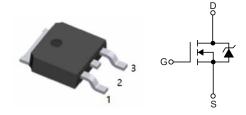


30V N-Channel MOSFET

1.Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{\text{DS(ON)}}$ and fast switching speed.


2.Features

- V_{DS(V)}=30V
- \blacksquare R_{DS(ON)}<9m Ω (V_{GS}=10V)
- $R_{DS(ON)}$ <12m $\Omega(V_{GS}$ =4.5V)
- Low gate resistance
- High power and current handling capability
- High performance trench technology for extremely low R_{DS(ON)}

3. Pinning information

Pin	Symbol	Description
1	G	GATE
2	D	DRAIN
3	S	SOURCE

TO-252(DPAK) top view

4. Absolute Maximum Ratings T_c= 25°C

Parameter	Symbol	Rating	Units
Drain to Source Voltage	V _{DSS}	30	V
Gate to Source Voltage	V_{GS}	±20	V
Drain Current Continuous (T _C =25°C, V _{GS} =10V) (Note 1)		58	А
Continuous (T _C =25°C, V _{GS} =4.5V) (Note 1)		51	Α
Continuous (T _{amb} =25°C, V _{GS} =10V, with R _{θJA} =52°C/W)	l _D	13	Α
Pulsed		Figure 4	Α
Single Pulse Avalanche Energy (Note 2)	E _{AS}	53	mJ
Power Dissipation		55	W
Derate above 25°C	P _D	0.37	°C/W
Storage Temperature	$T_{J_{I}}T_{STG}$	-55 to 175	°C

30V N-Channel MOSFET

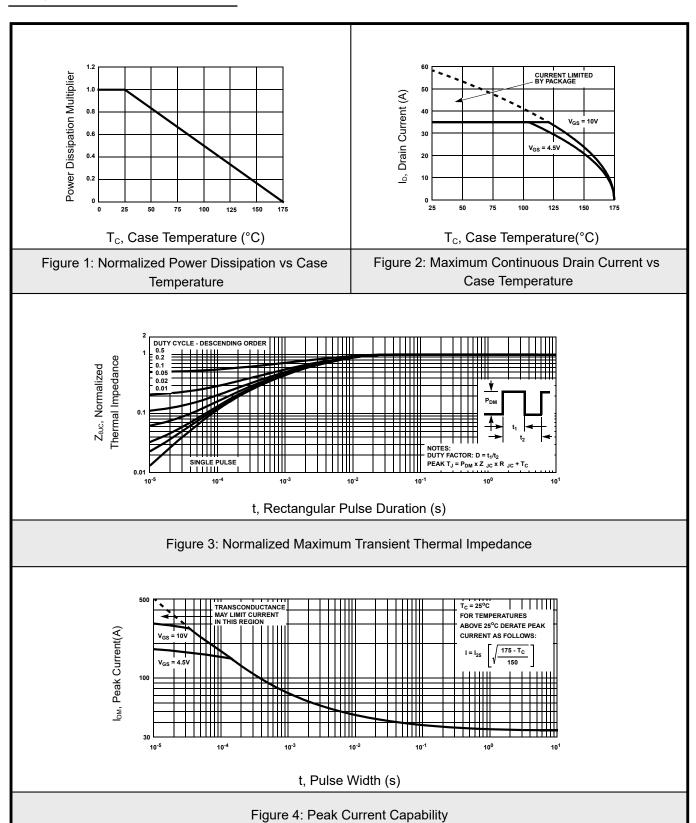
5.Thermal Characteristics

Parameter	Symbol	Rating	Units
Thermal Resistance, Junction-to-Case TO-252,TO-251	R _{eJC}	2.73	°C/W
Thermal Resistance, Junction-to-Ambient TO-252,TO-251	$R_{\theta JA}$	100	°C/W
Thermal Resistance, Junction-to-Ambient TO-252,1in ² copper pad area	$R_{\theta JA}$	52	°C/W

6.Electrical Characteristic (T_c=25°C unless otherwise noted)

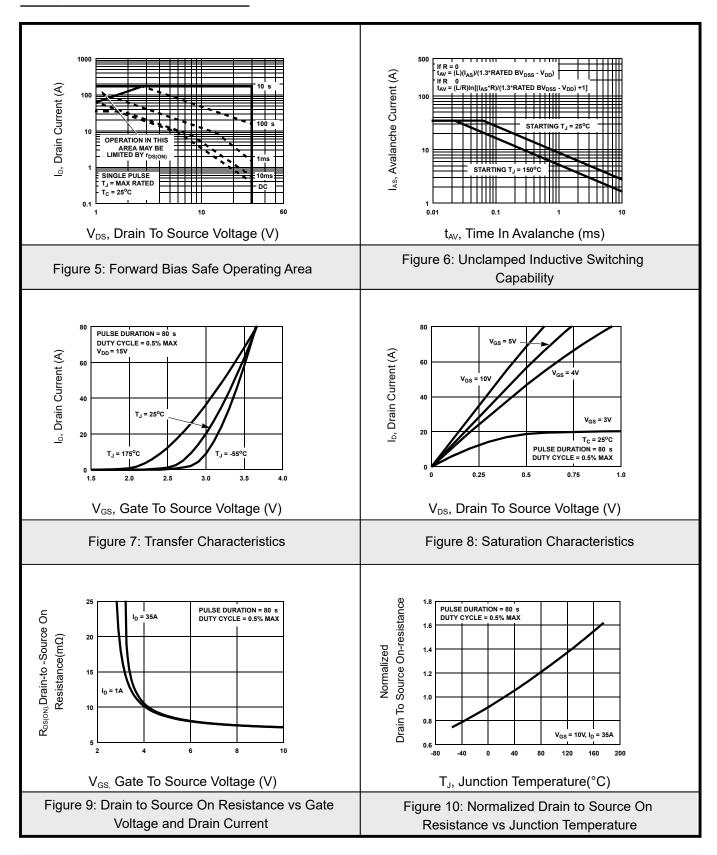
Parameter	Symbol	Condition	Min	Тур	Max	Units	
Off Characteristics							
Drain to Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0	30			V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =24V				1	μA
Gate to Source Leakage Current	I _{GSS}	V _{GS} =±20V				±100	nA
On Characteristics							
Gate to Source Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250$	μΑ	1.2		2.5	٧
Drain to Source On Resistance	В	I _D =35A, V _{GS} =10\	V		7	9	mΩ
Drain to Source On Resistance	R _{DS(ON)}	I _D =35A, V _{GS} =4.5		9	12	mΩ	
Dynamic Characteristics	•						
Input Capacitance	C _{iss}			1260		pF	
Output Capacitance	C _{oss}	V _{DS} =15V, V _{GS} =0		260		pF	
Reverse Transfer Capacitance	C _{rss}			150		pF	
Gate Resistance	R_g	V _{GS} =0.5V, f=1MI		2.3		Ω	
Total Gate Charge at 10V	$Q_{g(TOT)}$	V _{GS} =0V to 10V	V _{DD} =15V		23	31	nC
Total Gate Charge at 5V	$Q_{g(5)}$	V _{GS} =0V to 5V	I _D =35A		13	17	nC
Threshold Gate Charge	$Q_{g(TH)}$	V _{GS} =0V to 1V	I _g =1mA		1.3	1.7	nC
Gate to Source Gate Charge	Q_{gs}		_		3.8		nC
Gate Charge Threshold to Plateau	Q_{gs2}				2.5		nC
Gate to Drain "Miller" Charge	Q_{gd}				5		nC
Turn-On Time	t _(on)					147	ns
Turn-On Delay Time	t _{D(on)}			8		ns	
Rise Time	t _r	V _{DD} =15V, I _D =35A	A		91		ns
Turn-Off DelayTime	$t_{D(off)}$	V _{GS} =10V, R _{GS} =1	0Ω		38		ns
Fall Time	t _f				32		ns
Turn-Off Time	t _{off}					108	ns

30V N-Channel MOSFET

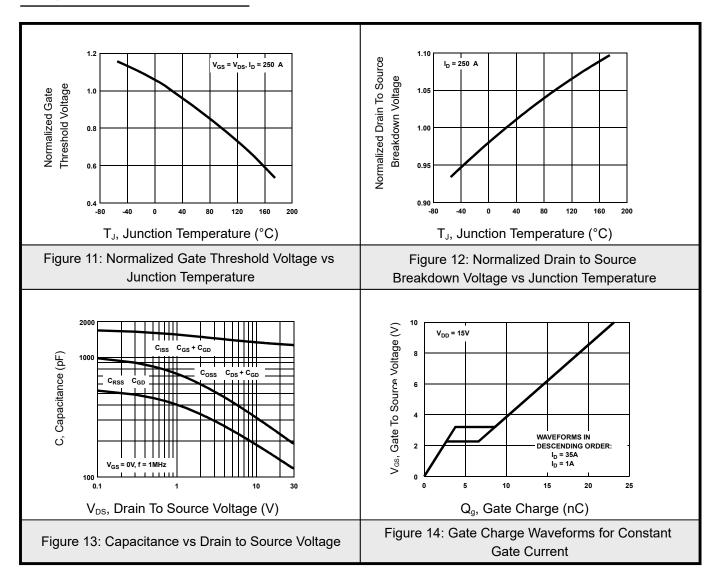

Drain-Source Diode Characteristics										
Source to Drain Diode Forward Voltage		I _{SD} =35A			1.25	V				
Source to Drain Diode Forward Voltage	V_{SD}	I _{SD} =15A			1	V				
Reverse Recovery Time	t _{rr}	I _F =35A, di/dt=100A/µs			27	ns				
Reverse Recovery Charge	Q _{rr}	I _F =35A, di/dt=100A/µs			14	nC				

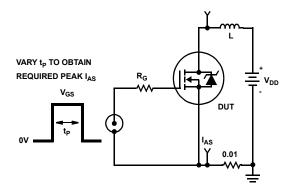
Notes:

^{1:} Package current limitation is 35A.



7.1Typical characteristic


7.2Typical characteristic



7.3Typical characteristic

7.4Typical characteristic

Description of the state of the

Figure 15. Unclamped Energy Test Circuit

Figure 16. Unclamped Energy Waveforms

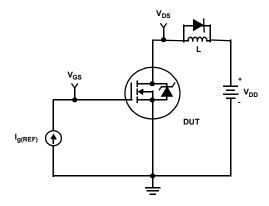


Figure 17. Gate Charge Test Circuit

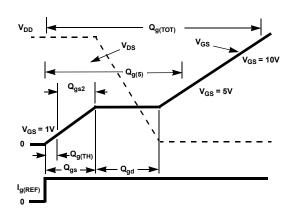
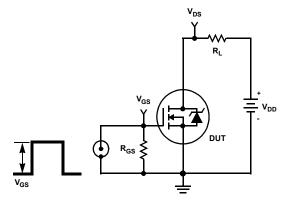


Figure 18. Gate Charge Waveforms



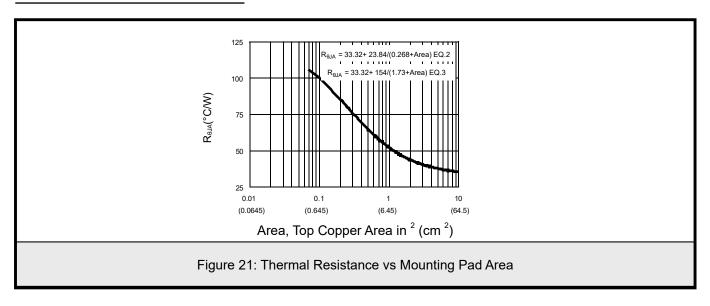

Figure 19. Switching Time Test Circuit

Figure 20. Switching Time Waveforms

7.5Typical characteristic

Notes:

The maximum rated junction temperature, T_{JM}, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application's ambient temperature, TA(°C), and thermal resistance R_{BJA}(°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{OM}} \qquad (EQ. 1)$$

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors:

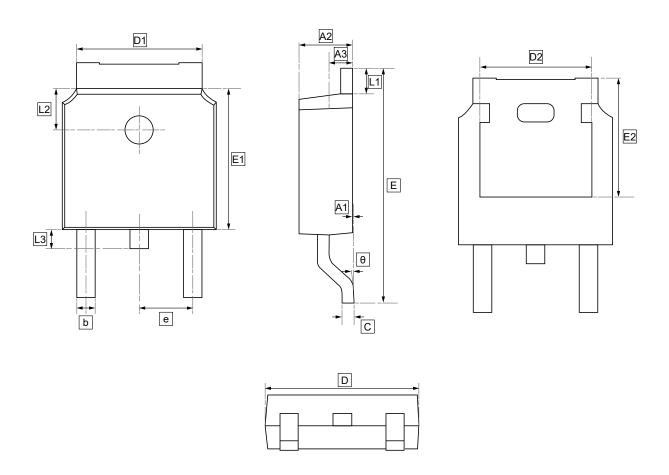
- 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

30V N-Channel MOSFET

Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$R_{\text{BJA}} = 33.32 + \frac{23.84}{(0.268 + \text{Area})}$$
 (EQ. 2)


Area in Inches Squared

$$R_{\theta JA} = 33.32 + \frac{154}{(1.73 + Area)}$$
 (EQ. 3)

Area in Centimeters Squared

8.TO-252 Package Outline Dimensions

DIMENSIONS (mm are the original dimensions)

Symbol	A 1	A2	А3	b	С	D	D1	D2	Ε	E1	E2	е	L1	L2	L3	θ
Min	0.00	2.18	0.90	0.65	0.46	6.35	4.95	4.32	9.40	5.97	5.21	2.286	0.89	1.70	0.60	0.00
Max	0.13	2.39	1.10	0.85	0.61	6.73	5.46	4.90	10.41	6.22	5.38	BSC	1.27	1.90	1.00	8.00

30V N-Channel MOSFET

9. Ordering information

yy: Year Code ww: Week Code

Order Code	Package	Delivery Mode	
UMW FDD8880	TO-252	2500	Tape and reel

30V N-Channel MOSFET

10.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.