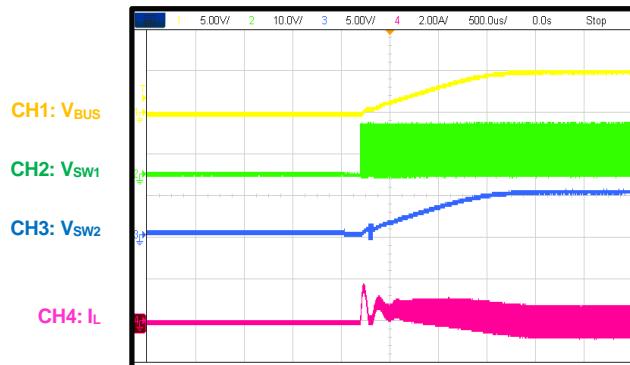
Load = 3A, CC1 connected to a $5.1k\Omega R_D$ resistor


Input Shutdown

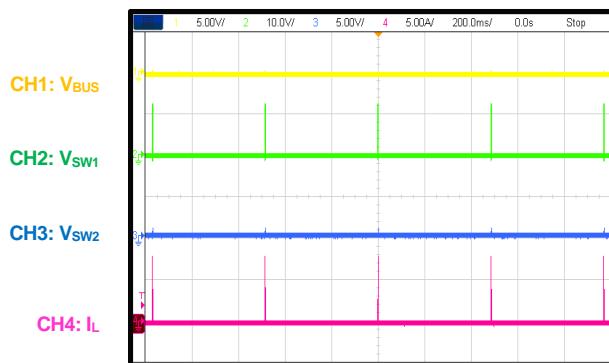
Load = 10mA



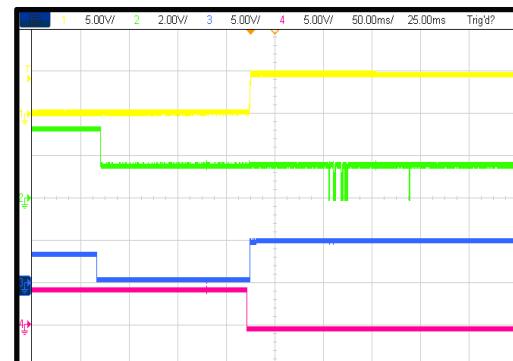
Input Shutdown


Load = 3A

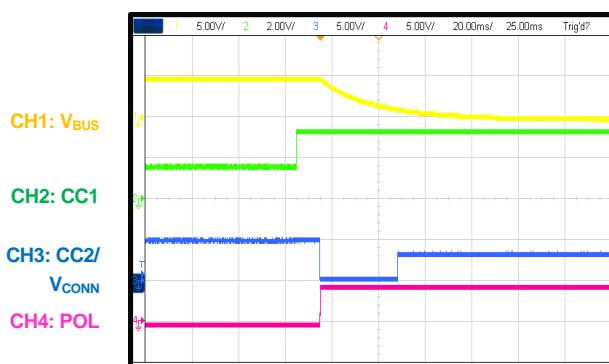
SCP Entry


SCP Recovery

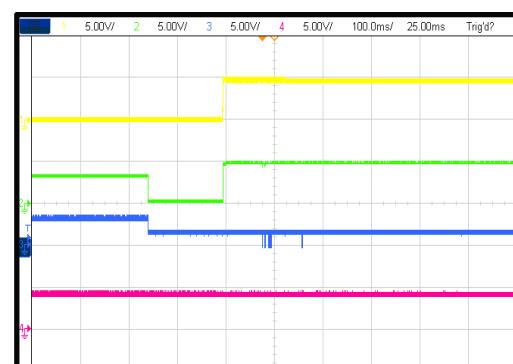
TYPICAL PERFORMANCE CHARACTERISTICS (continued)


$V_{IN} = 12V$, $V_{OUT} = 5V$, $L = 4.7\mu H$, $T_A = 25^\circ C$, unless otherwise noted.

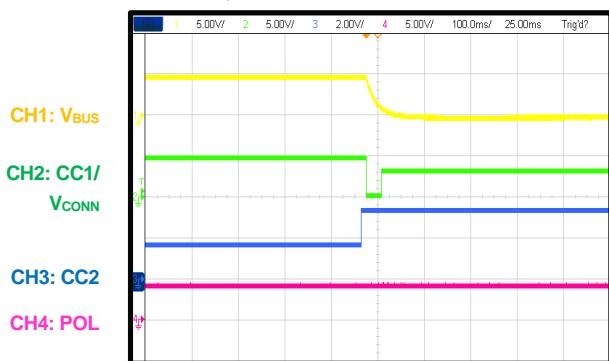
SCP Steady State


CC1 Connected to R_D to Enable VBUS

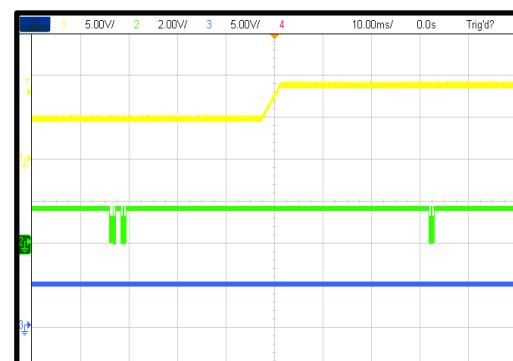
$I_{OUT} = 0A$, CC2 connected to a $1k\Omega$ R_A resistor


CC1 Disconnected from R_D to Disable VBUS

$I_{OUT} = 0A$, CC2 connected to a $1k\Omega$ R_A resistor


CC2 Connected to R_D to Enable VBUS

$I_{OUT} = 0A$, CC1 connected to a $1k\Omega$ R_A resistor

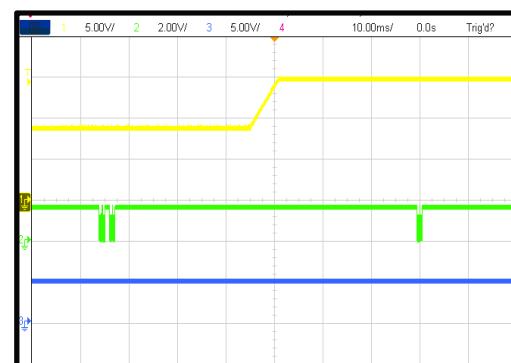

CC2 Disconnected from R_D to Disable VBUS

$I_{OUT} = 0A$, CC1 connected to $1k\Omega$ R_A resistor

PDO Transition

5V PDO to 9V PDO

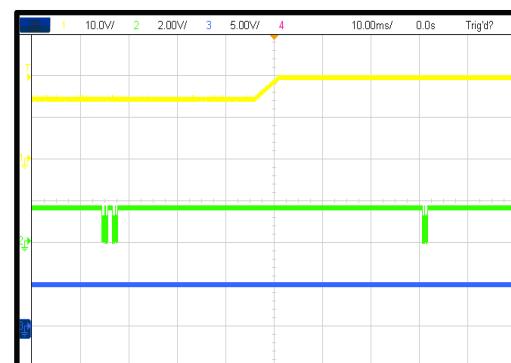
TYPICAL PERFORMANCE CHARACTERISTICS (continued)


$V_{IN} = 12V$, $V_{OUT} = 5V$, $L = 4.7\mu H$, $T_A = 25^\circ C$, unless otherwise noted.

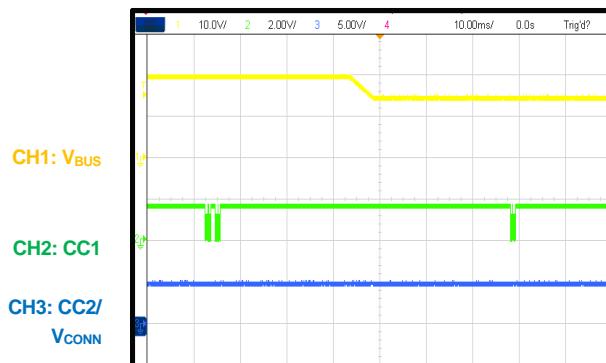
PDO Transition

9V PDO to 5V PDO

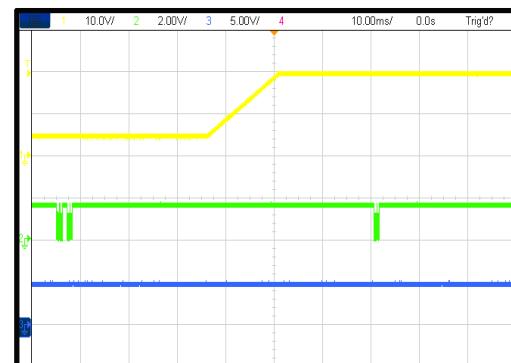
PDO Transition


9V PDO to 15V PDO

PDO Transition


15V PDO to 9V PDO

PDO Transition

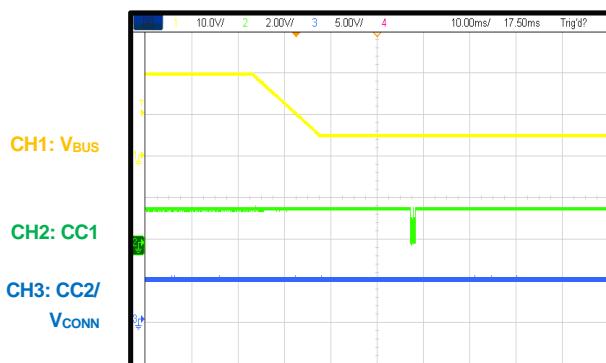

15V PDO to 20V PDO

PDO Transition

20V PDO to 15V PDO

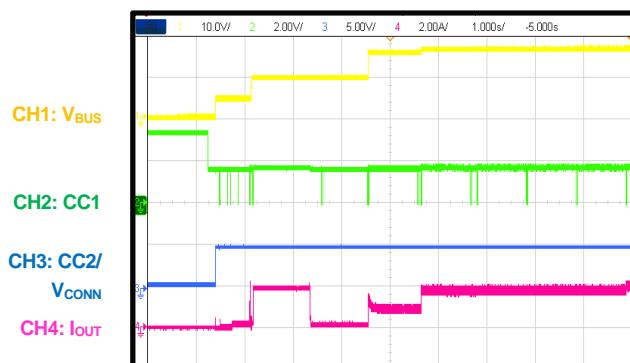
PDO Transition

5V PDO to 20V PDO

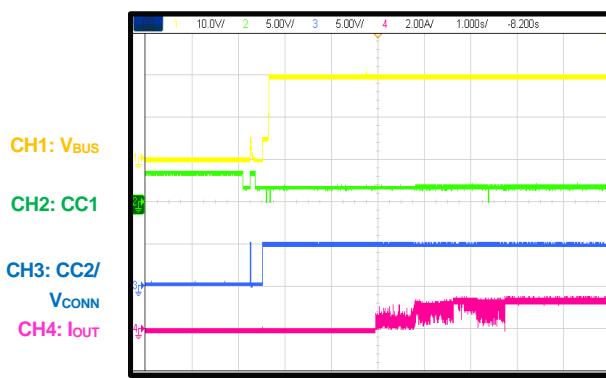


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

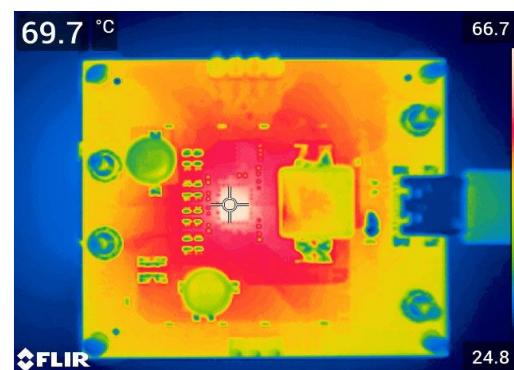
$V_{IN} = 12V$, $V_{OUT} = 5V$, $L = 4.7\mu H$, $T_A = 25^\circ C$, unless otherwise noted.

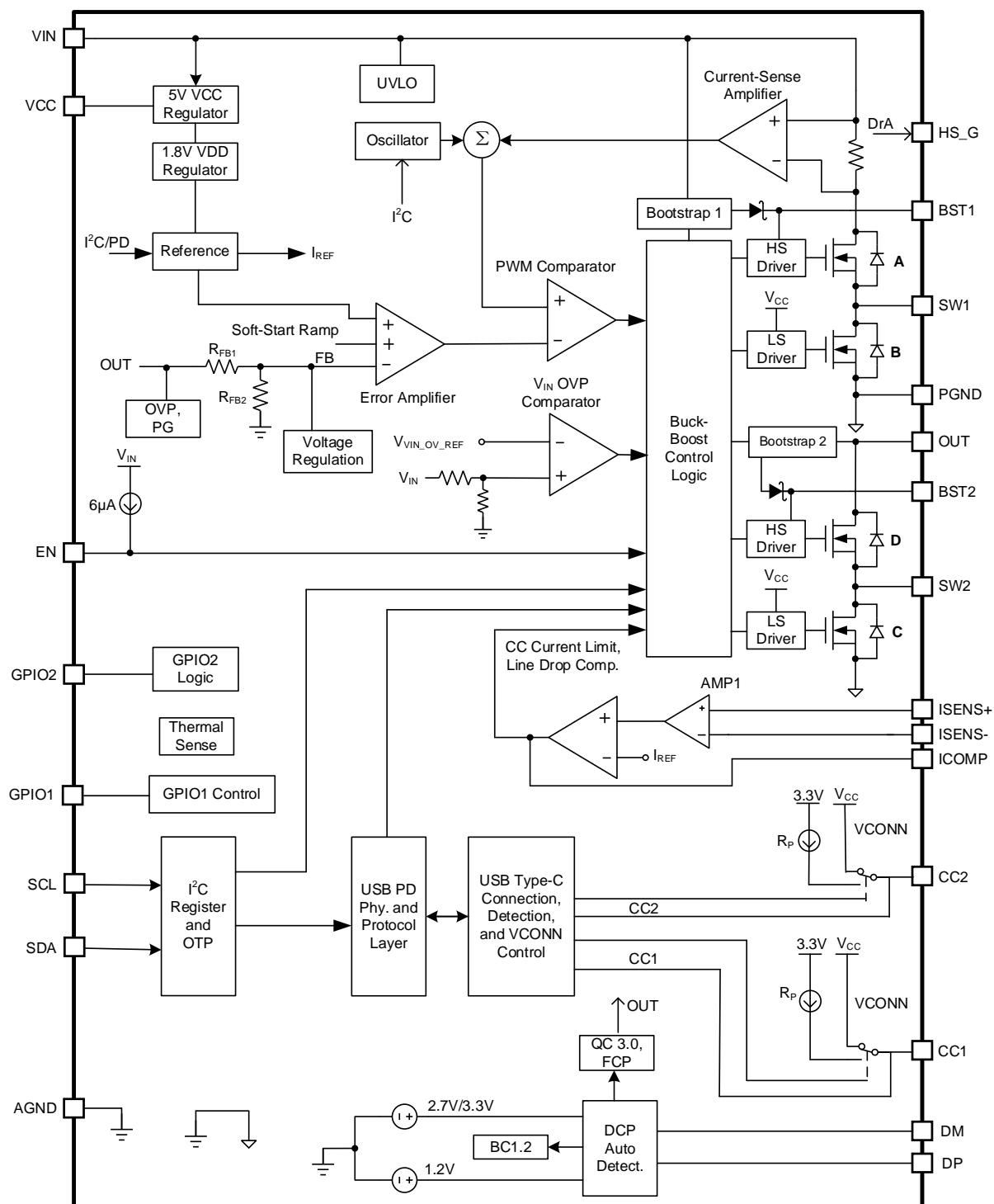

PDO Transition

20V PDO to 5V PDO


Mobile Phone Charging Test

Phone requests 3.3V to 21V APDO


Laptop Charging Test


Laptop requests 20V PDO

Thermal Image

$V_{IN} = 13.5V$, $V_{OUT} = 20V$, $I_{OUT} = 3A$,
 $f_{sw} = 420kHz$, 4.3cmx5cm PCB,
top/bottom layer: 2oz; mid-layer 1 and 2: 1oz,
enable external switch A

FUNCTIONAL BLOCK DIAGRAM

Figure 2: Functional Block Diagram

OPERATION

The MPQ4242B is a buck-boost converter with four integrated switches and USB charging protocols. The buck-boost converter works in current mode, which provides a fast transient response for buck, boost, and buck-boost modes. One special buck-boost control strategy provides high efficiency across the full input range and smooths transitions between different modes. Figure 2 on page 21 shows the internal block diagram.

Pulse-Width Modulation (PWM) Operation

The MPQ4242B operates in a fixed-frequency peak current mode control to regulate the output voltage (V_{OUT}). The internal clock initiates the pulse-width modulation (PWM) cycle and turns on the related power switch. The switch remains on until its current reaches the value set by the COMP voltage (V_{COMP}). When the power switch is off, it remains off until the next clock cycle starts. The switching frequency (f_{sw}) can be configured to 250kHz or 420kHz via the I²C.

Buck-Boost Operation

The MPQ4242B can regulate V_{OUT} to be above, below, or equal to the input voltage (V_{IN}). Figure 3 shows a buck-boost power structure with one inductor and four switches (SWA, SWB, SWC, and SWD).

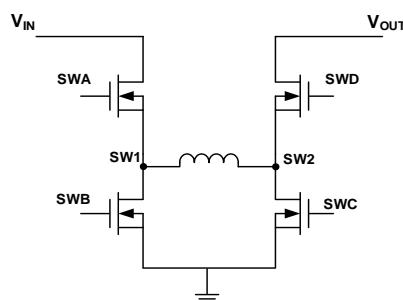


Figure 3: Buck-Boost Topology

Buck mode, boost mode, and buck-boost mode can have different V_{IN} inputs (see Figure 4).

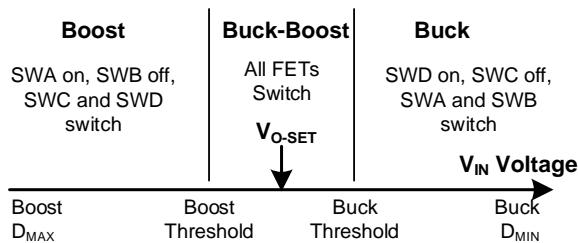


Figure 4: Buck-Boost Operation Range

Buck Mode ($V_{IN} > V_{OUT}$)

When V_{IN} exceeds V_{OUT} , the MPQ4242B works in buck mode. In buck mode, switch A (SWA) and switch B (SWB) switch for buck regulation. Meanwhile, switch C (SWC) is off, and switch D (SWD) stays on to conduct the inductor current (I_L).

SWA works with a peak current mode control logic, and SWB turns on until t_{CLK} times out. In each buck mode cycle, SWA turns on to charge I_L . When I_L reaches the value set by V_{COMP} , SWA turns off and SWB turns on. SWB stays on until the next clock begins. Then SWA turns on and the cycle repeats. The COMP signal is the error amplifier (EA) output from the V_{OUT} feedback and the internal FB reference voltage. Figure 5 shows the buck mode waveform.

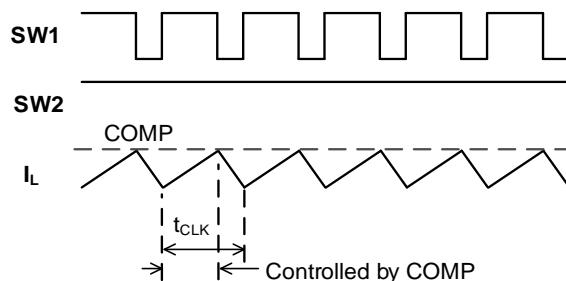


Figure 5: Buck Mode Waveform

Boost Mode ($V_{IN} < V_{OUT}$)

When V_{IN} is below V_{OUT} , the MPQ4242B works in boost mode. In boost mode, SWC and SWD switch for boost regulation. Meanwhile, SWB is off and SWA stays on to conduct I_L .

SWC turns on at the beginning of each clock cycle. SWC turns off when I_L reaches the value set by V_{COMP} . SWD turns on until t_{CLK} times out to boost I_L to the output. Figure 6 shows the boost work waveform.

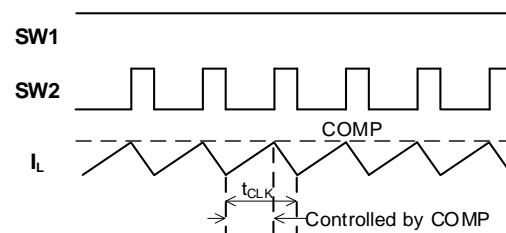


Figure 6: Boost Waveform

Buck-Boost Mode ($V_{IN} \approx V_{OUT}$)

When V_{IN} is almost equal to V_{OUT} , the converter cannot provide enough energy to the load in buck mode due to SWA's minimum off time. In boost mode, the converter supplies too much power to the load due to SWC's minimum on time. Under these conditions, the MPQ4242B adopts buck-boost control to regulate the output (see Figure 7).

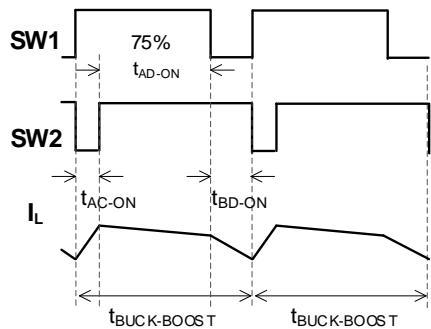


Figure 7: Buck-Boost Waveform

If V_{IN} is almost equal to V_{OUT} , buck-boost mode activates. The MOSFET turn-on sequence is as follows:

1. SWA and SWC
2. SWA and SWD
3. SWB and SWD

Throughout this process, I_L can reach the V_{COMP} requirement, and supply enough current to the output.

The SWA and SWD turn-on time is fixed to 75% of the buck-boost operation frequency.

If the buck mode minimum off time is almost reached, the IC enters buck-boost mode. If V_{IN} exceeds V_{OUT} by about 10% in buck-boost mode, the IC changes to buck mode. If V_{IN} is about 10% below V_{OUT} , the IC enters boost mode. If the boost mode minimum on time is almost reached, the IC enters buck-boost mode.

External High-Side MOSFET Gate Driver

An external N-channel MOSFET can be added to improve system efficiency, especially for PD applications exceeding 45W. For applications below 45W, an external MOSFET is not required, and `EXT_HS_FET_RON` should be set to 000b.

The external MOSFET is paralleled with the internal SWA. To accurately sense the input current, a $5\text{m}\Omega$ to $12\text{m}\Omega$ $R_{DS(ON)}$ MOSFET is

recommended. The `EXT_HS_FET_RON` configuration value should match (or be close to) the MOSFET's real $R_{DS(ON)}$ under a 10V_{GS} condition. The external MOSFET only turns on in boost mode when V_{IN} is significantly below V_{OUT} .

5V Internal VCC Regulator

The 5V internal regulator powers the CC pin's pull-up, VCONN, and most of the internal logic circuitries. The regulator takes the V_{IN} input and operates across the full V_{IN} range. When V_{IN} exceeds 5V, the regulator's output is in full regulation. If V_{IN} is below 5V, the output decreases with V_{IN} .

The VCC pin can support 0.1W of output power (P_{OUT}). The VCC pin requires a $2.2\mu\text{F}$ ceramic decoupling capacitor.

Under-Voltage Lockout (UVLO)

Under-voltage lockout (UVLO) protects the chip from operating at an insufficient supply voltage. The MPQ4242B's UVLO comparator monitors V_{IN} .

Internal Soft Start

Soft start prevents the converter's V_{OUT} from overshooting during start-up. When the chip starts, the internal circuitry generates a soft-start voltage (V_{SS}) that ramps up from 0V to 5V. When V_{SS} is below the reference voltage (V_{REF}), the error amplifier uses V_{SS} as the reference. When V_{SS} exceeds V_{REF} , the error amplifier uses V_{REF} as the reference. The SS time is internally set to 1ms for a 5V V_{OUT} .

If the output of the MPQ4242B is pre-biased to a certain voltage during start-up, the IC disables the switching of both the high-side and low-side switches until the voltage on the internal soft-start capacitor exceeds the internal feedback voltage.

Constant Current (CC) Mode Over-Current-Protection (OCP)

The MPQ4242B senses the ground current via an external current-sense resistor. The device uses this information to limit the output current (I_{OUT}). This is a highly accurate current limit. If I_{OUT} exceeds the current-limit threshold, the MPQ4242B enters constant current (CC) limit mode, and the current amplitude is limited.

If the MPQ4242B works in fixed power data object (PDO) mode, it sends a hard reset message once I_{OUT} exceeds the constant current limit. If the MPQ4242B works in augmented power data object (APDO) mode and continues to reduce the load resistance, then V_{OUT} drops until it reaches its under-voltage (UV) threshold (about 3V). If a UV condition is triggered, the MPQ4242B sends a hard reset message. If I_{OUT} still exceeds the over-current protection (OCP) threshold, the MPQ4242B enters hiccup mode to periodically restart the part.

This protection is especially useful when the output is dead-shorted to ground. This operation greatly reduces the average short-circuit current, alleviates thermal issues, and protects the regulator. The MPQ4242B exits hiccup mode once the OC condition is removed.

The current limit threshold can be set from 1A to 6.35A (with a 50mA resolution) via the I²C.

Peak and Valley Current Limit

In addition to the output CC limit, the MPQ4242B also has SWA peak current and SWB valley current limits.

In buck mode and buck-boost mode, both the SWA peak current limit and the SWB valley current limit work as thresholds. The SWB's valley current limit has a 6.7A falling threshold. In boost mode, only the SWA peak current limit threshold operates. The peak current limit can be configured via the I²C or one-time-programmable (OTP) memory.

Output Over-Voltage Protection (OVP)

The MPQ4242B has output over-voltage protection (OVP). If V_{OUT} exceeds 117% of V_{REF} , SWA, SWB, SWC, and SWD turn off. The resistor discharge path from the OUT pin to ground turns on. When V_{OUT} drops to 107% of V_{REF} , the chip returns to normal operation.

The absolute output OVP threshold is about 25V. The discharge resistor turns on when absolute OVP is triggered.

Input Over-Voltage Protection (V_{IN} OVP)

The MPQ4242B has input OVP. If V_{IN} exceeds its OVP rising threshold (about 22V), SWA, SWB, SWC, and SWD turn off. The chip returns to normal operation when V_{IN} drops to its OVP falling threshold (about 20V).

V_{IN} OVP is disabled by default, and it is controlled by OTP trimming.

Floating Driver and Bootstrap Charging

An external bootstrap capacitor powers the floating power MOSFET driver. This floating driver has its own UVLO protection. The UVLO rising threshold is 2.2V, with a hysteresis of 150mV. The BST1 capacitor's voltage is regulated internally by VCC through D2, M1, and C4. The BST2 capacitor's voltage is regulated internally by VCC through D3, M2, and C5 (see Figure 8).



Figure 8: Internal Bootstrap Charging Circuit

In buck mode, S2 is always on, and BST2 is charged by BST1. In boost mode, S1 is always on, and BST1 is charged by BST2.

Output Line Drop Compensation

The MPQ4242B is capable of compensating for a V_{OUT} drop.

If I_{OUT} is 0A, there is no compensation. If I_{OUT} is 3A, the line drop compensation voltage is 150mV. For example, if the USB output current exceeds 3A, the line drop compensation voltage stays at 150mV and does not rise. The line drop compensation value can be set to 150mV, 300mV, or 600mV via 0x18, bits[2:1]. Set 0x1E, bit[6] = 1 to enable an additional compensation voltage. Then the line drop compensation value can be set to 300mV, 450mV, or 750mV when the load is 3A.

Line drop compensation can be configured via the I²C or OTP. The compensated voltage is the same for all voltages.

For the default IC, line drop compensation is disabled in PPS mode. Line drop compensation can be enabled in PPS mode through factory OTP trimming.

Thermal Shutdown

Thermal shutdown prevents the chip from operating at exceedingly high temperatures.

If the silicon die temperature exceeds 175°C, the whole chip shuts down. When the temperature falls below its lower threshold (about 155°C), the chip is enabled again.

CHARGING MODE AUTO-DETECTION

Legacy USB 2.0 Mode

The MPQ4242B integrates a USB-dedicated charging port automatic detection function that recognizes most mainstream portable devices. The device supports the following charging schemes:

- USB battery charging specification (BC1.2) / Chinese Telecommunications Industry Standard YD/T 1591-2009
- Apple 3A Divider Mode
- 1.2V/1.2V Mode
- QC 3.0
- Huawei FCP Class A

The automatic detection function is a state machine that supports all of the above DCP charging schemes. This function starts in 3A divider mode. If a device compliant to divider mode is connected, the MPQ4242B stays in divider mode. Meanwhile, 3.3V is applied to the DM pin, while 2.7V is applied to the DP pin.

If a BC1.2 or YD/T 1591-2009 compliant device is connected, the MPQ4242B operates in 1.2V/1.2V and BC1.2 DCP mode. In this scenario, DM and DP are shorted together with a resistance. The device then stays in this mode until the data line is released. If this occurs, the MPQ4242B returns to 3A divider mode.

When a QC 3.0 or FCP device (without PD protocol) is connected, the MPQ4242B can automatically enter high-voltage, quick charge mode.

The MPQ4242B supports BC1.2 charging downstream port (CDP) handshaking as well. This can be enabled by setting CDP_EN to 1b via the I²C.

If a USB PD contract is established after the sink is connected, the QC 3.0 and FCP functions are disabled.

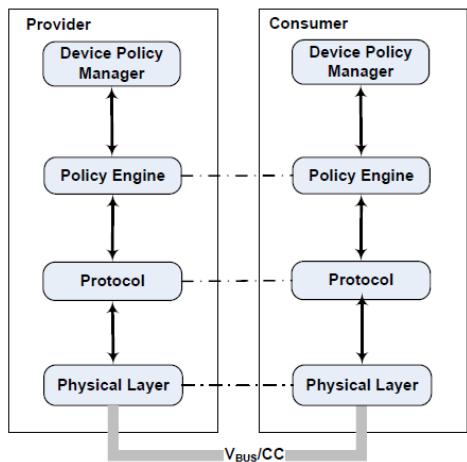
USB Type-C Port

The USB Type-C receptacle, plug, and cable solution incorporates a configuration process to detect a downstream facing port (DFP) to upstream facing port (UFP) connection. This detection function is used for V_{BUS} management and can determine the host-to-device connection.

Initially, a DFP-to-UFP connection is detected by a host (DFP) when one of the CC pins at its USB Type-C receptacle senses a specified resistance at GND. Subsequently, DFP-to-UFP disconnect is detected when the CC pin that was terminated at its USB Type-C receptacle is no longer connected to GND via a specified resistance.

Power is not applied to the USB Type-C host or hub receptacle (VBUS or VCONN) until the DFP detects the presence of a connected device (UFP) port. When a DFP-to-UFP connection is detected, the DFP is expected to enable power to the receptacle and proceed to normal USB operation with the connected device. When a DFP-to-UFP disconnect is detected, the port sourcing V_{BUS} removes power.

The MPQ4242B's power supply capability is rated for 5V @ 3A by default. V_{CONN} is provided by the DFP to power cables with electronics that are plugged in. V_{CONN} is provided power over the CC pin that is not connected to the cable's CC wire. The maximum output power of V_{CONN} is 1W.


VCONN is disabled until R_A is detected. R_A is a pull-down resistor connected from the CC pin to GND. Its resistance must be below 1.2kΩ.

USB Power Delivery (PD) 3.1

In USB PD, pairs of directly connected ports negotiate the voltage, current, and/or the direction of power flow across the USB cable, using V_{BUS} or the CC wire as the communication channel. The mechanisms used operate independently of other USB methods that negotiate power. USB Type-C connectors can support the CC wire as the communication channel.

The USB PD engine can disable the clock and enter sleep mode if no PD command is detected.

The input current is typically 150 μ A in sleep mode. Figure 9 shows the USB PD communication stack.

Figure 9: USB PD Communication Stack

Table 1 shows the functions and DFP commands supported by the MPQ4242B.

Table 1: Control Message

Transmitted Message	Received Message
ACCEPT	GET_PPS_STATUS
GET_STATUS	GET_STATUS
GOODCRC	GOODCRC
NOT_SUPPORTED	NOT_SUPPORTED
PS_RDY	REJECT
REJECT	SOFT_RESET
SOFT_RESET	HARD_RESET
HARD_RESET	VCONN_SWAP
-	GET_SOURCE_CAP
-	GET_SOURCE_CAP_EXTENDED
-	GET_REVISION

Table 2 shows the data messages.

Table 2: Data Message

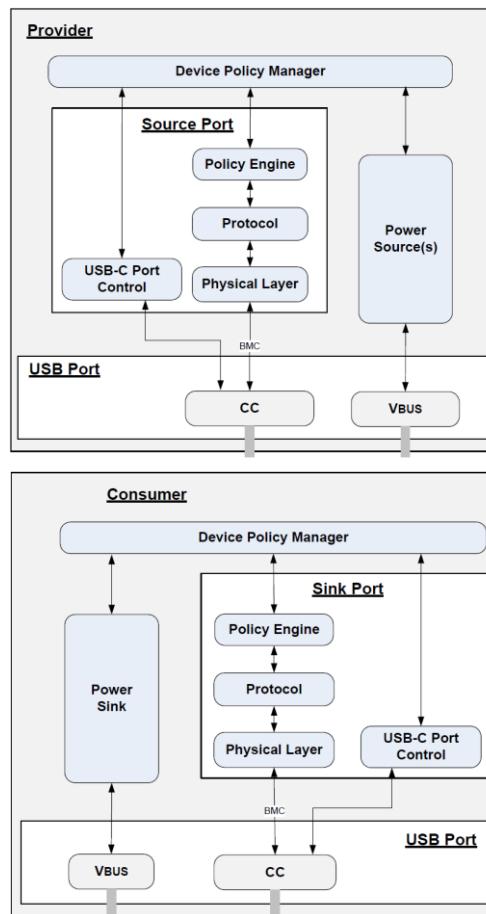

Transmitted Message	Received Message
SOURCE_CAPABILITIES	SINK_CAPABILITIES
BIST	REQUEST
ALERT	BIST
REVISION	ALERT

Table 3 shows the extended messages.

Table 3: Extended Message

Transmitted Message	Received Message
STATUS	-
PPS_STATUS	-
SOURCE_CAPABILITIES_EXTENDED	-

Figure 10 shows the MPQ4242B's device policy manager function block.

Figure 10: Device Policy Manager

Figure 11 shows a PD contract handshake sequence for the MPQ4242B.

#	CH	OS	Power	Data	Cable Plug	Type
0	CC2	SOP*			UFP or DFP	Vendor Defined
1	CC2	SOP*			Cable Plug	GoodCRC
2	CC2	SOP*			Cable Plug	Vendor Defined
3	CC2	SOP*			UFP or DFP	GoodCRC
4	CC2	SOP	Source	DFP		Source_Capabilities
5	CC2	SOP	Sink	UFP		GoodCRC
6	CC2	SOP	Sink	UFP		Request
7	CC2	SOP	Source	DFP		GoodCRC
8	CC2	SOP	Source	DFP		Accept
9	CC2	SOP	Sink	UFP		GoodCRC
10	CC2	SOP	Source	DFP		PS_RDY
11	CC2	SOP	Sink	UFP		GoodCRC

Figure 11: PD Contract Handshake

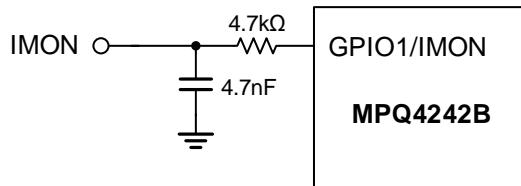
VCONN Power Supply

The integrated VCONN power supply has a maximum of 100mW. The power switch connected from VCC to VCONN has a current limit. During a VCONN short to ground event, the MPQ4242B turns off VCONN.

For a 1W V_{CONN} application, an external VCONN supply should be applied to GPIO2.

LED PWM Driver

The GPIO2 pin can be configured as a PWM output to drive an LED. By default, it is 25kHz, with a 50% PWM duty cycle and a maximum 15mA capability.


The PWM duty cycle can be set between 5% and 100% (with a 1% resolution) via the I²C.

EN Off Time

The MPQ4242B has a configurable EN off time. When the EN pin is pulled low, the device operates at full functionality until the timer elapses. The maximum EN off delay is 120 minutes. If the EN pin is pulled high within this time, the counter resets.

Current Monitor Output

When the GPIO1 pin is set as IMON, the MPQ4242B senses the average load current through a current-sense resistor. The IMON amplifier outputs a voltage signal on the GPIO1 pin. This signal is amplified from the voltage difference between the ISEN+ and ISEN- pins. It is recommended to place a 4.7nF + 4.7kΩ filter on the GPIO1 pin (see Figure 12). The minimum load that IMON can recognize is 0.2A.

Figure 12: IMON Connection

The relationship between the IMON voltage and the load current can be calculated with Equation (1):

$$V_{IMON} = \text{Gain} \times I_{OUT} \times R_{SENS} \quad (1)$$

Where Gain is 27.5V/V, and R_{SENS} = 10mΩ.

When automatic PFM/PWM mode is set up, the IMON function can only work normally when the part enters continuous conduction mode (CCM).

NTC Function

When the GPIO2 pin is set to the NTC function, the device compares the NTC voltage to V_{REF}. If the NTC voltage is below the threshold, the MPQ4242B initiates thermal shutdown

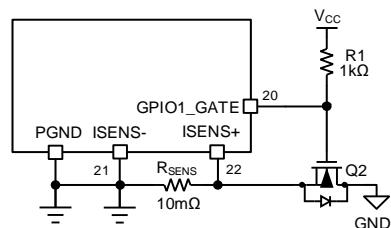
protection. In this scenario, the device will either shut down or reduce the PD power. The response can be selected via NTC_MODE.

If NTC_MODE is set to 1, OTW2_NTC_PDP determines the value to which PD power should be reduced. OTW2_NTC_PDO_SELECT sets which PDO voltage is enabled after entering NTC mode. See Table 4 on page 29 for more details.

If the NTC voltage rises above the recovery threshold, the device recovers to a normal state. The I²C can set one of two NTC recovery hysteresis values. There is no 16s recover delay.

NTC2 Function

When the GPIO1 pin is set to the NTC2 function, the device compares the NTC2 voltage to V_{REF}. If the NTC2 voltage drops below this threshold, the MPQ4242B triggers power sharing. When the power share function is triggered, the PD power rating drops to the value set by PS_PDP THD. Table 4 on page 29 shows the PDO/APDO voltage and current.


If the NTC2 voltage rises above the recovery threshold, the MPQ4242B exits power sharing. NTC_HYSTESIS sets the hysteresis, which also sets the hysteresis for the GPIO1 pin's NTC function.

The NTC_MODE, OTW2_NTC_PDO_SELECT, and OTW2_NTC_PDP bits do not control the NTC2 pin's behavior.

If GPIO2 is set to the power share function while GPIO1 is set for the NTC2 function, the MPQ4242B enters power sharing when either NTC2 or GPIO2_POWER_SHARE is triggered.

Battery-to-Ground Short Protection Driver

The GPIO1 pin can be set to the GATE function for GND-to-battery short protection. If a battery to output ground (GND2) short occurs, the GATE pin pulls low and Q2 turns off. Figure 13 shows the battery-to-ground short driver.

Figure 13: Battery-to-Ground Short Driver

Over Temperature Warning (OTW) Function

The MPQ4242B senses its die temperature internally. If the chip's temperature exceeds the OTW1 threshold, the MPQ4242B reduces the PD power state to the value set by OTW1_PDP. OTW1_PDO_SELECT sets which PDO voltage is enabled after entering OTW1 mode. Table 4 on page 29 shows the OTW_PDO_SELECT function.

If the die temperature continues increasing and triggers the second threshold set by OTW2, the MPQ4242B reduces the PD power to the level set by OTW2_NTC_PDP.

OTW2_NTC_PDO_SELECT sets which PDO voltage is enabled. The MPQ4242B waits 16 seconds after the OTW condition is removed before recovering to a normal PD rating.

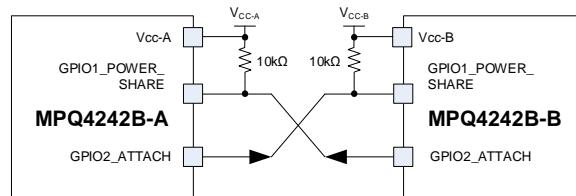
Low Battery Operation

During the first V_{IN} start-up, the MPQ4242B is delayed for 1s before detecting V_{IN} .

If the MPQ4242B detects that the battery voltage (its V_{IN} voltage) is below the VBATT_LOW_THLD1 falling threshold for the VBATT_LOW_BLK deglitch time, it reduces the PD power rating according to the set value. Meanwhile, VBATT_LOW1_FLAG is set. If there is a PD contract, the PD engine resends the updated PDO with a reduced PDP. The PDO list is determined by VBATT_L1_PDO_SELECT.

If the MPQ4242B detects that the battery voltage (its V_{IN} voltage) is below the VBATT_LOW_THLD2 falling threshold for the VBATT_LOW_BLK deglitch time, it reduces the PD power rating according to the set value. Meanwhile, VBATT_LOW2_FLAG is set. If there is a PD contract, the PD engine resends the updated PDO with a reduced PDP. The PDO list is determined by VBATT_L2_PDO_SELECT.

If the MPQ4242B detects that the battery voltage (its V_{IN} voltage) is below the VBATT_LOW_THLD3 falling threshold for the VBATT_LOW_BLK deglitch time, it shuts down.


When the battery voltage recovers and exceeds the VBATT_LOW_THLD rising threshold with a 1s digital deglitch time, the PDO recovers to a normal PDP.

There are three battery voltage (V_{BATT}) low thresholds: VBATT_LOW_THLD1, VBATT_LOW_THLD2, and VBATT_LOW_THLD3. Accordingly, VBATT_LOW1_PDP and VBATT_LOW2_PDP define the MPQ4242B's reduced PDP level. During the MPQ4242B's first start-up, the internal VBATT_LOW_FLAG default state is 0. The VBATT_LOW detection circuitry starts to work when a USB Type-C receptacle is attached; it is reset by UVLO or an EN shutdown.

POWER SHARE FUNCTION

GPIO1_POWER_SHARE

The GPIO1_POWER_SHARE pin can accept an external input voltage. If the second MPQ4242B (MPQ4242B-B) detects that a valid sink is attached, the first MPQ4242B's (MPQ4242B-A) GPIO1_POWER_SHARE pin is pulled down by the MPQ4242B-B's GPIO2_ATTACH pin (see Figure 14).

Figure 14: Power Share Connection Between Two MPQ4242Bs (e.g. Cut Total Power to 50%/50%)

When the power share function is triggered, the PDO list and current are determined by PS_PDP THD and PS_PDP THD PDO SELECT (see Table 4 on page 29). For example, a 3.3V to 21V APDO current rating is can be calculated as $45W / 21V = 2.1A$.

Table 4: PDO Voltage and Current Set Table based on the PS_PDP THD and PS_PDP THD PDO SEL

PDO List	5V (Fixed)	9V (Fixed)	12V (Fixed)	15V (Fixed)	20V (Fixed)	5V (Prog.)	9V (Prog.)	15V (Prog.)	20V (Prog.)
Output Current	PDP / 5 ⁽⁹⁾	PDP / 9	PDP / 12	PDP / 15	PDP / 20 ⁽¹⁰⁾	PDP / 5.9	PDP / 11	PDP / 16	PDP / 21 ⁽¹⁰⁾
PS_PDP THD PDO SEL Register Selection Bit ⁽¹³⁾	x	1	0	1	1	1	1	0	0
PS_PDP THD = 22.5W	5V, 3A ⁽¹¹⁾	9V, 2.5A	-	15V, 1.5A	20V, 1.13A	3.3V to 5.9V, 3A ⁽¹²⁾	3.3V to 11V, 2A	-	-

Notes:

- 9) A fixed 5V PDO is always enabled after entering power sharing.
- 10) The fixed PDO current is equal to PDP / Voltage. The maximum current is 3A for <20V fixed PDOs. The maximum current can be 5A for 20V PDO and all APDOs.
- 11) The minimum PDP is $5V \times 1.5A = 7.5W$. R_P changes to $5V / 1.5A$ when PDP <15W.
- 12) The PPS current is calculated with PDP / 5.9V for 5V PPS; PDP / 11V for 9V PPS; PDP / 16V for 15V PPS; PDP / 21V for 20V PPS.
- 13) The registers PS_PDP THD, PS_PDO_SELECT, VBATT_L1_PDO_SELECT, VBATT_L2_PDO_SELECT, OTW1_PDO_SELECT, and OTW2_NTC_PDO_SELECT share the same format. The gray cells are set by 8-bit register values.

GPIO2_POWER_SHARE

The GPIO2_POWER_SHARE threshold is V_{TH_PS} (typically 1.87V). When the GPIO2 pin is set for the power share function, and the

MPQ4242B-A detects that its GPIO2 voltage exceeds V_{TH_PS} , the power share function is triggered. In this scenario, the PDO list and current is determined by PS_PDP THD and PS_PDP THD PDO SELECT (see Table 5).

Table 5: PDO Voltage and Current Set Table based on PS_PDP THD and PS_PDP THD PDO SEL

PDO List	5V Fixed	9V Fixed	12V Fixed	15V Fixed	20V Fixed	5V Prog.	9V Prog.	15V Prog.	20V Prog.
Output Current	PDP / 5 ⁽⁹⁾	PDP / 9	PDP / 12	PDP / 15	PDP / 20 ⁽¹⁰⁾	PDP / 5.9	PDP / 11	PDP / 16	PDP / 21 ⁽¹⁰⁾
PS_PDP THD PDO SEL Register Selection Bit ⁽¹³⁾	x	1	0	0	0	1	1	0	0
PS_PDP THD = 15W	5V, 3A ⁽¹¹⁾	9V, 1.6A	-	-	x	3.3V to 5.9V, 3A ⁽¹²⁾	3.3V to 11V, 1.35A	-	-

The MPQ4242B exits the power sharing status after the GPIO2 voltage drops below V_{TH_PS} . Figure 15 shows the GPIO2_POWER_SHARE connection block.

When V_{BUS} exceeds 11.2V, the power share function is triggered.

Table 6 on page 30 shows the PDP of the MPQ4242B-A and MPQ4242B-B in the GPIO2_POWER_SHARE function.

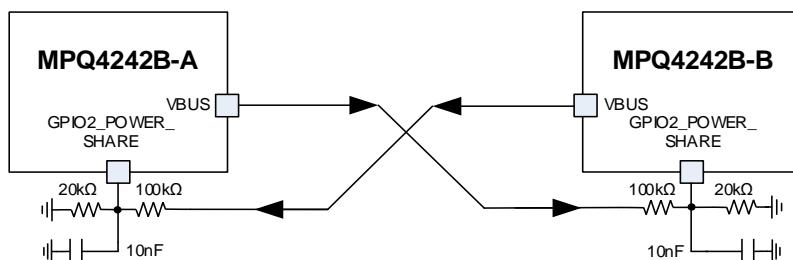
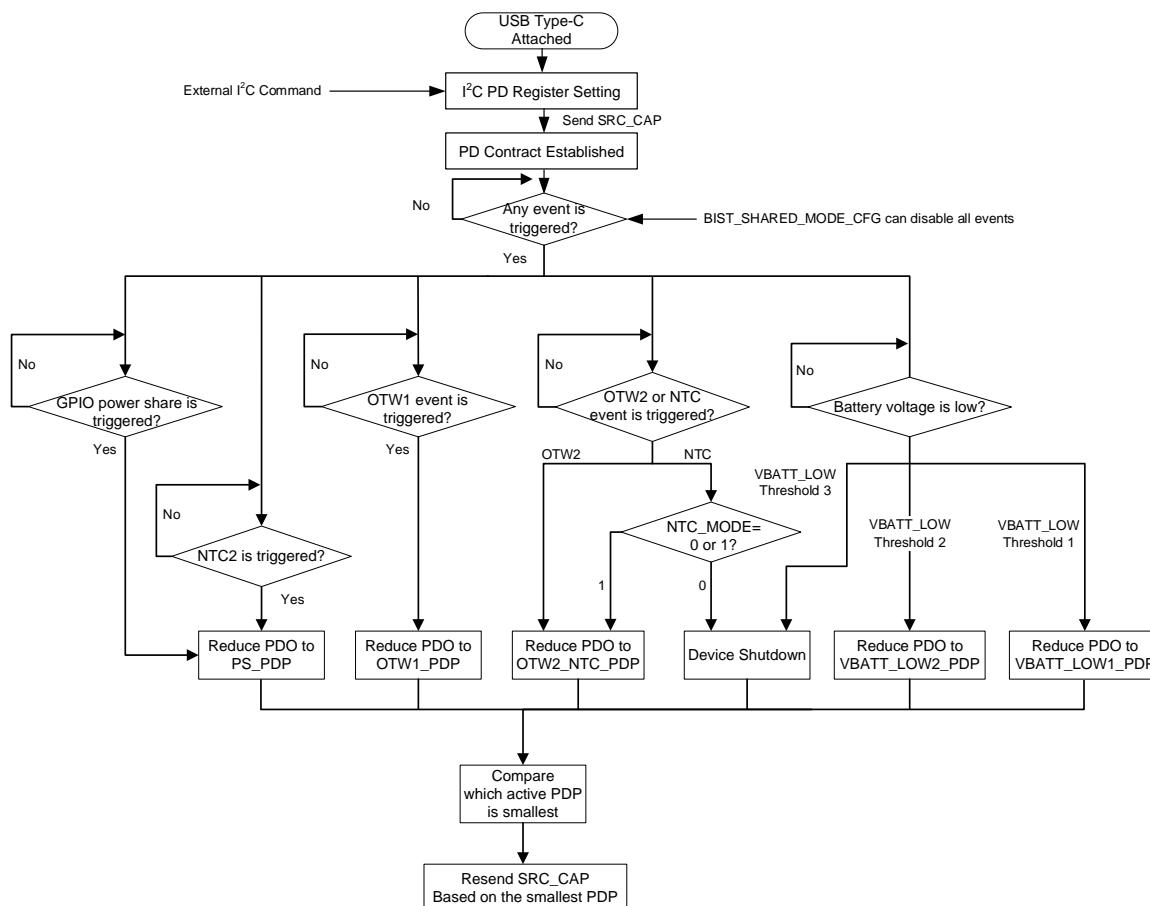


Figure 15: GPIO2 Power Share Connection Between Two MPQ4242Bs

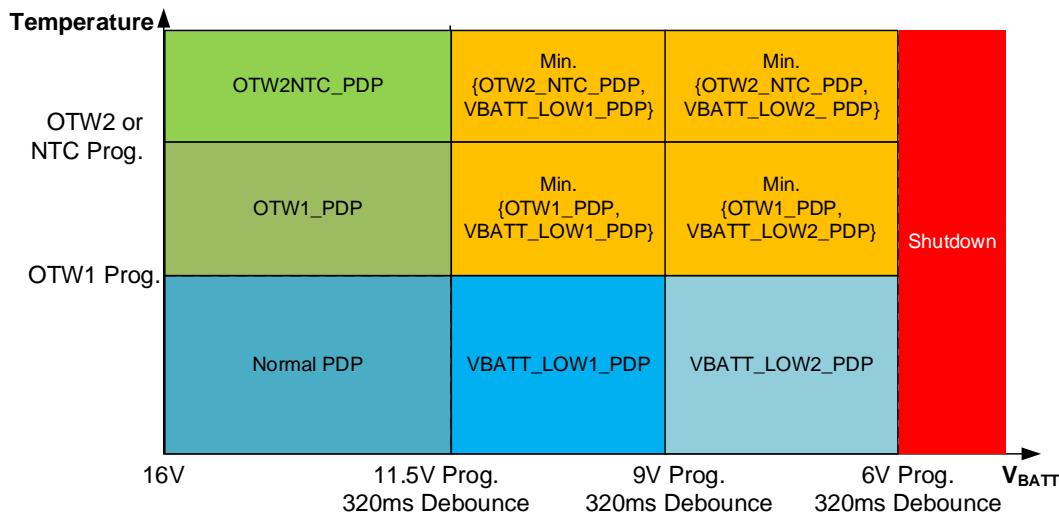
Table 6: GPIO2 Power Share PDP Management in Dual-Channel Applications ⁽¹⁴⁾

Column Format = <PD Contract W> (<Advertised Power W>)

Total Shared Power = 60W


Each Port PDP = 45W

Condition	USB Type-C Port 1	USB Type-C Port 2	Total Power
1	-- (45W) ⁽¹⁵⁾	-- (45W) ⁽¹⁵⁾	-
2	15W (45W)	-- (45W) ⁽¹⁵⁾	15W
3	27W (45W)	-- (45W) ⁽¹⁵⁾	27W
4	45W (45W)	15W (15W)	60W
5	27W (45W)	15W (45W)	42W
6	27W (45W)	27W (45W)	54W
7	15W (15W)	45W (45W)	60W
8	-- (15W) ⁽¹⁶⁾	45W (45W)	45W
9	-- (45W) ⁽¹⁵⁾	27W (45W)	27W


Notes:

- 14) The PDP table is based on the GPIO2_POWER_SHARE set-up in Figure 15 on page 29. The MPQ4242B-A triggers power sharing when the MPQ4242B-B's $V_{BUS} > 11.2V$.
- 15) The port is not connected and there is no valid PD contract, but the maximum PDP (45W) is still advertised.
- 16) Power sharing has been triggered because another port has made a PD contract with a high PDP. To limit the total shared power to 60W or below, the advertised power drops to 15W.

Figure 16 shows the PDP state machine. Figure 17 on page 31 shows the PDP foldback scheme.

Figure 16: PDP State Machine (I²C Still Operates during NTC Shutdown)

I²C INTERFACE

I²C Serial Interface Description

The I²C is a two-wire, bidirectional serial interface, consisting of a data line (SDA) and a clock line (SCL). The lines are externally pulled to a bus voltage when they are idle. Connecting to the line, a master device generates the SCL signal and device address, and arranges the communication sequence.

The MPQ4242B interface is an I²C slave that supports fast mode (400kHz). The I²C interface adds flexibility to the power supply solution. The output voltage (V_{OUT}), transition slew rate, and additional parameters can be instantaneously controlled by the I²C interface. When the master sends the address as an 8-bit value, the 7-bit address should be followed by 0 or 1 to indicate a write or read operation, respectively.

Start and Stop Commands

The start (S) command and stop (P) command are signaled by the master device, which signifies the beginning and the end of the I²C transfer. The start command is defined as the SDA signal transitioning from high to low while SCL is high. The stop command is defined as the SDA signal transitioning from low to high while SCL is high (see Figure 18).

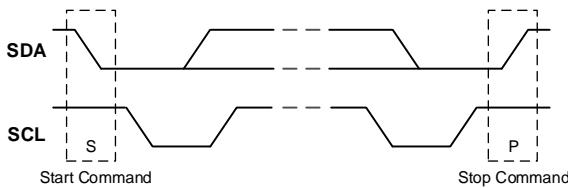
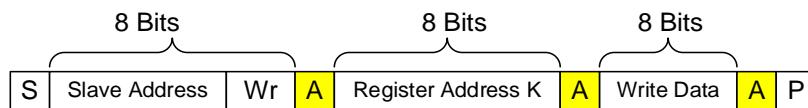
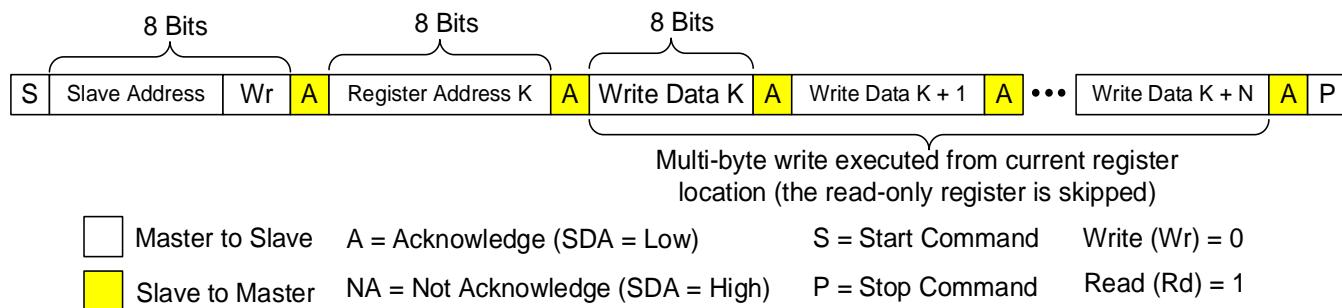
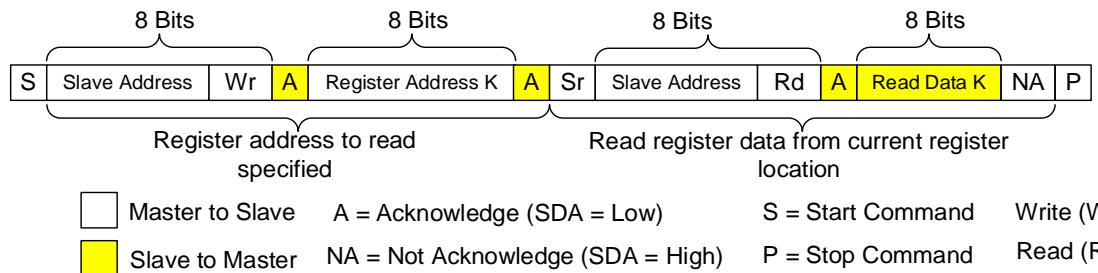




Figure 18: Start and Stop Commands



<input type="checkbox"/> Master to Slave	A = Acknowledge (SDA = Low)	S = Start Command	Write (Wr) = 0
■ Slave to Master	NA = Not Acknowledge (SDA = High)	P = Stop Command	Read (Rd) = 1

Figure 19: I²C Write Example (Write Single Register)

Figure 20: I²C Write Example (Write Multiple Registers)

Figure 21: I²C Read Example (Read Single Register)

I²C REGISTER MAP

Addr. (Hex)	Name	R/W	D7	D6	D5	D4	D3	D2	D1	D0
00	PDO_SET1	R/W		N/A	PDO7_EN (17)	PDO6_EN (17)	PDO5_E N (17)	PDO4_EN (17)	PDO3_EN (17)	PDO2_EN (17)
01	PDO_SET2	R/W		N/A	PDO7_TYPE (17)	PDO6_TYPE (17)	PDO5_TYPE (17)	PDO4_TYPE (17)	PDO3_TYPE (17)	PDO2_TYPE (17)
02	HOST_SET	R/W	COMM UNICA CAPAB _HOST (17)	PRODUCT_TYPE_DF P (17)		HOST_CAPABILITY(000B) (17)		PORT_NUMBER (17)		
03	PDO_I1	R/W			PDO1_CURRENT_SETTING (17) (3A default)					
04	PDO_V2_L	R/W			PDO2_VOLTAGE_SETTING (low byte) (17) (9V default)					
05	PDO_V2_H	R/W			PDO2_VOLTAGE_SETTING (high byte) (17) (0x00)					
06	PDO_I2	R/W			PDO2_CURRENT_SETTING (17) (3A default)					
07	PDO_V3_L	R/W			PDO3_VOLTAGE_SETTING (low byte) (17) (15V default)					
08	PDO_V3_H	R/W			PDO3_VOLTAGE_SETTING (high byte) (17) (0x00)					
09	PDO_I3	R/W			PDO3_CURRENT_SETTING (17) (3A)					
0A	PDO_V4_L	R/W			PDO4_VOLTAGE_SETTING (low byte) (17) (20V default)					
0B	PDO_V4_H	R/W			PDO4_VOLTAGE_SETTING (high byte) (17) (0x00)					
0C	PDO_I4	R/W			PDO4_CURRENT_SETTING (17) (3A)					
0D	PDO_V5_L	R/W			PDO5_VOLTAGE_SETTING (low byte) (17) (3.3V)					
0E	PDO_V5_H	R/W			PDO5_VOLTAGE_SETTING (high byte) (17) (11V)					
0F	PDO_I5	R/W			PDO5_CURRENT_SETTING (17) (3A)					
10	PDO_V6_L	R/W			PDO6_VOLTAGE_SETTING (low byte) (17) (3.3V)					
11	PDO_V6_H	R/W			PDO6_VOLTAGE_SETTING (high byte) (17) (16V)					
12	PDO_I6	R/W			PDO6_CURRENT_SETTING (17) (3A)					
13	PDO_V7_L	R/W			PDO7_VOLTAGE_SETTING (low byte) (17) (3.3V)					
14	PDO_V7_H	R/W			PDO7_VOLTAGE_SETTING (high byte) (17) (21V)					
15	PDO_I7	R/W			PDO7_CURRENT_SETTING (17) (3A)					
16	PD_CTL1	R/W	CDP_EN (17)	LEGACY_CHARGIN G_MODE_SEL (17)	USBCOM MUNICAT E (17)	NTC CTL_RP (17)	TOUCH_TEMP (17)		TYPE-C MODE (17)	
17	PD_CTL2	R/W	HDRST	USBSUS PEND (17)	TOUCH CURRENT (17)		COMPLIANCE (17)			
18	PWR_CLT1	R/W	EN (17)	MODE (17)	FREQ (17)	DITHER (17)	LINE_DROP_COMP (17)	SLEW RATE (17)		
19	PWR_CLT2	R/W	EN_VBU S (17)	PPS_MI N_SEL (17)	OTW1_THRESHOLD (17)		OTP_THRESHOLD (17)			
1A	VOUT_L	R/W		RESERVED_ALL: 0			VOUT_DATA_BIT_LOW[2:0] (17)			
1B	VOUT_H	R/W		VOUT_DATA_BIT_HIGH[10:3] (17) (use this as default DAC V _{REF})						
1C	IOUT_LIM	R/W	N/A	OUTPUT_CURRENT_LIMIT_THRESHOLD (17) (1A to 6.35A/50mA step)						
1D	CTL_SYS0	R/W			N/A			GO_BIT		
1E	CTL_SYS1	R/W	SEND SRC_CA P	ADDITIO NAL_LIN E_DROP _COMP ENSATI ON (17)	EN_OFF_TIMER (17)		I2C_SLAVE_ADDRESS (A4~A1) (17)			
1F	CTL_SYS2	R/W		GPIO1 (17)		GPIO2 (17)	I2C_CTL VOUT_E N (17)	N/A		
20	CTL_SYS3	R/W		PS_PDP THD (17) (PDP is reduced to this value after power sharing)						
21	CTL_SYS4	R/W		PS_PDP THD PDO SELECT (17)						
22	CTL_SYS5	R/W	N/A	PPS_3A 5A (17)	CC_BLANK_TIMER (17)	N/A		PD_CAP_PEAK CURRENT (17)		

I²C REGISTER MAP (continued)

Addr. (Hex)	Name	R/W	D7	D6	D5	D4	D3	D2	D1	D0
23	CTL_SYS6	R/W								VBATT_LOW1_PDP ⁽¹⁷⁾
24	CTL_SYS7	R/W								VBATT_L1_PDO_SELECT ⁽¹⁷⁾
25	CTL_SYS8	R/W								VBATT_LOW2_PDP ⁽¹⁷⁾
26	CTL_SYS9	R/W								VBATT_L2_PDO_SELECT ⁽¹⁷⁾
27	CTL_SYS10	R/W								OTW1_PDP ⁽¹⁷⁾
28	CTL_SYS11	R/W								OTW1_PDO_SELECT ⁽¹⁷⁾
29	CTL_SYS12	R/W								OTW2_NTC_PDP ⁽¹⁷⁾
2A	CTL_SYS13	R/W								OTW2_NTC_PDO_SELECT ⁽¹⁷⁾
2B	CTL_SYS14	R/W			VBATT_LOW_THLD1 ⁽¹⁷⁾					VBATT_LOW_THLD2 ⁽¹⁷⁾
2C	CTL_SYS15	R/W			VBATT_LOW_THLD3 ⁽¹⁷⁾		VBATT_LOW_BLK ⁽¹⁷⁾			N/A
2D	CTL_SYS16	R/W	N/A		EXT_HS_FET_RON ⁽¹⁷⁾			OTW2_THRESHOLD ⁽¹⁷⁾		N/A
2E	CTL_SYS17	R/W		PEAK_CL ⁽¹⁷⁾	N/A	NTC_HYS TERESIS ⁽¹⁷⁾	NTC_MODE ⁽¹⁷⁾	N/A		VBUS_VOLTAGE ⁽¹⁷⁾
2F	CTL_SYS18	R/W	OTP_PROGRAM							LED_PWM_DUTY ⁽¹⁷⁾
30	STATUS1	R	ATTACHED	NTC2_ENTER	POL	SHORT_VBATT	FAULT	OTP_PAGE	CC_CV	NTC_ENTER
31	STATUS2	R	VBATT_LOW1_FLAG	VBATT_LOW2_FLAG	OTW1	OTW2		SELECTED_PDO_INDEX		PDO_TYPE
32	STATUS3	R								CONTRACT_POWER (CP)
33	ID1	R								OTP_SUFFIX_CODE ⁽¹⁷⁾
34	ID2	R								OTP_SOFTWARE_REVISION_NO ⁽¹⁷⁾
35	FW_REV	R	MISMATC H	GIVEBACK FLAG	CABLE CAP					FIRMWARE_REVISION
36	MAX_REQ CUR	R								Max requested operation current (MISMATCH = 1) in a 20mA unit; only valid when GIVEBACK_FLAG = 0; fixed PDO
37	MFR_ID	R								MANUFACTURER_ID ⁽¹⁷⁾ : 0000 1001b
38	DEV_ID	R								DEVICE_ID ⁽¹⁷⁾ : 0101 1000b
39	CLK_ON	W								Write 1b to enable clock

Note:

17) This register can be configured via the one-time programmable (OTP) memory.

REGISTER MAP

The default register values are based on the MPQ4242B-0000.

PDO_SET1 (0x00)

Format: Unsigned binary

The PDO_SET1 command enables PDO_x (where x = 2–7). PDO1 is fixed as a 5V power data object, and it is always enabled. Its voltage can be changed via VBUS_VOLTAGE.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5	R/W	PDO7_EN	1b	Enables the PDO7's power object setting. 0b: Disabled 1b: Enabled
4	R/W	PDO6_EN	1b	Enables the PDO6's power object setting. 0b: Disabled 1b: Enabled
3	R/W	PDO5_EN	1b	Enables the PDO5's power object setting. 0b: Disabled 1b: Enabled
2	R/W	PDO4_EN	1b	Enables the PDO4's power object setting. 0b: Disabled 1b: Enabled
1	R/W	PDO3_EN	1b	Enables the PDO3's power object setting. 0b: Disabled 1b: Enabled
0	R/W	PDO2_EN	1b	Enables the PDO2's power object setting. 0b: Disabled 1b: Enabled

PDO_SET2 (0x01)

Format: Unsigned binary

The PDO_SET2 command configures PDO_x (where x = 2–7) to be fixed PDO or APDO.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5	R/W	PDO7_TYPE	1b	Sets the PDO7's power object. 0b: Fixed PDO 1b: APDO
4	R/W	PDO6_TYPE	1b	Sets the PDO6's power object. 0b: Fixed PDO 1b: APDO
3	R/W	PDO5_TYPE	1b	Sets the PDO5's power object. 0b: Fixed PDO 1b: APDO
2	R/W	PDO4_TYPE	0b	Sets the PDO4's power object. 0b: Fixed PDO 1b: APDO

1	R/W	PDO3_TYPE	0b	Sets the PDO3's power object. 0b: Fixed PDO 1b: APDO
0	R/W	PDO2_TYPE	0b	Sets the PDO2's power object. 0b: Fixed PDO 1b: APDO

HOST_SET (0x02)**Format:** Unsigned binary

The HOST_SET command controls certain functions.

Bits	Access	Bit Name	Default	Description
7	R/W	COMMUNICA_CAPAB_HOST	0b	Sets the USB communication capabilities for the USB host. 0b: Other 1b: The product can enumerate USB devices
6:5	R/W	PRODUCT_TYPE_DFP	11b	Sets the product type (DFP). 00b: Undefined 01b: PDUSB hub 10b: PDUSB host 11b: Power brick
4:2	R/W	HOST_CAPABILITY	000b	Sets the DFP VDO message's B26...24 bits.
1:0	R/W	PORT_NUMBER	01	Sets the unique port number to identify a specific port on a multi-port device.

PDO_I1 (0x03)**Format:** Unsigned binary

The PDO_I1 command sets PDO1's maximum output current.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO1_CURRENT_SETTING	0x96	Sets PDO1's maximum output current setting in 20mA units. The default is 0x96 (3A). When this bit is set to exceed 3A, the MPQ4242B checks the cable current rating first. If it is 5A, then send the >3A setting; if the cable is 3A, only send a 3A maximum current capability.

PDO_V2_L (0x04)**Format:** Unsigned binary

If PDO2_TYPE is set to 0b (fixed PDO), the PDO_V2_L command sets PDO2's output voltage. The default for PDO2_TYPE is 0b.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO2_VOLTAGE_SETTING	0x5A	Sets PDO2's output voltage in 100mV units. The default is 0x5A (9V). The maximum voltage that can be set is 22.97V.

If PDO2_TYPE is set to 1b (APDO), the PDO_V2_L command sets PDO2's minimum output voltage.

Bits	Access	Bit Name	Description
7:0	R/W	PDO2_MINIMUM_VOLTAGE	Sets PDO2's minimum voltage in 100mV increments.

PDO_V2_H (0x05)**Format:** Unsigned binary

If PDO2_TYPE is set to 1b (APDO), the PDO_V2_H command sets PDO2's maximum output voltage.

Bits	Access	Bit Name	Description
7:0	R/W	PDO2_MAXIMUM_VOLTAGE	Sets PDO2's maximum voltage in 100mV increments.

PDO_I2 (0x06)**Format:** Unsigned binary

The PDO_I2 command sets PDO2's maximum output current.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO2_CURRENT_SETTING	0x96	Sets PDO2's maximum output current setting in 20mA units for fixed PDO, or 50mA units for APDO (PPS). The default is 0x96 (3A and fixed PDO). When this bit is set to exceed 3A, the MPQ4242B checks the cable current rating first. If it is 5A, then send the >3A setting; if the cable is 3A, only send a 3A maximum current capability.

PDO_V3_L (0x07)**Format:** Unsigned binary

If PDO3_TYPE is set to 0b (fixed PDO), the PDO_V3_L command sets PDO3's output voltage. The default for PDO3_TYPE is 0b.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO3_VOLTAGE_SETTING	0x96	Sets PDO3's output voltage in 100mV units. The default is 0x96 (15V). The maximum voltage that can be set is 22.97V.

If PDO3_TYPE is set to 1b (APDO), the PDO_V3_L command sets PDO3's minimum output voltage.

Bits	Access	Bit Name	Description
7:0	R/W	PDO3_MINIMUM_VOLTAGE	Sets PDO3's minimum voltage in 100mV increments.

PDO_V3_H (0x08)**Format:** Unsigned binary

If PDO3_TYPE is set to 1b (APDO), the PDO_V3_H command sets PDO3's maximum output voltage.

Bits	Access	Bit Name	Description
7:0	R/W	PDO3_MAXIMUM_VOLTAGE	Sets PDO3's maximum voltage in 100mV increments.

PDO_I3 (0x09)**Format:** Unsigned binary

The PDO_I3 command sets PDO3's maximum output current.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO3_CURRENT_SETTING	0x96	Sets PDO3's maximum output current setting in 20mA units for fixed PDO, or 50mA units for APDO (PPS). The default is 0x96 (3A). When this bit is set to exceed 3A, the MPQ4242B checks the cable current rating first. If it is 5A, then send the >3A setting; if the cable is 3A, only send a 3A maximum current capability.

PDO_V4_L (0x0A)**Format:** Unsigned binary

If PDO4_TYPE is set to 0b (fixed PDO), the PDO_V4_L command sets PDO4's output voltage. The default for PDO4_TYPE is 0b.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO4_VOLTAGE_SETTING	0xC8	Sets PDO4's output voltage in 100mV units. The default is 0xC8 (20V). The maximum voltage that can be set is 22.97V.

If PDO4_TYPE is set to 1b (APDO), the PDO_V4_L command sets PDO4's minimum output voltage.

Bits	Access	Bit Name	Description
7:0	R/W	PDO4_MINIMUM_VOLTAGE	Sets PDO4's minimum voltage in 100mV increments.

PDO_V4_H (0x0B)**Format:** Unsigned binary

If PDO4_TYPE is set to 1b (APDO), the PDO_V4_H command sets PDO4's maximum output voltage.

Bits	Access	Bit Name	Description
7:0	R/W	PDO4_MAXIMUM_VOLTAGE	Sets PDO4's maximum voltage in 100mV increments.

PDO_I4 (0x0C)**Format:** Unsigned binary

The PDO_I4 command sets PDO4's maximum output current.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO4_CURRENT_SETTING	0x96	Sets PDO4's maximum output current setting in 20mA units for fixed PDO, or 50mA units for APDO (PPS). The default is 0x96 (3A and fixed PDO). When this bit is set to exceed 3A, the MPQ4242B checks the cable current rating first. If it is 5A, then send the >3A setting; if the cable is 3A, only send a 3A maximum current capability.

PDO_V5_L (0x0D)**Format:** Unsigned binary

If PDO5_TYPE is set to 0b (fixed PDO), the PDO_V5_L command sets PDO5's output voltage.

Bits	Access	Bit Name	Description
7:0	R/W	PDO5_VOLTAGE_SETTING	Sets PDO5's output voltage in 100mV units.

If PDO5_TYPE is set to 1b (APDO), the PDO_V5_L command sets PDO5's minimum output voltage. The default for PDO5_TYPE is 1b.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO5_MINIMUM_VOLTAGE	0x21	Sets PDO5's minimum voltage in 100mV increments. The default is 0x21 (3.3V).

PDO_V5_H (0x0E)

Format: Unsigned binary

If PDO5_TYPE is set to 1b (APDO), the PDO_V5_H command sets PDO5's maximum output voltage.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO5_MAXIMUM_VOLTAGE	0x6E	Sets PDO5's maximum voltage in 100mV increments. The default is 0x6E (11V).

PDO_I5 (0x0F)

Format: Unsigned binary

The PDO_I5 command sets PDO5's maximum output current.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO5_CURRENT_SETTING	0x3C	Sets PDO5's maximum output current setting in 20mA units for fixed PDO, or 50mA units for APDO (PPS). The default is 0x3C (3A and APDO). When this bit is set to exceed 3A, the MPQ4242B checks the cable current rating first. If it is 5A, then send the >3A setting; if the cable is 3A, only send a 3A maximum current capability.

PDO_V6_L (0x10)

Format: Unsigned binary

If PDO6_TYPE is set to 0b (fixed PDO), the PDO_V6_L command sets PDO6's output voltage.

Bits	Access	Bit Name	Description
7:0	R/W	PDO6_VOLTAGE_SETTING	Sets PDO6's output voltage in 100mV units.

If PDO6_TYPE is set to 1b (APDO), the PDO_V6_L command sets PDO6's minimum output voltage. The default for PDO6_TYPE is 1b.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO6_MINIMUM_VOLTAGE	0x21	Sets PDO6's minimum voltage in 100mV increments. The default is 0x21 (3.3V).

PDO_V6_H (0x11)

Format: Unsigned binary

If PDO6_TYPE is set to 1b (APDO), the PDO_V6_H command sets PDO6's maximum output voltage.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO6_MAXIMUM_VOLTAGE	0xA0	Sets PDO6's maximum voltage in 100mV increments. The default is 0xA0 (16V).

PDO_I6 (0x12)

Format: Unsigned binary

The PDO_I6 command sets PDO6's output current.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO6_CURRENT_SETTING	0x3C	Sets PDO6's maximum output current setting in 20mA units for fixed PDO, or 50mA units for APDO (PPS). The default is 0x3C (3A and APDO). When this bit is set to exceed 3A, the MPQ4242B checks the cable current rating first. If it is 5A, then send the >3A setting; if the cable is 3A, only send a 3A maximum current capability.

PDO_V7_L (0x13)

Format: Unsigned binary

If PDO7_TYPE is set to 0b (fixed PDO), the PDO_V7_L command sets PDO7's output voltage.

Bits	Access	Bit Name	Description
7:0	R/W	PDO7_VOLTAGE_SETTING	Sets the PDO7's output voltage in 100mV units.

If PDO7_TYPE is set to 1b (APDO), the PDO_V7_L command sets PDO7's minimum output voltage. The default for PDO7_TYPE is 1b.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO7_MINIMUM_VOLTAGE	0x21	Sets PDO7's minimum voltage in 100mV increments. The default is 0x21 (3.3V).

PDO_V7_H (0x14)

Format: Unsigned binary

If PDO7_TYPE is set to 1b (APDO), the PDO_V7_H command sets PDO7's maximum output voltage.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO7_MAXIMUM_VOLTAGE	0xD2	Sets PDO7's maximum voltage in 100mV increments. The default is 0xD2 (21V).

PDO_I7 (0x15)

Format: Unsigned binary

The PDO_I7 command sets PDO7's maximum output current.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PDO7_CURRENT_SETTING	0x3C	Sets PDO7's maximum output current setting in 20mA units for fixed PDO, or 50mA units for APDO (PPS). The default is 0x3C (3A and APDO). When this bit is set to exceed 3A, the MPQ4242B checks the cable current rating first. If it is 5A, then send the >3A setting; if the cable is 3A, only send a 3A maximum current capability.

PD_CTL1 (0x16)

Format: Unsigned binary

The PD_CTL1 command controls certain functions.

Bits	Access	Bit Name	Default	Description															
7	R/W	CDP_EN	0b	Selects the charging downstream port (CDP) mode. If this bit is set to 1, all the DCP, QC, and Apple modes are disabled. The device only works in CDP handshaking mode.															
6:5	R/W	LEGACY_CHARGING_MODE_SEL	00b	<p>Sets certain values based on the truth table below.</p> <table border="1"> <tr> <td>CDP_EN</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>LEGACY_CHARGING_MODE_SEL</td> <td>X</td> <td>00</td> <td>01</td> <td>10/11</td> </tr> <tr> <td>Mode</td> <td>CDP mode</td> <td>All DCP modes are active</td> <td>Apple mode and BC1.2 mode are active</td> <td>Only BC1.2 is active; Apple mode and QC mode are disabled</td> </tr> </table>	CDP_EN	1	0	0	0	LEGACY_CHARGING_MODE_SEL	X	00	01	10/11	Mode	CDP mode	All DCP modes are active	Apple mode and BC1.2 mode are active	Only BC1.2 is active; Apple mode and QC mode are disabled
CDP_EN	1	0	0	0															
LEGACY_CHARGING_MODE_SEL	X	00	01	10/11															
Mode	CDP mode	All DCP modes are active	Apple mode and BC1.2 mode are active	Only BC1.2 is active; Apple mode and QC mode are disabled															

4	R/W	USB COMMUNICATE	0b	Sets whether USB communication is supported. 0b: USB communication is not supported 1b: USB communication is supported
3	R/W	NTC_CTL_RP	0b	Selects whether the device enters USB Type-C 3A or 1.5A mode if an NTC or over-temperature warning (OTW) event occurs. In 5V @ 3A USB Type-C mode, the R_P pull-up current is 330 μ A and the R_D detection range is between 0.8V and 2.6V. 0b: PDP <15W, and R_P = 1.5A; otherwise, R_P = 3A 1b: The device enters 1.5A USB Type-C mode if an NTC or OTW1/OTW2 condition occurs
2:1	R/W	TOUCH_TEMP	00b	Sets the touch temperature default value to 0, 1, or 2. These bits are defined in the SOURCE_CAPABILITIES_EXTENDED message byte 20, bits[1:0].
0	R/W	TYPE-C_MODE	0b	Selects 3A or 1.5A Type-C mode. In 5V @ 3A USB Type-C mode, the R_P pull-up current is 330 μ A, and the R_D detection range is between 0.85V and 2.45V. 0b: 3A USB Type-C mode 1b: 1.5A USB Type-C mode

PD_CTL2 (0x17)

Format: Unsigned binary

The PD_CTL2 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7	R/W	HDRST	0b	Sends a hard reset command. 0b: Normal state 1b: Send a hard reset command to the sink. After the HDRST message is sent, this bit automatically resets to 0b
6	R/W	USB_SUSPEND	0b	Sets whether the USB suspend function is supported. 0b: Not supported 1b: Supported
5:3	R/W	TOUCH_CURRENT	000b	Sets the values for bits[2:0] of the touch current, defined in SOURCE_CAPABILITIES_EXTENDED message byte 13, bits[2:0]. Bit[5] of this command sets the touch current value for bit[2].
2:0	R/W	COMPLIANCE	101b	Sets the values for bits[2:0] of the compliance, defined in SOURCE_CAPABILITIES_EXTENDED message byte 12, bits[2:0]. Bit[2] of this command sets the compliance value for bit[2].

PWR_CTL1 (0x18)

Format: Unsigned binary

The PWR_CTL1 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7	R/W	EN	1b	Determines whether I ² C control turns the part on or off. When the external EN pin is low, the converter is off, and the I ² C shuts down. When the EN pin is high, the EN bit takes over. 0b: The device is off but the I ² C register does not reset. In addition, the USB Type-C logic is off, and the system clock turns off to save quiescent current (I _Q) 1b: If the USB Type-C receptacle is disconnected, the system clock remains off to save I _Q

6	R/W	MODE	1b	Sets the PWM mode. 0b: Enables auto-PFM/PWM mode 1b: Forced PWM mode
5:4	R/W	FREQ	01b	Sets the switching frequency (fsw). 00b: 250kHz 01b: 420kHz 10b/11b: Reserved
3	R/W	DITHER	0b	Enables the frequency spread spectrum (FSS) function. 0b: Disabled 1b: Enabled
2:1	R/W	LINE_DROP_COMP	00b	Sets the output voltage compensation vs. the load feature. The compensation amplitude is fixed for any output voltage. Set 0x1E, bit[6] = 1 to enable an additional compensation voltage. Line drop compensation has a maximum clamp at 800mV, regardless of the output current. Line drop compensation is disabled once the MPQ4242B enters PPS mode. Line drop compensation can be enabled in PPS mode through the factory OTP trim. 00b: No compensation 01b: V _{OUT} compensates 150mV at a 3A I _{OUT} 10b: V _{OUT} compensates 300mV at a 3A I _{OUT} 11b: V _{OUT} compensates 600mV at a 3A I _{OUT}
0	R/W	SLEW_RATE	1b	Sets the output slew rate to adjust V _{OUT} . The slew rate can be calculated with the following equation: $V_{OUT} \text{ Slew Rate} = V_{REF} \text{ Slew Rate} \times \text{Feedback Resistor Ratio} \quad (12.5)$ 0b: 0.4mV/μs V _{REF} rising slew rate; 0.08mV/μs V _{REF} falling slew rate 1b: 0.08mV/μs V _{REF} rising slew rate; 0.08mV/μs V _{REF} falling slew rate

PWR_CTL2 (0x19)

Format: Unsigned binary

The PWR_CTL2 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7	R/W	EN_VBUS	0b	Enables the power converter's output directly, even if there is no USB Type-C sink device. 0b: The power converter's on/off status is controlled by the USB Type-C controller 1b: The power converter is enabled
6	R/W	PPS_MIN_SEL	1b	Sets the V _{BUS} under-voltage (UV) threshold: This bit also controls the 3.3V or 5V minimum PPS voltage. 0b: The V _{BUS} UV falling threshold is 4.5V, with 5% accuracy for 5V minimum PPS voltage applications 1b: The V _{BUS} UV falling threshold is 2.97V (3.135V maximum), with 4.5% accuracy for 3.3V minimum PPS voltage applications

5:3	R/W	OTW1_THRESHOLD	100b	Sets the over-temperature warning (OTW1) threshold. The OTW1 threshold has a 20°C hysteresis for recovery. 000: Disable the OTW1 function 001b: 105°C 010b: 115°C 011b: 125°C 100b: 135°C 101b: 145°C 110b: 155°C 111b: 165°C
2:0	R/W	OTP_THRESHOLD	010b	Sets the OT shutdown threshold. OT shutdown has a 20°C hysteresis for recovery. 000b: 155°C 001b: 165°C 010b: 175°C 011b: 185°C 100b–111b: Reserved

VOUT_L (0x1A) and VOUT_H (0x1B)

Format: Linear

The VOUT_L and VOUT_H registers set V_{OUT} following an 11-bit direct format.

Name	VOUT																		
Format	Direct, unsigned binary integer																		
Register Name	N/A					VOUT_H[7:0]							VOUT_L[2:0]						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Access	N/A					R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Function	N/A					Data Bit High							Data Bit Low						
Default (5V)	N/A					250 Integer													

The real-world V_{OUT} (in V) can be calculated with Equation (2):

$$V_{OUT} (V) = V / 100 + 2.5 \quad (2)$$

Where V is an 11-bit, unsigned binary integer from VOUT[10:0] (ranging between 0 and 2047). The V_{OUT} resolution (or minimum step) is 10mV. The MPQ4242B has a feedback network from the OUT pin to the internal FB reference voltage. The feedback resistor ratio is $V_{OUT} / V_{REF} = 12.5$.

The MPQ4242B can enable its output directly, even there is no USB Type-C sink device, by following the steps below:

1. Write CLOCK_ON (0x39) = 0x01 to enable the digital clock.
2. Write EN_VBUS (0x19, bit[7]) = 1b to enable the MPQ4242B's output directly. The default V_{OUT} is 5V, and the default I_{OUT_LIM} is 3.6A.
3. Write I2C_CTL_VOUT_EN (0x1F, bit[1]) = 1b to change V_{OUT} and I_{OUT_LIM} . This bit enables the I²C registers VOUT_L (0x1A), VOUT_H (0x1B), IOUT_LIM (0x1C), and GO_BIT (0x1D).
4. Set GO_BIT = 1 to start the V_{OUT} and I_{OUT_LIM} change based on VOUT_L (0x1A), VOUT_H (0x1B), and IOUT_LIM (0x1C).

IOUT_LIM (0x1C)

Format: Unsigned binary

The IOUT_LIM command configures the CC current limit for the buck-boost output.

Bits	Access	Bit Name	Default	Description
7	R	RESERVED	N/A	Reserved.

6:0	R/W	IOUT_LIM	0x48	Sets the CC current limit for the buck-boost output CC, in 50mA units. The default is 0x48 (3.6A). When changing IOUT_LIM, the internal I_{REF} should have some slew rate control. The ramping slew rate is 1mA/ μ s.
-----	-----	----------	------	--

CTL_SYS0 (0x1D)

Format: Unsigned binary

The CTL_SYS0 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
0	R/W	GO_BIT	0b	Controls when the MPQ4242B starts to change V_{OUT} and I_{OUT_LIM} . Set GO_BIT to 1 to start the output / CC limit change based on V_{OUT_L} (0x1A), V_{OUT_H} (0x1B), and I_{OUT_LIM} (0x1C). When V_{OUT} or I_{OUT_LIM} finishes changing (the internal V_{REF} steps to the target V_{REF}), GO_BIT automatically resets to 0. This prevents false operation of the V_{OUT} / I_{OUT_LIM} scale. 0b: V_{OUT} and I_{OUT_LIM} do not change 1b: V_{OUT} and I_{OUT_LIM} change based on their register(s)

CTL_SYS1 (0x1E)

Format: Unsigned binary

The CTL_SYS1 command controls certain functions.

Bits	Access	Bit Name	Default	Description						
7	R/W	SEND_SRC_CAP	0b	Sends the source capability message. Write 1 to this bit to force the MPQ4242B to send an SRC_CAP message. This bit automatically resets to 0 after the SRC_CAP message is sent out.						
6	R/W	ADDITIONAL_LINE_DROP_COMPENSATION	0b	Enables an additional 150mV for line drop compensation based on the set-up for 0x18, bits[2:1]. This bit is active only when line drop compensation is active. 0b: Disabled 1b: Enabled						
5:4	R/W	EN_OFF_TIMER	00b	Sets the EN off time. There is a shutdown delay time after the EN pin goes low. If EN pulls high while the counter increases, the counter is reset. 00b: No delay 01b: 20 minutes 10b: 40 minutes 11b: 120 minutes						
3:0	R/W	I2C_SLAVE_ADDRESS	0001b	Set the I ² C slave address's A4 to A1 bits. <table border="1" style="margin-left: 20px;"> <tr> <th colspan="2">I²C Address (A7:A1)</th> </tr> <tr> <th>Binary</th> <th>Hex</th> </tr> <tr> <td>1100 001 (Default)</td> <td>61h</td> </tr> </table> I ² C adjustable for A4~A1 Set by I2C_SLAVE_ADDRESS, bits[3:0]	I ² C Address (A7:A1)		Binary	Hex	1100 001 (Default)	61h
I ² C Address (A7:A1)										
Binary	Hex									
1100 001 (Default)	61h									

CTL_SYS2 (0x1F)

Format: Unsigned binary

The CTL_SYS2 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:5	R/W	GPIO1	000b	<p>Sets the GPIO1 pin function.</p> <p>000b: POWER_SHARE1. See the GPIO1_POWER_SHARE section on page 28 for more details</p> <p>001b: GATE. Provides a GND-to-battery short protection drive</p> <p>010b: FAULT, open-drain output. Pulls low to indicate if a fault has occurred, such as OCP, OTP, and GND/DP/DM/CCx to battery short</p> <p>011b: NTC2. When this function is selected, the power share input is controlled by NTC2. The NTC_MODE bit does not control the NTC2 behavior. NTC_HYSTESIS sets the hysteresis</p> <p>100/101b: ATTACH_FLT_ALT, open-drain output. This pin pulls low for 12µs at the connection rising edge if no fault event has occurred. Pulls low if a fault occurs</p> <p>111b: Current monitor output. Represents the signal between ISENS+ and ISENS-</p>
4:2	R/W	GPIO2	000b	<p>Sets the GPIO2 pin function. The default is 000.</p> <p>000b: Reserved</p> <p>001b: POL, open-drain output. Indicates the USB Type-C plug's polarity. When CC1 is selected as the CC line, POL pulls low; when CC2 is selected as the CC line or disconnected, POL is an open drain</p> <p>010b: NTC. Functions as an input pin to sense the external thermal. See the NTC Function section on page 27 for more details</p> <p>011b: VCONN_IN. Apply a 5V / 1.5W power supply on this pin</p> <p>100b: LED_PWM output. It is a 25kHz PWM signal output with an adjustable duty cycle. See the CTL_SYS18 (0x2F) section on page 52 for more details</p> <p>101b: ATTACH. Indicates if the USB Type-C port is connected. Only high or low for two states</p> <p>110b: POWER_SHARE2. GPIO2 power sharing is triggered when the GPIO2 voltage exceeds 1.87V. See the GPIO2_POWER_SHARE section on page 29 for more details</p>
1	R/W	I2C_CTL_VOUT_EN	0b	<p>Enables the I²C registers 0x1A, 0x1B, 0x1C, and 0x1D. The default is 0.</p> <p>0b: V_{OUT} and I_{OUT_LIM} do not change, even after sending commands to VOUT_L, VOUT_H, GO_BIT, and IOUT_LIM. V_{OUT} is controlled by the USB PD engine</p> <p>1b: V_{OUT} changes based on the VOUT/IOUT_LIM register setting</p>
0	R	RESERVED	N/A	Reserved.

CTL_SYS3 (0x20)

Format: Unsigned binary

The CTL_SYS3 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PS_PDP THD	0x5A	<p>Sets the threshold to which the PDO power rating is reduced. When the GPIOx pin (if set to the POWER_SHARE function) pulls low, the MPQ4242B's PD power drops to the values set by PS_PDP THD. The default is 45W.</p> <p>0x01: 0.5W</p> <p>0xFF: 127.5W</p>

CTL_SYS4 (0x21)

Format: Unsigned binary

The CTL_SYS4 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PS_PDP_THD_PDO_SELECT	0xBE	Selects which voltage is enabled in the PDO list. See Table 4 on page 29 for more details. The final PDO current is determined by PS_PDP_THD. The default means 4 fixed PDOs: 5V/9V/15V/20V and 3 APDOs: 3.3V to 5.9V/3.3V to 11V/3.3V to 16V.

CTL_SYS5 (0x22)

Format: Unsigned binary

The CTL_SYS5 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7	R	RESERVED	N/A	Reserved.
6	R/W	PPS_3A_5A	0b	Sets the maximum current for APDO after entering a power sharing, V_{BATT} low, OTW, or NTC state. 0b: 3A 1b: 5A (requires 5A cable)
5:4	R/W	CC_BLANK_TIMER	10b	Sets the blank time when the output CC over-current condition is reached. 00b: No additional CC blank timer 01b: 2ms 10b: 16ms 11b: 32ms
3:2	R	RESERVED	N/A	Reserved.
1:0	R/W	PD_CAP_PEAK_CURRENT	11b	Enables the peak current 1, 2, and 3 capabilities in the SOURCE_CAP_EXTEND message. 00b: Not supported 01b: Support peak current 1 10b: Support peak currents 1 and 2 11b: Support peak currents 1, 2, and 3

CTL_SYS6 (0x23)

Format: Unsigned binary

The CTL_SYS6 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	VBATT_LOW1_PDP	0x5A	Sets the maximum power rating when V_{BATT} drops below its first threshold. PDP is reduced to the value set by these bits. The default is 45W. 0x01: 0.5W 0xFF: 127.5W

CTL_SYS7 (0x24)

Format: Unsigned binary

The CTL_SYS7 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	VBATT_L1_PDO_SELECT	0xBE	Selects which voltage is enabled in the PDO list. See Table 4 on page 29 for more details. The final PDO current is determined by PDP_L. The default means 4 fixed PDOs: 5V/9V/15V/20V and 3 APDOs: 3.3V to 5.9V/3.3V to 11V/3.3V to 16V.

CTL_SYS8 (0x25)

Format: Unsigned binary

The CTL_SYS8 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	VBATT_LOW2_PDP	0x1E	Sets the maximum power rating when V _{BATT} drops below its second threshold. PDP is reduced to the value set by these bits. The default is 15W. 0x01: 0.5W 0xFF: 127.5W

CTL_SYS9 (0x26)

Format: Unsigned binary

The CTL_SYS9 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	VBATT_L2_PDO_SELECT	0xBE	Selects which voltage is enabled in the PDO list. See Table 4 on page 29 for more details. The final PDO current is determined by PDP_L. The default means 4 fixed PDOs: 5V/9V/15V/20V and 3 APDOs: 3.3V to 5.9V/3.3V to 11V/3.3V to 16V.

CTL_SYS10 (0x27)

Format: Unsigned binary

The CTL_SYS10 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	OTW1_PDP	0x5A	Sets the maximum power rating when the die temperature drops below its threshold. PDP is reduced to the value set by these bits. The default is 45W. 0x01: 0.5W 0xFF: 127.5W

CTL_SYS11 (0x28)

Format: Unsigned binary

The CTL_SYS11 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	OTW1_PDO_SELECT	0xBE	Selects which voltage is enabled in the PDO list. See Table 4 on page 29 for more details. The final PDO current is determined by PDP_L. The default means 4 fixed PDOs: 5V/9V/15V/20V and 3 APDOs: 3.3V to 5.9V/3.3V to 11V/3.3V to 16V.

CTL_SYS12 (0x29)**Format:** Unsigned binary

The CTL_SYS12 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	OTW2_NTC_PDP	0x3C	Sets the maximum power rating when the die temperature drops below its threshold. PDP is reduced to the value set by these bits. The default is 30W. 0x01: 0.5W 0xFF: 127.5W

CTL_SYS13 (0x2A)**Format:** Unsigned binary

The CTL_SYS13 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:0	R/W	OTW2_NTC_PDO_SELECT	0xBE	Selects which voltage is enabled in the PDO list. See Table 4 on page 29 for more details. The final PDO current is determined by PDP_L. The default means 4 fixed PDOs: 5V/9V/15V/20V and 3 APDOs: 3.3V to 5.9V/3.3V to 11V/3.3V to 16V.

CTL_SYS14 (0x2B)**Format:** Unsigned binary

The CTL_SYS14 command controls certain functions.

Bits	Access	Bit Name	Default	Description																																					
7:4	R/W	VBATT_LOW_THLD1	0100b	<p>Sets the input voltage detection threshold. See the Low Battery Operation section on page 28 for more details.</p> <table border="1"> <thead> <tr> <th>D[7:4]</th> <th>Input Voltage Falling</th> <th>Hysteresis</th> </tr> </thead> <tbody> <tr> <td>0000</td> <td>This function is disabled</td> <td>This function is disabled</td> </tr> <tr> <td>0001</td> <td>12.6V</td> <td rowspan="15">800mV</td> </tr> <tr> <td>0010</td> <td>12.2V</td> </tr> <tr> <td>0011</td> <td>11.8V</td> </tr> <tr> <td>0100</td> <td>11.4V</td> </tr> <tr> <td>0101</td> <td>11V</td> </tr> <tr> <td>0110</td> <td>10.6V</td> </tr> <tr> <td>0111</td> <td>10.2V</td> </tr> <tr> <td>1000</td> <td>9.8V</td> </tr> <tr> <td>1001</td> <td>9.4V</td> </tr> <tr> <td>1010</td> <td>9V</td> </tr> <tr> <td>1011</td> <td>8.6V</td> </tr> <tr> <td>1100</td> <td>8.2V</td> </tr> <tr> <td>1101</td> <td>7.8V</td> </tr> <tr> <td>1110</td> <td>7.4V</td> </tr> <tr> <td>1111</td> <td>7V</td> </tr> </tbody> </table>	D[7:4]	Input Voltage Falling	Hysteresis	0000	This function is disabled	This function is disabled	0001	12.6V	800mV	0010	12.2V	0011	11.8V	0100	11.4V	0101	11V	0110	10.6V	0111	10.2V	1000	9.8V	1001	9.4V	1010	9V	1011	8.6V	1100	8.2V	1101	7.8V	1110	7.4V	1111	7V
D[7:4]	Input Voltage Falling	Hysteresis																																							
0000	This function is disabled	This function is disabled																																							
0001	12.6V	800mV																																							
0010	12.2V																																								
0011	11.8V																																								
0100	11.4V																																								
0101	11V																																								
0110	10.6V																																								
0111	10.2V																																								
1000	9.8V																																								
1001	9.4V																																								
1010	9V																																								
1011	8.6V																																								
1100	8.2V																																								
1101	7.8V																																								
1110	7.4V																																								
1111	7V																																								

				Sets the input voltage detection threshold. See the Low Battery Operation section on page 28 for more details.																																																			
3:0	R/W	VBATT_LOW_THLD2	1000b	<table border="1"> <thead> <tr> <th>D[3:0]</th> <th>Input Voltage Falling</th> <th>Input Voltage Rising</th> </tr> </thead> <tbody> <tr><td>0000</td><td>This function is disabled</td><td>This function is disabled</td></tr> <tr><td>0001</td><td>11.8V</td><td></td></tr> <tr><td>0010</td><td>11.4V</td><td></td></tr> <tr><td>0011</td><td>11V</td><td></td></tr> <tr><td>0100</td><td>10.6V</td><td></td></tr> <tr><td>0101</td><td>10.2V</td><td></td></tr> <tr><td>0110</td><td>9.8V</td><td></td></tr> <tr><td>0111</td><td>9.4V</td><td></td></tr> <tr><td>1000</td><td>9V</td><td></td></tr> <tr><td>1001</td><td>8.6V</td><td></td></tr> <tr><td>1010</td><td>8.2V</td><td></td></tr> <tr><td>1011</td><td>7.8V</td><td></td></tr> <tr><td>1100</td><td>7.4V</td><td></td></tr> <tr><td>1101</td><td>7V</td><td></td></tr> <tr><td>1110</td><td>6.6V</td><td></td></tr> <tr><td>1111</td><td>6.2V</td><td></td></tr> </tbody> </table> 800mV	D[3:0]	Input Voltage Falling	Input Voltage Rising	0000	This function is disabled	This function is disabled	0001	11.8V		0010	11.4V		0011	11V		0100	10.6V		0101	10.2V		0110	9.8V		0111	9.4V		1000	9V		1001	8.6V		1010	8.2V		1011	7.8V		1100	7.4V		1101	7V		1110	6.6V		1111	6.2V	
D[3:0]	Input Voltage Falling	Input Voltage Rising																																																					
0000	This function is disabled	This function is disabled																																																					
0001	11.8V																																																						
0010	11.4V																																																						
0011	11V																																																						
0100	10.6V																																																						
0101	10.2V																																																						
0110	9.8V																																																						
0111	9.4V																																																						
1000	9V																																																						
1001	8.6V																																																						
1010	8.2V																																																						
1011	7.8V																																																						
1100	7.4V																																																						
1101	7V																																																						
1110	6.6V																																																						
1111	6.2V																																																						

CTL_SYS15 (0x2C)**Format:** Unsigned binary

The CTL_SYS15 command controls certain functions.

Bits	Access	Bit Name	Default	Description																																																			
				Sets the input voltage detection threshold. See the Low Battery Operation section on page 28 for more details.																																																			
7:4	R/W	VBATT_LOW_THLD3	1010b	<table border="1"> <thead> <tr> <th>D[7:4]</th> <th>Input Voltage Falling</th> <th>Input Voltage Rising</th> </tr> </thead> <tbody> <tr><td>0000</td><td>This function is disabled</td><td>This function is disabled</td></tr> <tr><td>0001</td><td>9.8V</td><td></td></tr> <tr><td>0010</td><td>9.4V</td><td></td></tr> <tr><td>0011</td><td>9V</td><td></td></tr> <tr><td>0100</td><td>8.6V</td><td></td></tr> <tr><td>0101</td><td>8.2V</td><td></td></tr> <tr><td>0110</td><td>7.8V</td><td></td></tr> <tr><td>0111</td><td>7.4V</td><td></td></tr> <tr><td>1000</td><td>7V</td><td></td></tr> <tr><td>1001</td><td>6.6V</td><td></td></tr> <tr><td>1010</td><td>6.2V</td><td></td></tr> <tr><td>1011</td><td>5.8V</td><td></td></tr> <tr><td>1100</td><td>5.4V</td><td></td></tr> <tr><td>1101</td><td>5V</td><td></td></tr> <tr><td>1110</td><td>4.6V</td><td></td></tr> <tr><td>1111</td><td>4.2V</td><td></td></tr> </tbody> </table> 800mV	D[7:4]	Input Voltage Falling	Input Voltage Rising	0000	This function is disabled	This function is disabled	0001	9.8V		0010	9.4V		0011	9V		0100	8.6V		0101	8.2V		0110	7.8V		0111	7.4V		1000	7V		1001	6.6V		1010	6.2V		1011	5.8V		1100	5.4V		1101	5V		1110	4.6V		1111	4.2V	
D[7:4]	Input Voltage Falling	Input Voltage Rising																																																					
0000	This function is disabled	This function is disabled																																																					
0001	9.8V																																																						
0010	9.4V																																																						
0011	9V																																																						
0100	8.6V																																																						
0101	8.2V																																																						
0110	7.8V																																																						
0111	7.4V																																																						
1000	7V																																																						
1001	6.6V																																																						
1010	6.2V																																																						
1011	5.8V																																																						
1100	5.4V																																																						
1101	5V																																																						
1110	4.6V																																																						
1111	4.2V																																																						
3:2	R/W	VBATT_LOW_BLK	10b	Sets the V _{BATT} low 1, V _{BATT} low 2, and V _{BATT} low 3 blank times. 00b: 10ms 01b: 160ms 10b: 320ms 11b: 640ms. There is an internal trim option to double the blank timer. Contact the factory for a longer blank time																																																			
1:0	R	RESERVED	N/A	Reserved.																																																			

CTL_SYS16 (0x2D)

Format: Unsigned binary

The CTL_SYS16 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7	R	RESERVED	N/A	Reserved.
6:4	R/W	EXT_HS_FET_RON	000b	Sets the $R_{(DS)ON}$ for the external N-channel MOSFET at a 10V V_{GS} . Select $R_{(DS)ON}$ such that it matches the MOSFET's actual $R_{(DS)ON}$ at a 10V V_{GS} . 000b: This function is disabled 001b: 5mΩ 010b: 7.5mΩ 011b: 10mΩ 100b: 12.5mΩ 101b~111b: Reserved
3:1	R/W	OTW2_THRESHOLD	110b	Sets the over-temperature warning (OTW) threshold. The default is 110b. OTW has a 20°C hysteresis for recovery. 000b: Disable OTW 001b: 105°C 010b: 115°C 011b: 125°C 100b: 135°C 101b: 145°C 110b: 155°C 111b: 165°C
0	R	RESERVED	N/A	Reserved.

CTL_SYS17 (0x2E)

Format: Unsigned binary

The CTL_SYS17 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7:6	R/W	PEAK_CL	11b	Sets the high-side peak current limit in boost mode. 00b: 8A 01b: 12A 10b: 16A 11b: 20A
5	R	RESERVED	N/A	Reserved.
4	R/W	NTC_HYSTERESIS	1b	Sets the NTC thermal recovery hysteresis. This bit controls both NTC and NTC2. 0b: 10% 1b: 20%
3	R/W	NTC_MODE	0b	Sets the behavior if the NTC function is triggered. 0b: Shut down the MPQ4242B 1b: Reduce the PD power to the value set by OTW2_NTC_PDP
2	R	RESERVED	N/A	Reserved.
1:0	R/W	VBUS_VOLTAGE	10b	Sets the default VBUS voltage. 00b: 5V 01b: 5.05V 10b: 5.1V 11b: 5.15V

CTL_SYS18 (0x2F)

Format: Unsigned binary

The CTL_SYS18 command controls certain functions.

Bits	Access	Bit Name	Default	Description
7	R/W	OTP_PROGRAM	0x0	Configures the I ² C register value into the OTP memory cell. A password is required before using the OTP. The OTP can be configured once. Only the MPQ4242B-0000 and OTP_PAGE = 0 can be used to configure the OTP. Write 1 to this bit to implement OTP configurations. After configuring is complete, this bit automatically resets to 0. Apply a 12V V _{IN} while configuring the OTP.
6:0	R/W	LED_PWM_DUTY	0x32	Sets the LED_PWM output duty cycle. The minimum value is 5%; the maximum is 100%. 0x05: 5% 0x64: 100%

STATUS1 (0x30)

Format: Unsigned binary

The STATUS1 command returns 1 data byte with information related to the MPQ4242B.

Bits	Access	Bit Name	Description
7	R	ATTACHED	Returns whether the sink is connected. 0b: Disconnected 1b: Connected
6	R	NTC2_ENTER	Returns whether an NTC2 event has occurred. 0b: No NTC2 event has occurred 1b: An NTC2 event has occurred
5	R	POL	Indicates the USB Type-C polarity. 0b: CC1 is selected as the CC line 1b: CC2 is selected as the CC line
4	R	SHORT_VBATT	Indicates the output bus voltage status. 0b: Normal state 1b: DP, DM, CC1, CC2, or USB_GND is shorted with the battery voltage
3	R	FAULT	Indicates whether a fault has happened. Fault conditions include OCP, OTP, and GND/DP/DM/CCx to battery shorts. 0b: No fault has occurred 1b: One or more fault events have occurred
2	R	OTP_PAGE	Indicates the current OTP page index. 0b: Page 0. No OTP configurations 1b: Page 1
1	R	CC_CV	Indicates the output power status. 0b: The output is in a CV state 1b: The output is in a CC current limit state
0	R	NTC_ENTER	Returns whether an NTC event has occurred. 0b: No NTC event has occurred 1b: An NTC event has occurred

STATUS2 (0x31)**Format:** Unsigned binary

The STATUS2 command returns 1 data byte with contents related to the MPQ4242B. This register is a latch-off register, and it is cleared when it is read.

Bits	Access	Bit Name	Description
7	R	VBATT_LOW1_FLAG	Indicates whether V_{IN} is below its first lower threshold. 0b: V_{IN} is not below its threshold 1b: V_{IN} is below its threshold
6	R	VBATT_LOW2_FLAG	Indicates whether V_{IN} is below its second lower threshold. 0b: V_{IN} is not below its threshold 1b: V_{IN} is below its threshold
5	R	OTW1	Indicates whether the device is in an over-temperature warning (OTW1) state. 0b: No OTW1 state has been detected 1b: The device is in an OTW1 state
4	R	OTW2	Indicates if the device is in an over-temperature warning (OTW2) state. 0b: No OTW2 state has been detected 1b: The device is in an OTW2 state
3:1	R	SELECTED_PDO_INDEX	Returns the sink's selected PDO index. 0: No PD contract 1~7: PDO1~7 has been selected
0	R	PDO_TYPE	Indicates if the sink's selected PDO is fixed PDO or APDO (PPS). 0b: Fixed PDO 1b: APDO

STATUS3 (0x32)**Format:** Unsigned binary

The STATUS3 command returns an instantaneous value. It is a non-latch register.

Bits	Access	Bit Name	Description
7:0	R	CONTRACT_POWER	Returns the PD contracted power in 0.5W units. Calculate the fixed PDO value with the following equation: $\text{Fixed PDO} = \text{Voltage} \times \text{Maximum Current};$ Calculate the PPS with the following equation: $\text{PPS} = \text{Max Voltage} \times \text{Max Current}.$ If there is no PD contract, the value is 7.5W or 15W, depending on R_P .

ID1 (0x33)**Format:** Unsigned binary

The ID1 command sets the OTP suffix code, which is defined by MPS.

Bits	Access	Bit Name	Description
7:0	R	OTP_SUFFIX_CODE	"0x00" represents the MPQ4242B-0000.

ID2 (0x34)**Format:** Unsigned binary

The ID2 command sets the OTP software revision number, as defined by MPS.

Bits	Access	Bit Name	Description
7:0	R	OTP_SOFTWARE_REVISION_NO	Stores the revision number, which is the OTP value.

FW_REV (0x35)**Format:** Unsigned binary

The FW_REV command controls certain functions.

Bits	Access	Bit Name	Description
7	R	MISMATCH	Indicates if the sink request sets a mismatch bit. Defined in the PD specification. 0b: The MISMATCH bit is set to 0 1b: The MISMATCH bit is set to 1
6	R	GIVEBACK_FLAG	This bit is set if the sink requests a GIVEBACK flag.
5	R	CABLE_CAP	0b: The cable can handle 3A only 1b: 5A cable
4:0	R	FIRMWARE_REVISION	Returns the PD firmware revision number.

MAX_REQ_CUR (0x36)**Format:** Unsigned binary

The MAX_REQ_CUR command controls certain functions.

Bits	Access	Bit Name	Description
7:0	R	MAX_REQ_CUR	Sets the sink-requested maximum operation current (when the MISMATCH bit = 1) in 20mA units. These bits are only valid when GIVEBACK_FLAG = 0 and a fixed PDO is selected.

MFR_ID (0x37)**Format:** Unsigned binary

The MFR_ID command returns the manufacturer ID.

Bits	Access	Bit Name	Description
7:0	R	MANUFACTURER_ID	Returns the manufacturer ID. The default is 0000 1001b.

DEV_ID (0x38)**Format:** Unsigned binary

The DEV_ID command returns the device ID.

Bits	Access	Bit Name	Description
7:0	R	DEVICE_ID	Returns the device ID. The default is 0101 1000b.

CLK_ON (0x39)**Format:** Unsigned binary

The CLK_ON command enables the digital clock.

Bits	Access	Bit Name	Description
7:0	W	CLOCK_ON	Enables the digital clock. Write 0x01 to enable the digital clock. No I ² C registers can be modified before the digital clock is enabled. This bit automatically resets to 0 after the clock is enabled. The digital clock is enabled when a USB Type-C device is connected. Write 0 to 0x39, set the EN bit to 0, or pull down the EN pin and VIN pin below their UVLO thresholds to disable the digital clock again.

GPIO1 and GPIO2 Options

GPIO1 Options	GATE	POWER_SHARE1	FAULT	NTC2	ATTACH_FLT_ALT	IMON
GPIO2 Options	POL	NTC	VCONN_IN (max 5.25V)	LED_PWM	ATTACH	POWER_SHARE2

APPLICATION INFORMATION

COMPONENT SELECTION

Selecting the Inductor

In a buck-boost topology, the inductor must support buck applications with the maximum input voltage (V_{IN}) and boost applications with the minimum V_{IN} . Two critical inductances can be determined according to the buck mode and boost mode current ripple. The first inductance (L_{MIN_BUCK}) can be calculated with Equation (3):

$$L_{MIN_BUCK} = \frac{V_{OUT} \times (V_{IN(MAX)} - V_{OUT})}{V_{IN(MAX)} \times f_{REQ} \times \Delta I_L} \quad (3)$$

The second inductance (L_{MIN_BOOST}) can be estimated with Equation (4):

$$L_{MIN_BOOST} = \frac{V_{IN(MIN)} \times (V_{OUT} - V_{IN(MIN)})}{V_{OUT} \times f_{REQ} \times \Delta I_L} \quad (4)$$

Where f_{REQ} is the switching frequency, and ΔI_L is the peak-to-peak inductor current ripple.

Typically, the peak-to-peak ripple is between 1A and 3A. In addition to the inductance, the inductor must support the peak current in buck and boost applications to avoid saturation. The peak current in buck mode can be calculated with Equation (5):

$$I_{PEAK_BUCK} = I_{OUT} + \frac{V_{OUT} \times (V_{IN(MAX)} - V_{OUT})}{2 \times V_{IN(MAX)} \times f_{REQ} \times L} \quad (5)$$

The peak current in boost mode can be estimated with Equation (6):

$$I_{PEAK_BOOST} = \frac{V_{OUT} \times I_{OUT}}{\eta \times V_{IN(MIN)}} + \frac{V_{IN(MIN)} \times (V_{OUT} - V_{IN(MIN)})}{2 \times V_{OUT} \times f_{REQ} \times L} \quad (6)$$

Where η is MPQ4242B's estimated efficiency.

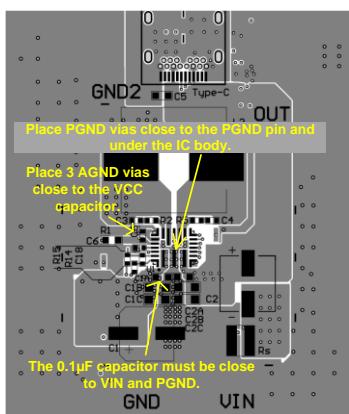
Selecting the Input Capacitor

It is recommended to use ceramic capacitors plus an electrolytic capacitor for the input and output capacitors. This filters the input and output ripple current and helps achieve stable operation. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. For automotive applications, a 100 μ F electrolytic capacitor and two 10 μ F + 0.1 μ F ceramic capacitors are recommended.

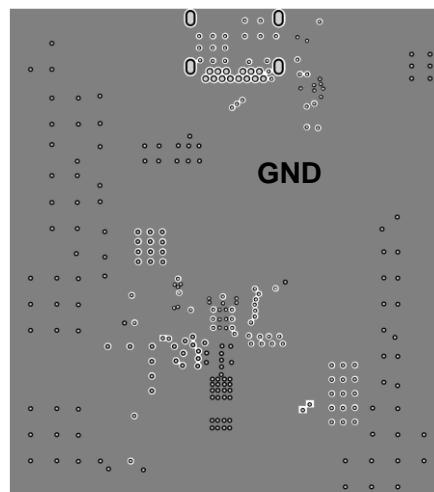
The input capacitor can be electrolytic, tantalum, or ceramic. When using an electrolytic capacitor, place two additional, high-quality ceramic capacitors as close to V_{IN} as possible.

Selecting the Output Capacitor

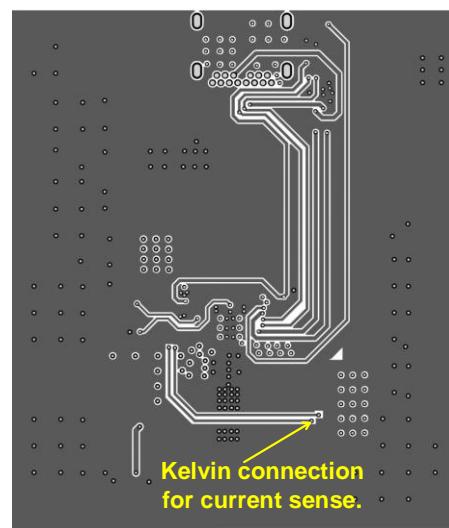
The device requires an output capacitor (C_{OUT}) to maintain the DC output voltage. Typically, a 100 μ F polymer or hybrid electric capacitor and two 10 μ F + 0.1 μ F ceramic output capacitors are recommended for excellent loop stability and transient response.

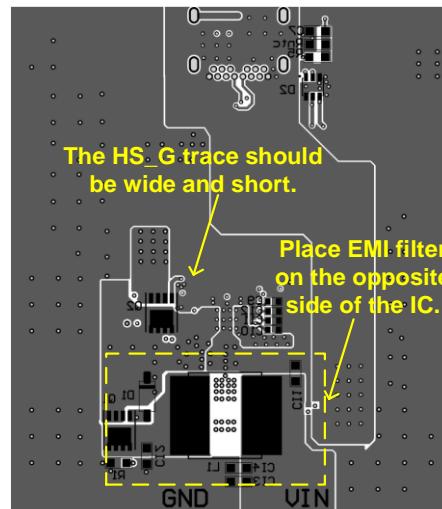

The E-capacitor's ESR must be below 50m Ω for excellent loop stability, transient response, and efficiency.

In GND-to-battery short applications, the output E-capacitor's negative node must be connected to the current-sense resistor (see Figure 24 on page 58).


PCB Layout Guidelines

Efficient PCB layout is critical for standard operation and thermal dissipation. For the best results, refer to Figure 23 and follow the guidelines below:


1. Use short, direct, and wide traces to connect OUT.
2. Add vias under the IC, then route the OUT trace on both PCB layers.
3. Place a large copper plane for PGND. Add multiple vias to improve thermal dissipation and connect AGND to PGND.
4. Place PGND vias close to PGND pin and under the IC's body.
5. Place the VCC decoupling capacitor as close as possible to the VCC pin.
6. Place 3 vias close to the VCC decoupling capacitor's AGND terminal.
7. Place a large copper plane for SW.
8. Place two ceramic input decoupling capacitors as close as possible to VIN, VOUT, and PGND to improve EMI performance.
9. Place an input filter at the bottom layer to improve EMI performance.
10. Use Kelvin connections for the output current sense traces (ISENS+ and ISENS-).
11. Place the input capacitor also close to the VIN pin as possible; in particular, the 0.1 μ F capacitor should be placed close to the VIN pin and PGND.
12. Make the HS_G trace wide and short.


Top Layer

Mid-Layer 1

Mid-Layer 2

Bottom Layer

Figure 23: Recommended PCB Layout

TYPICAL APPLICATION CIRCUITS

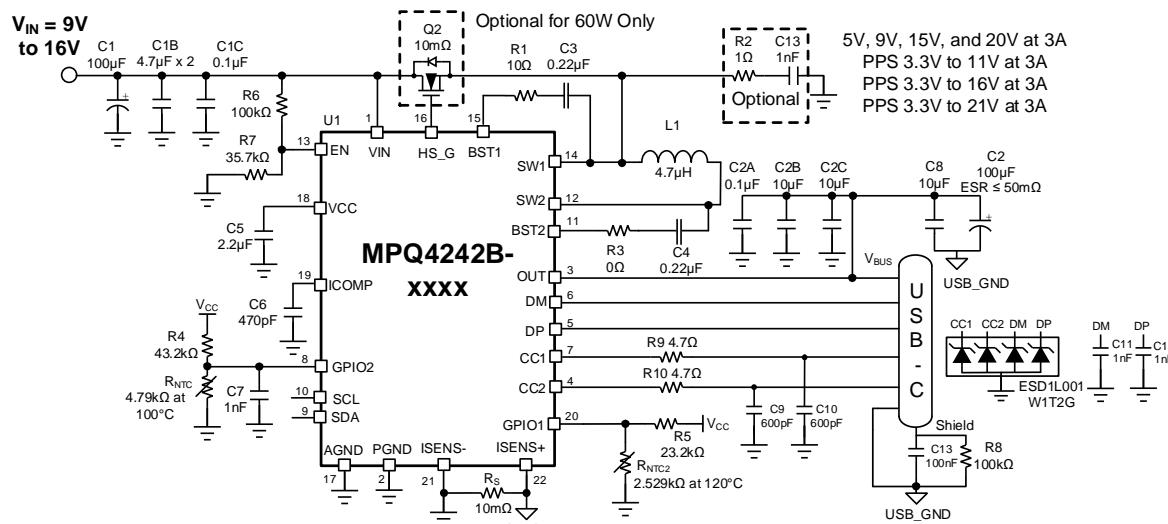


Figure 24: Typical Application Circuit (60W PD Application)

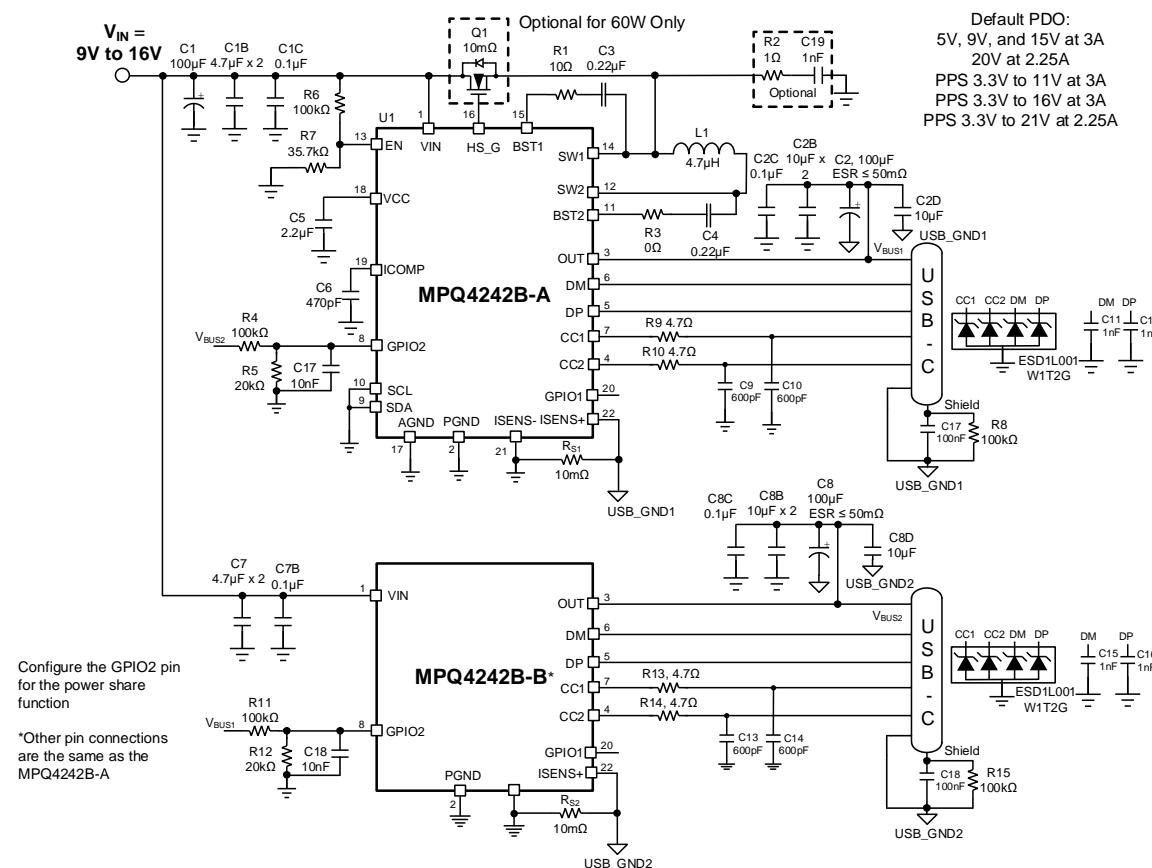


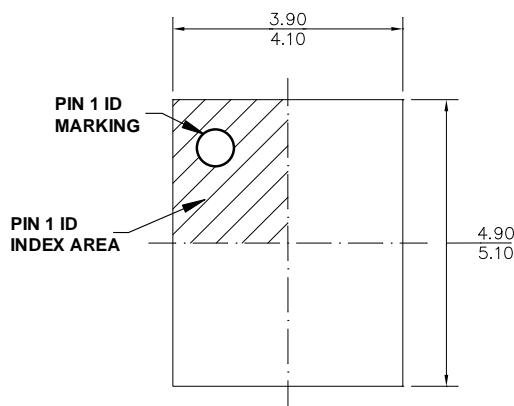
Figure 25: Typical Application Circuit (Dual-Channel 45W PD Application with GPIO2_POWER_SHARE) ^{(18) (19) (20)}

Notes:

- 18) See Table 5 on page 29 for the GPIO2 power share PDP management. V_{BUS} exceeds 11.2V to trigger power share function (GPIO2 input voltage $> 1.87V$).
- 19) GPIO1 can be configured as a gate drive for the external low-side N-channel power MOSFET used for USB_GND short to battery protection.
- 20) TVS diodes are required to pass the $\pm 8kV$ contact $= \pm 15kV$ air discharge per IEC ESD specifications.

MPQ4242BGVE-0000 CONFIGURATION TABLE

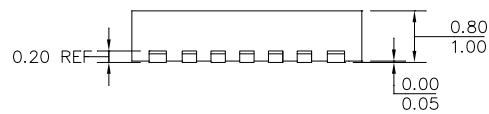
OTP Items(PDO)	Enabled/Disabled	PDO Type	Voltage Setting	Current Setting
PDO1	Enabled	Fixed PDO	5V	3A
PDO2	1b: Enabled (default)	0b: Fixed PDO (default)	9V (default)	3A
PDO3	1b: Enabled (default)	0b: Fixed PDO (default)	15V (default)	3A
PDO4	1b: Enabled (default)	0b: Fixed PDO (default)	20V (default)	3A
PDO5	1b: Enabled (default)	1b: APDO (default)	3.3V to 11V	3A
PDO6	1b: Enabled (default)	1b: APDO (default)	3.3V to 16V	3A
PDO7	1b: Enabled (default)	1b: APDO (default)	3.3V to 21V	3A

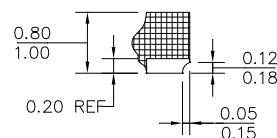

Table 7: OTP Descriptions

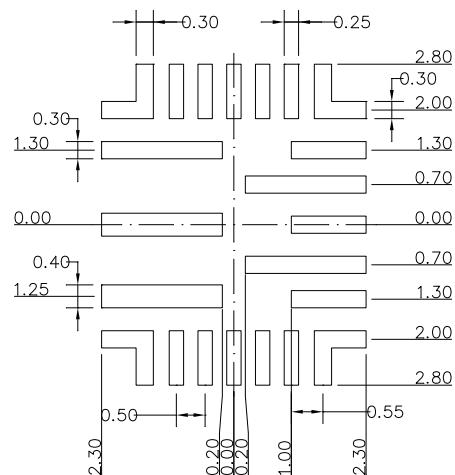
OTP Items	Description	Value
GPIO1	Configures the GPIO1 pin's function.	000b: POWER_SHARE function (default)
GPIO2	Configures the GPIO2 pin's function.	000b: Reserved
OTP_THRESHOLD	Sets the over-temperature shutdown threshold.	010b: 175°C (default)
OTW1_THRESHOLD	Sets the over-temperature warning threshold.	100b: 135°C (default)
OTW1_PDP	Sets the maximum power rating when the die temp drops below its threshold.	45W (default)
OTW1_PDO_SELECT	Selects which voltage is enabled in the PDO list.	0xBE (default)
OTW2_THRESHOLD	Sets the over-temperature warning threshold.	110b: 155°C (default)
OTW2_NTC_PDP	Set the maximum power rating when the die temperature drops below its threshold.	30W (default)
OTW2_NTC_PDO_SELECT	Selects which voltage is enabled in the PDO list.	0xBE (default)
NTC_HYSTERICIS	Sets the NTC thermal recovery hysteresis.	1b: 20% (default)
NTC_MODE	Sets the MPQ4242B behavior when the NTC is triggered.	0b: Shut down the MPQ4242B (default)
VBATT_LOW_THLD1	Sets the first threshold for V_{IN} detection.	0100b: 11.4V (default)
VBATT_LOW_THLD2	Sets the second threshold for V_{IN} detection.	1000b: 9V (default)
VBATT_LOW_THLD3	Sets the third threshold for V_{IN} detection. The device shuts down after this threshold is triggered.	1010b: 6.2V (default)
VBATT_LOW_BLK	Sets the V_{BATT} low 1 and V_{BATT} low 2 blank times.	10b: 320ms (default)
VBATT_LOW1_PDP	Sets the maximum power rating when V_{BATT} falls below its first threshold.	45W (default)
VBATT_L1_PDO_SELECT	Select the voltage that is enabled in the PDO list.	0xBE (default)
VBATT_LOW2_PDP	Sets the maximum power rating when V_{BATT} falls below its second threshold.	15W (default)
VBATT_L2_PDO_SELECT	Selects the voltage that is enabled in the PDO list.	0xBE (default)
PS_PDP_THD	Set the thresholds to which the PDO power rating is reduced.	45W (default)
PS_PDP_THD_PDO_SELECT	Selects which voltage is enabled in the PDO list.	0xBE (default)
VBUS_VOLTAGE	Sets the default VBUS voltage.	10b: 5.1V (default)

MODE	Sets the PFM/PWM mode.	1b: Forced PWM mode (default)
FREQ	Sets the switching frequency	01b: 420kHz (default)
DITHER	Sets the spread spectrum feature	0b: No frequency spread spectrum (default)
EN_OFF_TIMER	Sets the EN off timer.	000b: No delay (default)
LINE_DROP_COMP	Sets the output voltage compensation vs load feature.	00b: No compensation (default)
SLEW_RATE	Sets the output slew rate to adjust V_{OUT} .	1b: 0.08mV/ μ s V_{REF} rising slew rate, 0.08mV/ μ s V_{REF} falling slew rate (default)
PEAK_CL	Sets the high-side peak current limit in boost mode.	11b: 20A (default)
RSENS	Sets the external CC limit R_{SENS} resistor value.	1b: 10m Ω
EXT_HS_FET_RON	Sets the $R_{DS(ON)}$ of the external N-channel MOSFET at 10V _{GS} .	000b: This function is disabled (default)
CC_BLANK_TIMER	Sets the blank time when the output CC over-current condition is reached.	10b: 16ms (default)
LEGACY_CHARGING_MODE_SEL	Selects QC 3.0/DCP short mode / Divider mode.	00b: All DCP modes are active (default)
I2C_SLAVE_ADDRESS	Sets the MPQ4242B's I ² C slave address.	61h (default)
VIN_OVP	Enables the VIN_OVP function. When $V_{IN} > 22V$, the MPQ4242B shuts down.	0b: Disable VIN_OVP function

PACKAGE INFORMATION

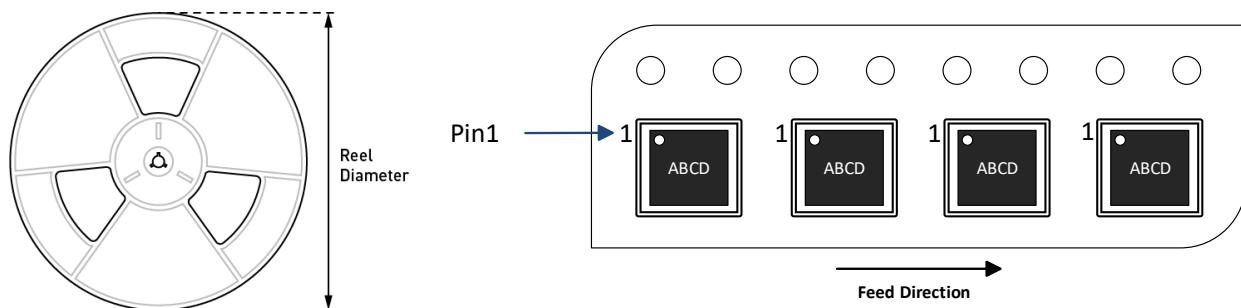

QFN-22 (4mmx5mm)


TOP VIEW


BOTTOM VIEW

SIDE VIEW

SECTION A-A



RECOMMENDED LAND PATTERN

NOTE:

- 1) THE LEAD SIDE IS WETTABLE.
- 2) ALL DIMENSIONS ARE IN MILLIMETERS.
- 3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
- 4) JEDEC REFERENCE IS MO-220.
- 5) DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package Description	Quantity/Reel	Quantity/Tube	Quantity/Tray	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MPQ4242BGVE-0000-AEC1-Z	QFN-22 (4mmx5mm)	5000	N/A	N/A	13in	12mm	8mm
MPQ4242BGVE-xxxx-AEC1-Z	QFN-22 (4mmx5mm)						

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	9/11/2024	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.