
Description

The TDA2050A is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB audio amplifier. Thanks to its high power capability the TDA2050A is able to provide up to 35W true rms power into 4 ohm load@ THD =10%, VS=36V, f=1KHz and up to 32W into 8ohm load @THD=10%, 44V, f=1KHz. Moreover, the TDA2050A delivers typically 50W music power into 4 ohm load over 1 sec at VS=22.5V, f=1KHzThe high power and very low harmonic and crossover distortion (THD=0.05% typ, @ VS = 44V, PO = 0.1 to 15W, RL=8ohm, =100Hz to 15KHz) make the device most suitable for both HiFi and high class TV sets.)

TO-263-5L

Typical Application

Thermal Data

Symbol	Parameter	Value	Unit
Rth (j-case)	Thermal Resistance Junction-case Max	3	°C/W

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	± 25	V
Vi	Input Voltage	Vs	
Vi	Differential Input Voltage	±15	V
lo	Peak Output Current (internally limited)	4.5	Α
Ptot	Total Power Dissipation at Tcase =90°C	25	W
Tstg, Tj	Storage and Junction Temperature	- 40 to + 150	°C

Electrical Characteristics

(Refer to the test circuit, VS = ± 18V, Tamb = 25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур	Max.	Unit
Vs	Supply Voltage		±4.5		±25	V
Id	Quiescent Drain Current		14.5	26	35	mA
Ib	Input Bias Current	VS = ±22 V		0.2	2	μA
Vos	Input Offset Voltage	VS = ±22 V		±2	±20	mV
los	Input Offset Current	VG 122 V		±20	±200	nA
100	Input onest curent	d=0.5%, Gv=26dB		1 220	1200	117 \
		f = 40 to 15 KHz				
D.O.	Out at Bassas		24	28		l w
PO	Output Power	$RL = 4\Omega$	24			
		$RL = 8\Omega$		18		W
		VS = ±22 V RL = 8Ω	22	25		W
BW	Power Bandwidth	Po = 15W RL = 4Ω		40		kHz
SR	Slew Rate			6		V/µsec
Gv	Open Loop Voltage Gain	f = 1kHz		80		dB
Gv	Closed Loop Voltage Gain	f = 1 kHz	30	30.5	31	dB
		Po = 0.1 to 14W RL = 4Ω		0.08		%
		f = 40 to 15KHz f =1kHz		0.03		%
d	Total Harmonic Distortion	Po = 0.1 to 9W				
		f = 40 t o 15000 Hz RL = 8Ω		0.5		%
d2	Second Order CCIF Intermodulation Distortion			0.03		%
d3	Third Order CCIF Intermodulation Distortion			0.08		%
e N	Input Noise Voltage	B = Curve A		2		μV
		B = 22 Hz to 22 kHz		3	10	μV
iN	Input Noise Current	B = Curve A		50		pА
		B = 22 Hz to 22 kHz		80	200	pА
		RL= 4Ω , Rg = $10k\Omega$, B = Curve A				
S/N	Signal to Noise Ratio	PO = 15W		106		dB
		PO = 1W		94		dB
Ri	Input Resistance(pin 1)	(pen loop) f = 1kHz	0.5	5		ΜΩ
SVR	Supply Voltage Rejection	RL = 4Ω , Rg = $22k\Omega$ Gv = $26dB$, f = $100 Hz$		45		dB
Τj	Thermal Shut-down Junction			140		°C

Figure 1 : Single Supply Amplifier

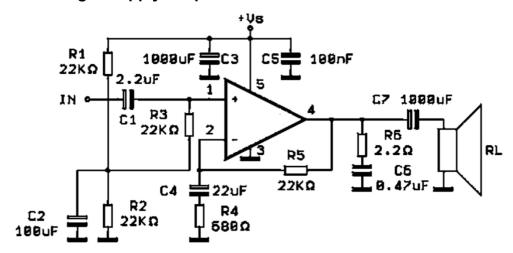


Figure 2: Open Loop-frequency Response

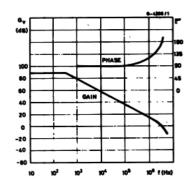


Figure 4: Total Harmonic Distortion versus Output Power (test using rise filters)

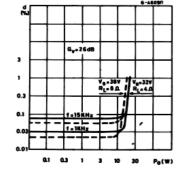


Figure 3: Output Power versus Supply Voltage

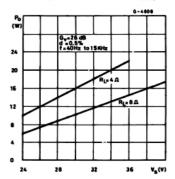
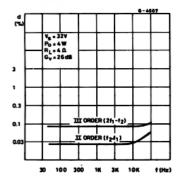



Figure 5 : Two Tone CCIF Intremodulation Distortion

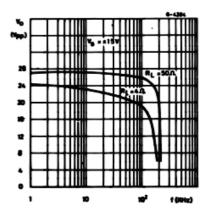


Figure 8: Output Power versus Supply Voltage

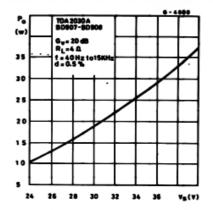


Figure 10: Output Power versus Input Level

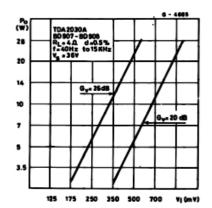


Figure 7: Maximum Allowable Power Dissipation versus Ambient Temperature

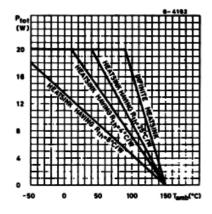


Figure 9 : Total Harmonic Distortion versus Output Power

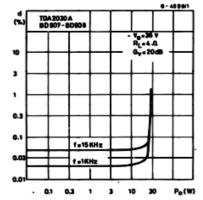


Figure 11 : Power Dissipation versus Output Power

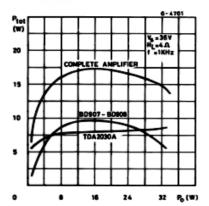
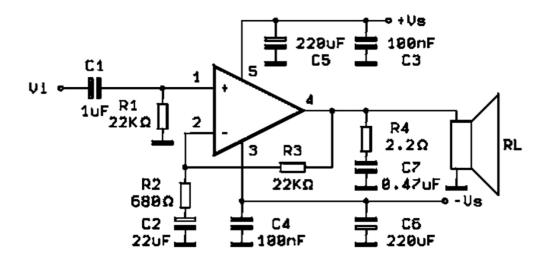
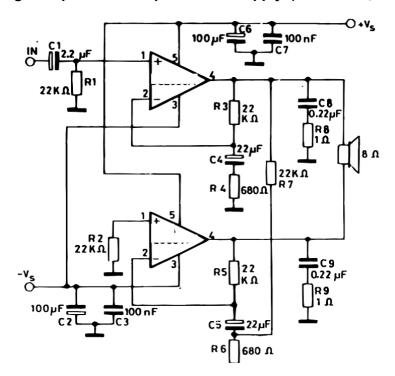
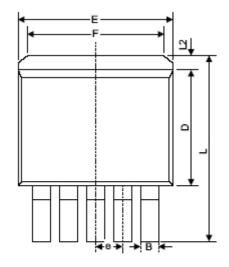
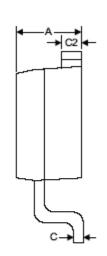
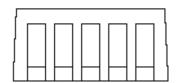


Figure 12: Typical Amplifier with Spilt Power Supply


Figure 13 : Bridge Amplifier with Split Power Supply (PO = 34W, VS = ± 16V)



Outline Drawing

TO-263-5L Unit: mm

Symbol	o	Dimensions I	n Millimeters	Millimeters Dimensions	
	Min.	Max.	Min.	Max.	
Α	4.06	4.83	0.160	0.190	
В	0.76	1.02	0.030	0.040	
С	0.36	0.64	0.014	0.025	
C2	1.14	1.40	0.045	0.055	
D	8.64	9.65	0.340	0.380	
E	9.78	10.54	0.385	0.415	
е	1.57	1.85	0.062	0.073	
F	6.60	7.11	0.260	0.280	
L	15.11	15.37	0.595	0.605	
L2	-	1.40	-	0.055	

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.