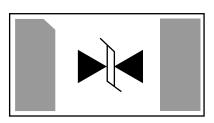


1.Description

The LESD8LH5.0CT5G is designed to protect voltage sensitive components that require ultra –low capacitance from ESD and transient voltage events. Excellent clamping capability, low capacitance, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. Because of its low capacitance, it is suited for use in high frequency designs such as USB 2.0 high speed and antenna line applications.

3.Features


- Ultra Low Capacitance 3 pF
- Low Clamping Voltage
- Small Body Outline Dimensions:0.039" x 0.024" (1.00 mm x 0.60mm)
- Low Body Height: 0.020" (0.5 mm)

2.Mechanical Characteristics

- CASE: Void-free, transfer-molded, thermosetting
- plastic Epoxy Meets UL 94 V-0
- LEAD FINISH: 100% Matte Sn (Tin)
- Qualified Max Reflow Temperature:260°C
- Device Meets MSL 1 Requirements

- Stand-off Voltage: 5 V
- Low Leakage
- Response Time is Typically < 1.0 ns
- IEC61000-4-2 Level 4 ESD Protection
- This is a Pb-Free Device

4. Pinning information

SOD-882

Jan.2025

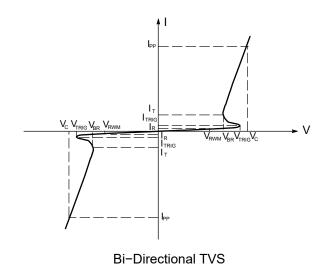
5.Absolute Ratings (T_{amb}=25°C)

Parameter	Symbol	Value	Units	
JEC 61000_4_2 (ESD)	Contact Air		±10	kV
IEC 61000-4-2 (ESD)			±15	kV
Total Power Dissipation on FR−5 Board (Note 1) @ T _A =25°C		P _D	150	mW
Storage Temperature Range		T _{STG}	-55 to 150	°C
Junction Temperature Range		TJ	-55 to 125	°C
Lead Solder Temperature – Maximum (10 Second Duration)		TL	260	°C

Notes:

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.

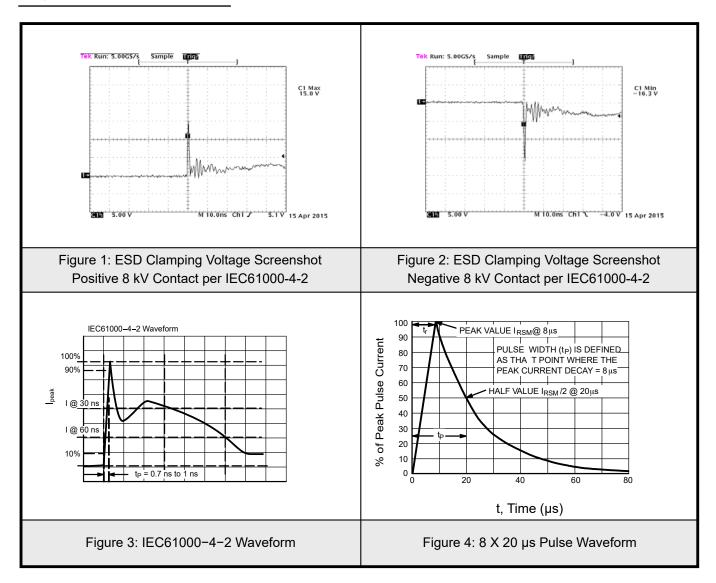

6.Electrical Characteristic (T_A=25°C unless otherwise noted)

Device	V _{RWM} (V)	I _R (uA) @V _{RWM}	V _{BR} (V) @ I _⊤ =1mA (Note 2)	C(pF)		V _c (V) @I _{PP} =3.5A (Note 3)	I _{PP} (A) t _p =8/20μs	P _{PP} (W)	V _c
	Max	Max	Min	Тур	Max	Max	Max	Max	Per IEC61000-4-2 (Note4)
LESD8LH5.0CT5G	5	1	5.5	2.7	3.5	11.5	3.5	40	Figures 1 and 2 See Below

Notes:

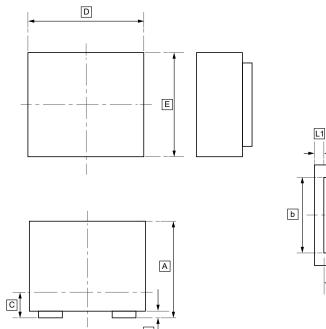
- 2. V_{BR} is measured with a pulse test current IT at an ambient temperature of 25°C.
- 3. Surge current waveform per Figure 4.
- 4. For test procedure see Figures 3.

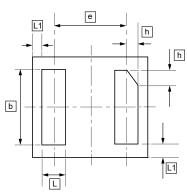
7. Electrical Parameter


Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Reverse stand-off voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _⊤
I _T	Test Current
V_{TRIG}	Reverse trigger voltage
I _{TRIG}	Reverse trigger current

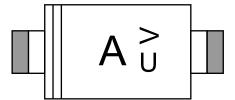
8. Typical characteristic

Level	Test Voltage (kV)	First Peak Current (A)	Current at 30 ns(A)	Current at 60 ns(A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8


IEC 61000-4-2 Spec



DIMENSIONS (mm are the original dimensions)


Symbol	Α	A 1	b	C	D	е	E	L	L1	h
Min	0.450	0.000	0.45	0.12	0.950	0.65	0.550	0.200	0.05	0.07
Max	0.550	0.050	0.55	0.18	1.050	BSC	0.650	0.300	REF	0.17

10.Ordering information

Order Code	Package	Base QTY	Delivery Mode	
UMW LESD8LH5.0CT5G	SOD-882	10000	Tape and reel	

11.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.