
1. Description

The ESD5L5.0CT1G is designed to protect voltage sensitive components that require ultra-low capacitance from ESD and transient voltage events. Excellent clamping capability, low capacitance, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. Because of its low capacitance, it is suited for use in high frequency designs such as USB 2.0 high speed and antenna line applications.

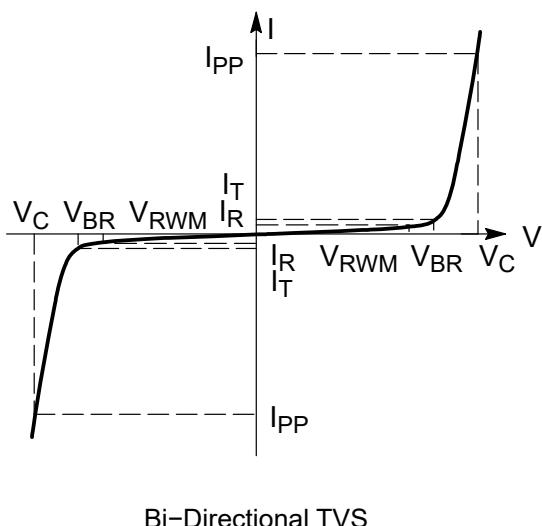
2. Features

- Ultra Low Capacitance 0.5 pF
- Low Clamping Voltage
- Small Body Outline Dimensions:
 - 0.047" x 0.032" (1.20 mm x 0.80 mm)
- Low Body Height: 0.016" (0.4 mm)
- Stand-off Voltage: 5 V
- Low Leakage
- Response Time is Typically < 1.0 ns
- IEC61000-4-2 Level 4 ESD Protection
- This is a Pb-Free Device

3. Pinning information

SOD-523

4. Maximum Ratings


Parameter	Symbol	Value	Units
IEC 61000 -4-2 (ESD) Contact Air		±10	kV
		±15	kV
Total Power Dissipation on FR-5 Board (Note 1)@ $T_A=25^\circ\text{C}$	P_D	200	mW
Peak Pulse Power ($t_p=8/20\mu\text{s}$)	P_{PP}	100	W
Storage Temperature Range	T_{STG}	-55 to 150	°C
Junction Temperature Range	T_J	-55 to 125	°C
Lead Solder Temperature-Maximum(10 Second Duration)	T_L	260	°C

Notes:

1. FR-5 = 1.0 x 0.75 x 0.62 in.

5. Electrical Characteristics ($T_A=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter
I_{PP}	Maximum Reverse Peak Pulse Current
V_C	Clamping Voltage @ I_{PP}
V_{RWM}	Working Peak Reverse Voltage
I_R	Maximum Reverse Leakage Current @ V_{RWM}
V_{BR}	Breakdown Voltage @ I_T
I_T	Test Current
I_F	Forward Current
V_F	Forward Voltage @ I_F
P_{PK}	Peak Power Dissipation
C	Max. Capacitance @ $V_R=0$ and $f=1\text{MHz}$

6. Electrical Characteristic ($T_A=25^\circ\text{C}$ unless otherwise noted)

Device	Device Marking	V_{RWM} (V)	I_R (μA) @ V_{RWM}	$V_{BR(V)}$ @ I_T (Note 2)	I_T	C (pF)		V_C (V) @ $I_{PP}=1\text{A}$ (Note 3)	V_C
		Max	Max	Min		mA	Typ	Max	
LESD5L5.0CT1G	L5	5	1	5.4	1	0.5	0.9	12.9	Figures 1 and 2 See Below

Notes:

2. V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C .
3. Surge current waveform per Figure 5.
4. For test procedure see Figures 3 and 4.

7.1 Typical characteristic

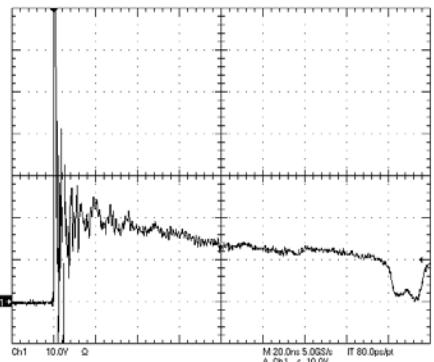


Figure 1: ESD Clamping Voltage Screenshot
Positive 8 kV contact per IEC 61000-4-2

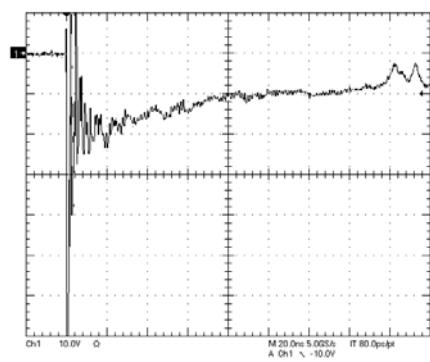


Figure 2: ESD Clamping Voltage Screenshot
Negative 8 kV contact per IEC 61000-4-2

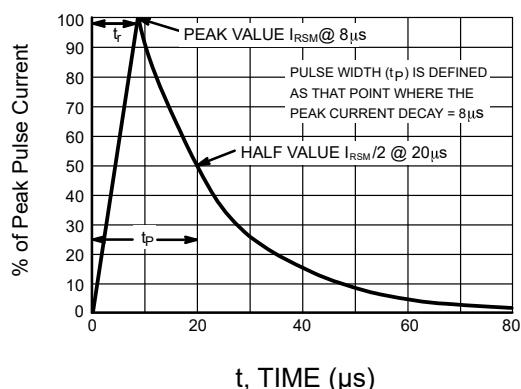
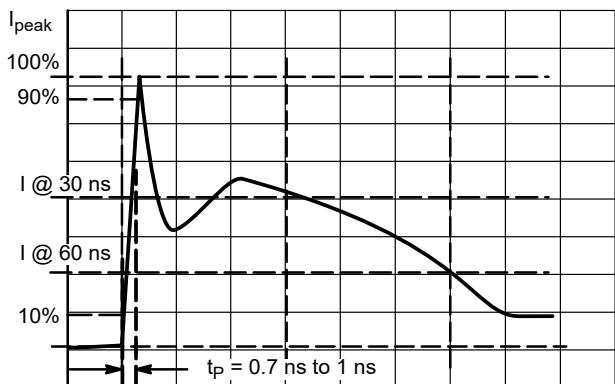
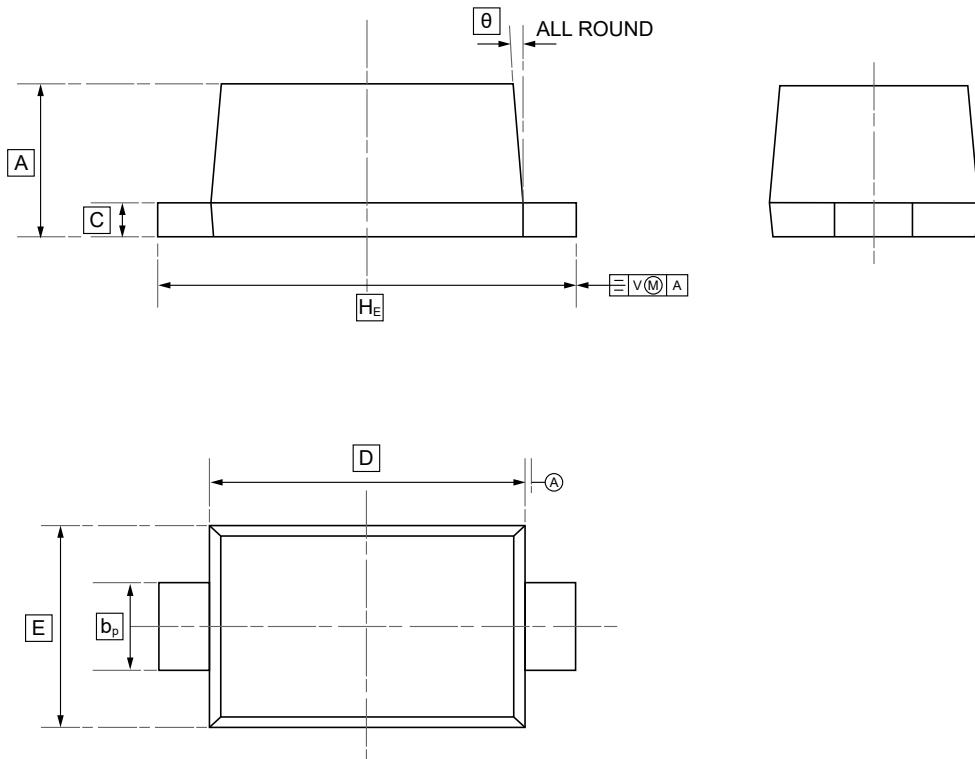



Figure 3: 8 X 20 μ s Pulse Waveform

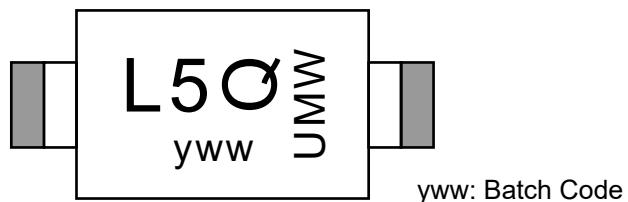
7.2 Typical characteristic



Level	Test Voltage (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 4: IEC61000-4-2 Spec

8.SOD-523 Package Outline Dimensions



DIMENSIONS (mm are the original dimensions)

Symbol	A	b_p	C	D	E	H_E	θ
Min	0.58	0.3	0.100	1.15	0.75	1.5	5°
Max	0.68	0.4	0.135	1.25	0.85	1.7	

9.Ordering information

yww: Batch Code

Order Code	Package	Base QTY	Delivery Mode
UMW LESD5L5.0CT1G	SOD-523	3000	Tape and reel

10. Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.