

LOW-POWER CAN TRANSCEIVER WITH BUS WAKE-UP

(compatible to SN65HVD1040)

The HT651040 meets or exceeds the specifications of the ISO 11898 standard for use in applications employing a Controller Area Network (CAN). As CAN transceivers, these devices provide differential transmit and receive capability for a CAN controller at signaling rates of up to 1 megabit per second (Mbps). (1)

Designed for operation in especially harsh environments, the device features ± 12 kV ESD protection on the bus and split pins, cross-wire, overvoltage and loss of ground protection from -27 to 40 V, overtemperature shutdown, a -12 V to 12 V common-mode range, and will withstand voltage transients from -200 V to 200 V according to ISO 7637.

FEATURES

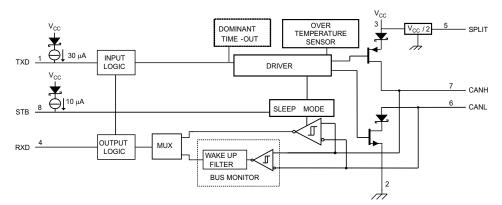
- Improved Drop-in Replacement for the TJA1040
- ±12 kV ESD Protection
- Low-Current Standby Mode with Bus Wake-up: 5 μA Typical
- Bus-Fault Protection of –27 V to 40 V
- Rugged Split-Pin Bus Stability
- Dominant Time-Out Function
- Power-Up/Down Glitch-Free Bus Inputs and Outputs
 - High Input Impedance with Low V_{CC}
 - Monotonic Outputs During Power Cycling
- DeviceNet Vendor ID # 806

APPLICATIONS

- Battery Operated Applications
- Hand-Held Diagnostics
- Medical Scanning and Imaging
- HVAC
- Security Systems
- Telecom Base Station Status and Control
- SAE J1939 Standard Data Bus Interface
- NMEA 2000 Standard Data Bus Interface
- ISO 11783 Standard Data Bus Interface
- Industrial Automation
 - DeviceNet[™] Data Buses

ORDERINGINFORMATION

SOP8 R SUFFIX HT651040ARZ

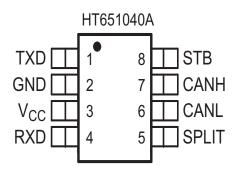


MSOP8 M SUFFIX HT651040ARMZ

DFN8(3*3) D SUFFIX HT651040ARDZ

 $T_A = -40^{\circ}$ to 125°C for all packages.

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).


DESCRIPTION (Continued)

The STB input (pin 8) selects between two different modes of operation; high-speed or low-power mode. The high-speed mode of operation is selected by connecting STB to ground.

If a high logic level is applied to the STB pin of the HT651040, the device enters a low-power bus-monitor standby mode. While the HT651040 is in the low-power bus-monitor standby mode, a dominant bit greater than 5 μ s on the bus is passed by the bus-monitor circuit to the receiver output. The local protocol controller may then reactivate the device when it needs to transmit to the bus.

A dominant-time-out circuit in the HT651040 prevents the driver from blocking network communication during a hardware or software failure. The time-out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is then reset by the next rising edge on TXD.

The SPLIT output (pin 5) is available on the HT651040 as a $V_{CC}/2$ common-mode bus voltage bias for a split-termination network. The HT651040 is characterized for operation from -40° C to 125° C.

ABSOLUTE MAXIMUM RATINGS(1)

			VALUE
V_{CC}	Supply voltage ⁽²⁾		-0.3 V to 7 V
V _{I(bus)}	Voltage range at any bus term	inal (CANH, CANL, SPLIT)	–27 V to 40 V
I _{O(OUT)}	Receiver output current		-20 mA to 20 mA
	Voltage input, transient pulse	³⁾ , (CANH, CANL, SPLIT)	–200 V to 200 V
	Human Body Model	Bus terminals and GND	±12 kV
ESD	Human body model (4)	All pins	±4 kV
ESD	Charged-device-model (5)	All pins	±1 kV
	Machine model		±200 V
VI	Voltage input range (TXD, STI	3)	–0.5 V to 6 V
T_J	Junction temperature		−55°C to 170°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM MAX	UNIT
V _{CC}	Supply voltage	Supply voltage		5.25	V
V_{I} or V_{IC}	Voltage at any bus terminal (separately	or common mode)	-12 ⁽¹⁾	12	V
V _{IH}	High-level input voltage	TVD CTD	2	5.25	V
V _{IL}	Low-level input voltage	TXD, STB	0	0.8	V
V_{ID}	Differential input voltage		-6	6	V
	High lavel autout august	Driver	-70		A
OH	High-level output current	Receiver	-2		- mA
	Law lawal autout aumant	Driver		70	
IOL	Low-level output current	Receiver		2	- mA
t _{SS}	Maximum pulse width to remain in stand	dby		0.7	μs
TJ	Junction temperature		-40	150	С

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

SUPPLY CURRRENT

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		Dominant	$V_I = 0 \text{ V}, 60 \Omega \text{ Load, STB at 0 V}$		50	70	Л
I _{CC}	Supply current, V _{CC}	Recessive	V _I = V _{CC} , STB at 0 V		6	10	mA
		Standby	STB at VCC, VI = VCC		5	12	μΑ

DEVICE SWITCHING CHARACTERISTICS

over recommended operating conditiions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
t _{loop1}	Total loop delay, driver input to receiver output, Recessive to Dominant	STB at 0 V,	90	230	
t _{loop2}	Total loop delay, driver input to receiver output, Dominant to Recessive	See Figure 9	90	230	ns

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

⁽³⁾ Tested in accordance with ISO 7637, test pulses 1, 2, 3a, 3b, 5, 6 & 7.

 ⁽⁴⁾ Tested in accordance JEDEC Standard 22, Test Method A114-A.
 (5) Tested in accordance JEDEC Standard 22, Test Method C101.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditiions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
V _{O(D)}	Bus output voltage	CANH	V_I = 0 V, STB at 0 V, R_L = 60 Ω , See Figure 1 and	2.9	3.4	4.5	V	
(Dominant)		CANL	Figure 2	0.8		1.75	V	
$V_{O(R)}$	Bus output voltage (Recessive)	V _I = 3 V, STB at 0 V, See Figure 1 and Figure 2	2	2.5	3	V	
Vo	Bus output voltage (Standby)		$R_L = 60 \Omega$, STB at V_{CC} , See Figure 1 and Figure 2	-0.1		0.1	V	
V	Differential output valtere (Der	minant)	V_{I} = 0 V, R_{L} = 60 Ω , STB at 0 V, See Figure 1 and Figure 2, and Figure 3	1.5		3	V	
$V_{OD(D)}$	Differential output voltage (Dor	ninani)	V_{I} = 0 V, R_{L} = 45 Ω , STB at 0 V, See Figure 1 and Figure 2	1.4		3	V	
V _{SYM}	Output symmetry (Dominant or Recessive) [V _{O(CANH)} + V _{O(CAI}		STB at 0 V, See Figure 2 and Figure 13	0.9×V _{CC}	V _{CC}	1.1×V _{CC}	V	
V _{OD(R)}	DD(R) Differential output voltage (Recessive)		V_{I} = 3 V, R_{L} = 60 Ω , STB at 0 V, See Figure 1 and Figure 2	-0.012		0.012	٧	
05(.1)			V _I = 3 V, STB at 0 V, No Load	-0.5		0.05		
V _{OC(D)}	Common-mode output voltage (Dominant)		STR at 0 V See Figure 9	2	2.3	3	V	
V _{OC(pp)}	Peak-to-peak common-mode c	utput	STB at 0 V, See Figure 8		0.3		V	
I _{IH}	High-level input current, TXD in	nput	V _I at V _{CC}	-2		2	μΑ	
I _{IL}	Low-level input current, TXD in	put	V _I at 0 V	-50		-10	μΑ	
I _{O(off)}	Power-off TXD Leakage currer	nt	V _{CC} at 0 V, TXD at 5 V			1	μΑ	
			V _{CANH} = -12 V, CANL Open, See Figure 12	-120	-72			
	Short-circuit steady-state output	ıt	V _{CANH} = 12 V, CANL Open, See Figure 12		0.36	1	1	
I _{OS(ss)}	^{OS(ss)} current		V _{CANL} = -12 V, CANH Open, See Figure 12	-1	-0.5	5 m <i>l</i>		
			V _{CANL} = 12 V, CANH Open, See Figure 12		71	120		
Co	Output capacitance		See Input capacitance to ground in RECEIVER ELECTRICAL CHARACTERISTICS.					

⁽¹⁾ All typical values are at 25 C with a 5-V supply.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		25	65	120	
t _{PHL}	Propagation delay time, high-to-low-level output		25	45	120	
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})	STB at 0 V, See Figure 4			25	ns
t _r	Differential output signal rise time			25		
t _f	Differential output signal fall time			50		
t _{en}	Enable time from silent mode to dominant	See Figure 7			10	μs
t _{dom}	Dominant time-out	See Figure 10	300	450	700	μs

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage		CTD at 0 \/ See Table 4		800	900	
V _{IT-}	Negative-going input threshold voltage	High-speed mode	STB at 0 V, See Table 1	500	650		mV
V_{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})		STB at V _{CC}	100	125		
V_{IT}	Input threshold voltage	Standby mode	STB at V _{CC}	500		1150	
V _{OH}	High-level output voltage		I _O = -2 mA, See Figure 6	4	4.6		V
V_{OL}	Low-level output voltage		I _O = 2 mA, See Figure 6		0.2	0.4	V
I _{I(off)}	Power-off bus input current		CANH or CANL = 5 V, V _{CC} at 0 V, TXD at 0 V			5	μΑ
I _{O(off)}	Power-off RXD leakage current		V _{CC} at 0 V, RXD at 5 V			20	μΑ
Cı	Input capacitance to ground, (CAN	NH or CANL)	TXD at 3 V, V _I = 0.4 sin (4E6πt) + 2.5 V		20		рF
C _{ID}	Differential input capacitance		TXD at 3 V, V _I = 0.4 sin (4E6πt)		10		pF
R _{ID}	Differential input resistance		TXD at 3 V, STD at 0 V	30		80	1.0
R _{IN}	Input resistance, (CANH or CANL)		TXD at 3 V, STD at 0 V	15	30	40	kΩ
R _{I(m)}	Input resistance matching [1 – (R _{IN (CANH)} / R _{IN (CANL)})] x 100	%	V _{CANH} = V _{CANL}	-3%	0%	3%	

⁽¹⁾ All typical values are at 25 C with a 5-V supply.

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditiions (unless otherwise noted)

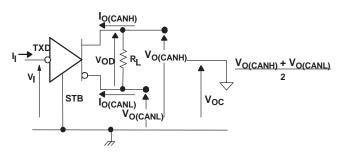
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{pLH}	Propagation delay time, low-to-high-level output		60	100	130	
t _{pHL}	Propagation delay time, high-to-low-level output	STB at 0 V, TXD at 3 V, See	45	70	130	no
t _r	Output signal rise time	Figure 6		8		ns
t _f	Output signal fall time			8		
t _{BUS}	Dominant time required on bus for wake-up from standby ⁽¹⁾	STB at V _{CC} Figure 11	0.7		5	μs

⁽¹⁾ The device under test shall not signal a wake-up condition with dominant pulses shorter than t_{BUS} (min) and shall signal a wake-up condition with dominant pulses longer than t_{BUS} (max). Dominant pulses with a length between t_{BUS} (min) and t_{BUS} (max) may lead to a wake-up.

SPLIT-PIN CHARACTERISTICS

over recommended operating conditiions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vo	Output voltage	–500 μA < I _O < 500 μA	0.3×V _{CC}	$0.5 \times V_{CC}$	$0.7 \times V_{CC}$	V
I _{O(stb)}	Standby mode leakage current	STB at 2 V, −12 V ≤ V _O ≤ 12 V	- 5		5	μΑ


STB-PIN CHARACTERISTICS

over recommended operating conditiions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{IH}	High level input current	STB at 2 V	-10		0	μΑ
I_{IL}	Low level input current	STB at 0 V	-10		0	μΑ

PARAMETER MEASUREMENT INFORMATION

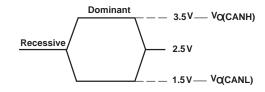


Figure 1. Driver Voltage, Current, and Test Definition

Figure 2. Bus Logic State Voltage Definitions

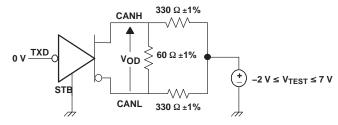


Figure 3. Driver V_{OD} Test Circuit

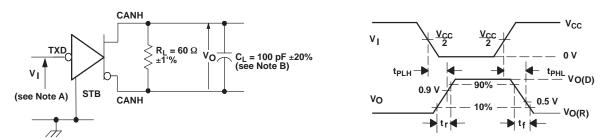


Figure 4. Driver Test Circuit and Voltage Waveforms

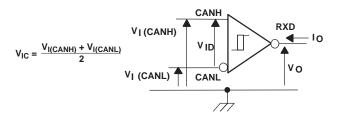
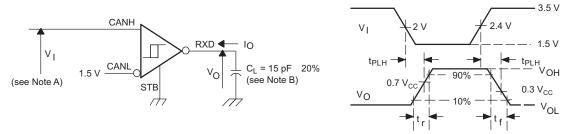



Figure 5. Receiver Voltage and Current Definitions

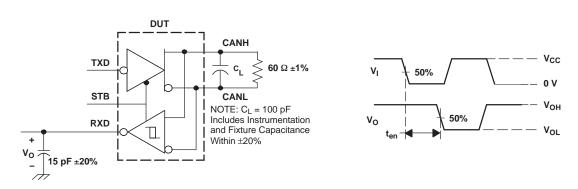
PARAMETER MEASUREMENT INFORMATION (continued)

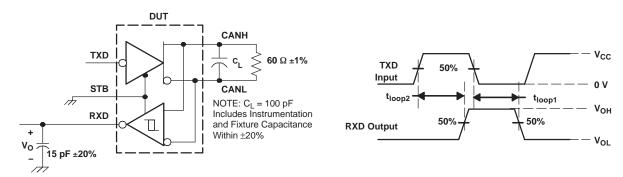
- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125 kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6ns, $Z_O = 50 \Omega$.
- B. C_L includes instrumentation and fixture capacitance within 20%.

Figure 6. Receiver Test Circuit and Voltage Waveforms

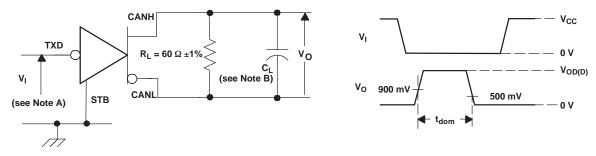
	•	J				
	INPUT					
V _{CANH}	V _{CANH} V _{CANL}		ı	₹		
–11.1 V	–12 V	900 mV	L	V _{OL}		
12 V	11.1 V	900 mV	L			
−6 V	–12 V	6 V	L			
12 V	6 V	6 V	L			
–11.5 V	–12 V	500 mV	Н	V _{OH}		
12 V	11.5 V	500 mV	Н			
–12 V	-6 V	6 V	Н			
6 V	12 V	6 V	Н			
Open	Open	Х	Н			

Table 1. Differential Input Voltage Threshold Test




Figure 7. t_{en} Test Circuit and Voltage Waveforms

A. All V_I input pulses are from 0 V to V_{CC} and supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns. Pulse Repetition Rate (PRR) = 125 kHz, 50% duty cycle.


Figure 8. Peak-to-Peak Common Mode Output Voltage Test and Waveform

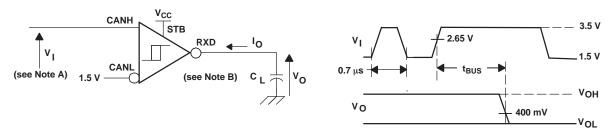

A. All V_1 input pulses are from 0 V to V_{CC} and supplied by a generator with the following characteristics: t_f or $t_f \le 6$ ns. Pulse Repetition Rate (PRR) = 125 kHz, 50% duty cycle.

Figure 9. t_{loop} Test Circuit and Voltage Waveforms

- A. All V_1 input pulses are from 0 V to V_{CC} and supplied by a generator with the following characteristics: t_r or $t_f \le 6$ ns. Pulse Repetition Rate (PRR) = 500 Hz, 50% duty cycle.
- B. $C_L = 100 \text{ pF}$ includes instrumentation and fixture capacitance within 20%.

Figure 10. Dominant Time-Out Test Circuit and Waveform

- A. For V_I bit width $\leq 0.7~\mu s$, $V_O = V_{OH}$. For V_II bit width $\geq 5~\mu s$, $V_O = V_{OL}$. V_I input pulses are supplied from a generator with the following characteristics; t_f or $t_f \leq 6$ ns. Pulse Repetition Rate (PRR) = 50 Hz, 30% duty cycle.
- B. $C_L = 15 \text{ pF}$ includes instrumentation and fixture capacitance within 20%.

Figure 11. t_{BUS} Test Circuit and Waveform

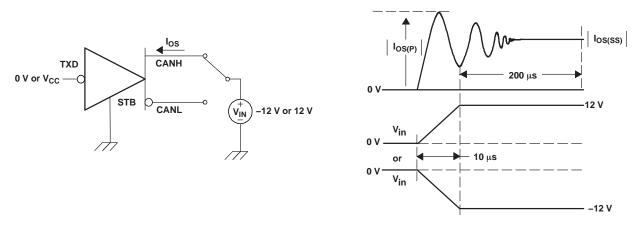


Figure 12. Driver Short-Circuit Current Test and Waveform

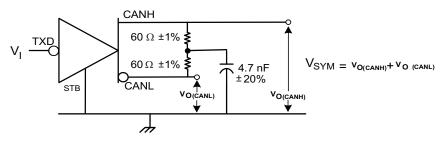


Figure 13. Driver Output Symmetry Test Circuit

DEVICE INFORMATION

Table 2. DRIVER FUNCTION TABLE(1)

INP	INPUTS		PUTS	BUS STATE
TXD	STB	CANH	CANL	
L	L	Н	L	DOMINANT
Н	L	Z	Z	RECESSIVE
Open	Х	Z	Z	RECESSIVE
Х	H or Open	Z	Z	RECESSIVE

(1) H = high level; L = low level; X = irrelevant; Z = high impedance

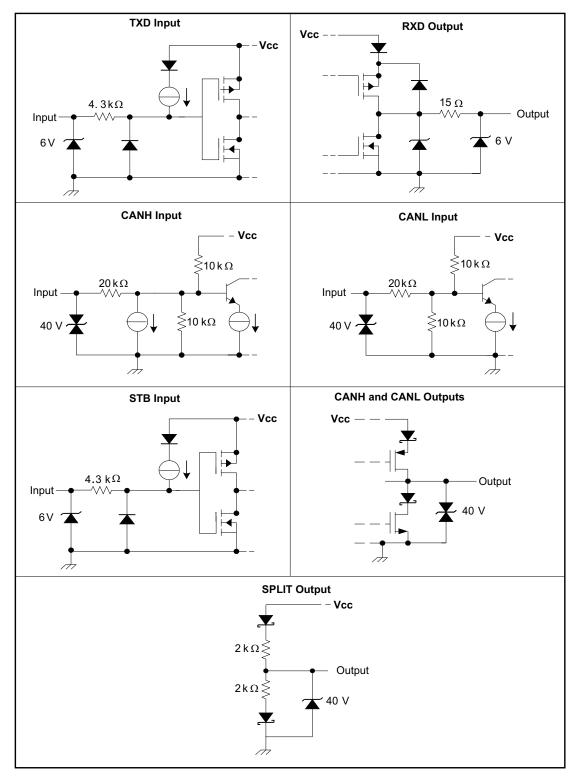
Table 3. RECEIVER FUNCTION TABLE⁽¹⁾

DIFFERENTIAL INPUTS V _{ID} = CANH - CANL	STB	OUTPUT RXD	BUS STATE
$V_{ID} \ge 0.9 V$	L	L	DOMINANT
V _{ID} ≥ 1.15 V	H or Open	L	DOMINANT
0.5 V < V _{ID} < 0.9 V	X	?	?
V _{ID} ≤ 0.5 V	Х	Н	RECESSIVE
Open	X	Н	RECESSIVE

(1) H = high level; L = low level; X = irrelevant; ? = indeterminate; Z = high impedance

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
O Thomas Basistana America ta	Thermal Desistance Junction to Air	Low-K Thermal Resistance ⁽¹⁾		211		°C/W
θ _{JA}	θ _{JA} Thermal Resistance, Junction-to-Air	High-K Thermal Resistance		131		°C/W
θ_{JB}	Thermal Resistance, Junction-to-Board			53		°C/W
θ_{JC}	Thermal Resistance, Junction-to-Case			79		*C/VV
P _D	Device Power Dissipation	R_L = 60 Ω , S at 0 V, Input to TXD a 500kHz 50% duty-cycle square wave		112	170	mW
T _{JS} Junction Temperature, Thermal Shutdown ⁽²⁾			190		°C	

⁽¹⁾ Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.

⁽²⁾ Extended operation in thermal shutdown may affect device reliability, see the Application Information section.

Equivalent Input and Output Schematic Diagrams

TYPICAL CHARACTERISTICS

RECESSIVE-TO-DOMINANT LOOP TIME VS FREE-AIR TEMPERATURE (across V_{CC})

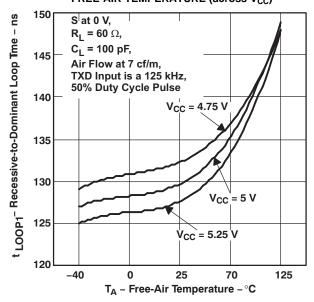


Figure 14.

SUPPLY CURRENT (RMS) vs SIGNALING RATE

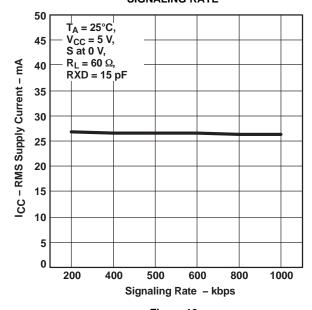


Figure 16.

DOMINANT-TO-RECESSIVE LOOP TIME VS FREE-AIR TEMPERATURE (across V_{CC})

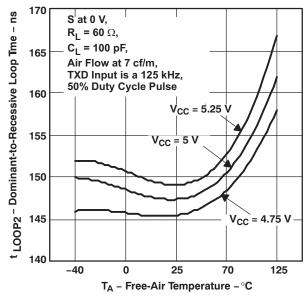


Figure 15.

DRIVER LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

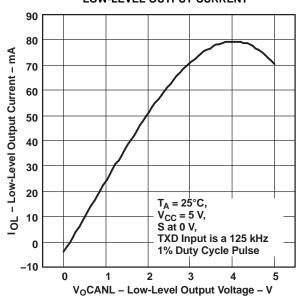


Figure 17.

TYPICAL CHARACTERISTICS (continued)

DRIVER HIGH-LEVEL OUTPUT VOLTAGE vs

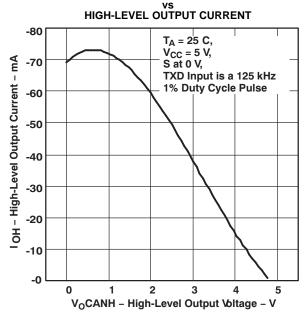


Figure 18.

DRIVER OUTPUT CURRENT vs SUPPLY VOLTAGE

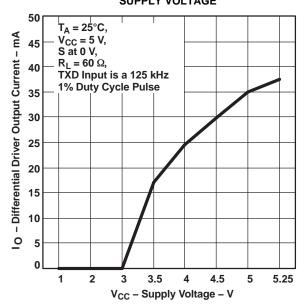


Figure 20.

DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE (across V_{CC})

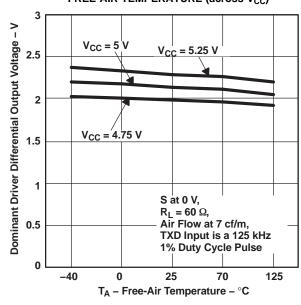


Figure 19.

RECEIVER OUTPUT VOLTAGE VS DIFFERENTIAL INPUT VOLTAGE

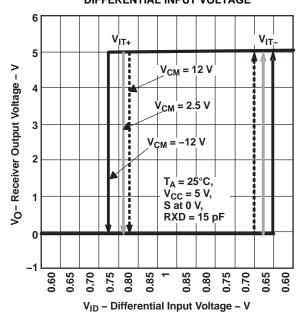


Figure 21.

TYPICAL CHARACTERISTICS (continued)

TYPICAL ELECTROMAGNETIC EMISSIONS UP TO 50 MHZ (Peak Amplitude) 80 70 50 50 FRM Start 20 kHz 4.998 MHz/ Stop 50 MHz

Figure 22. Frequency Spectrum of Common-Mode Emissions

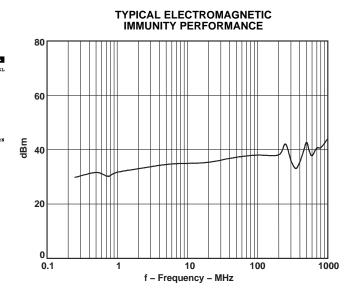


Figure 23. Direct Power Injection (DPI) Response vs Frequency

APPLICATION INFORMATION

CAN Basics

The basics of arbitration require that the receiver at the sending node designate the first bit as dominant or recessive after the initial wave of the first bit of a message travels to the most remote node on a network and back again. Typically, this "sample" is made at 75% of the bit width, and within this limitation, the maximum allowable signal distortion in a CAN network is determined by network electrical parameters.

Factors to be considered in network design include the approximately 5 ns/m propagation delay of typical twisted-pair bus cable; signal amplitude loss due to the loss mechanisms of the cable; and the number, length, and spacing of drop-lines (stubs) on a network. Under strict analysis, variations among the different oscillators in a system also need to be accounted for with adjustments in signaling rate and stub and bus length. Table 5 lists the maximum signaling rates achieved with the HT651040 with several bus lengths of category 5, shielded twisted pair (CAT 5 STP) cable.

Table 5. Maximum Signaling Rates for Various Cable Lengths

Bus Length (m)	Signaling Rate (kbps)	
30	1000	
100	500	
250	250	
500	125	
1000	62.5	

The ISO 11898 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m with a maximum of 30 nodes. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. (Note: Non-standard application may come with a trade-off in signaling rate.) A large number of nodes requires a transceiver with high input impedance such as the HT651040.

The Standard specifies the interconnect to be a single twisted-pair cable (shielded or unshielded) with 120 Ω characteristic impedance (Z_0). Resistors equal to the characteristic impedance of the line terminate both ends of the cable to prevent signal reflections. Unterminated drop-lines connect nodes to the bus and should be kept as short as possible to minimize signal reflections.

Connectors, while not specified by the standard should have as little effect as possible on standard operating parameters such as capacitive loading. Although unshielded cable is used in many applications, data transmission circuits employing CAN transceivers are usually used in applications requiring a rugged interconnection with a wide common-mode voltage range. Therefore, shielded cable is recommended in these electronically harsh environments, and when coupled with the Standard's –2-V to 7-V common-mode range of tolerable ground noise, helps to ensure data integrity. The HT651040 enhances the Standard's insurance of data integrity with an extended –12 V to 12 V range of common-mode operation.

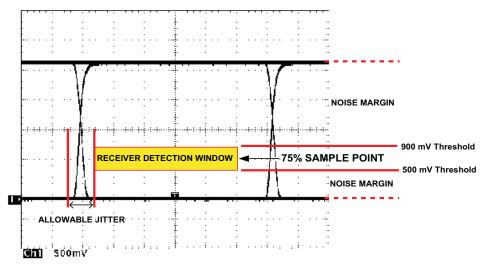


Figure 24. Typical CAN Differential Signal Eye-Pattern

An eye pattern is a useful tool for measuring overall signal quality. As displayed in Figure 25, the differential signal changes logic states in two places on the display, producing an "eye." Instead of viewing only one logic crossing on the scope, an entire "bit" of data is brought into view. The resulting eye pattern includes all of the effects of systemic and random distortion, and displays the time during which a signal may be considered valid.

The height of the eye above or below the receiver threshold voltage level at the sampling point is the noise margin of the system. Jitter is typically measured at the differential voltage zero-crossing during the logic state transition of a signal. Note that jitter present at the receiver threshold voltage level is considered by some to be a more effective representation of the jitter at the input of a receiver.

As the sum of skew and noise increases, the eye closes and data is corrupted. Closing the width decreases the time available for accurate sampling, and lowering the height enters the 900 mV or 500 mV threshold of a receiver.

Different sources induce noise onto a signal. The more obvious noise sources are the components of a transmission circuit themselves; the signal transmitter, traces and cables, connectors, and the receiver. Beyond that, there is a termination dependency, cross-talk from clock traces and other proximity effects, V_{CC} and ground bounce, and electromagnetic interference from near-by electrical equipment.

The balanced receiver inputs of the HT651040 mitigate most all sources of signal corruption, and when used with a quality shielded twisted-pair cable, help insure data integrity.

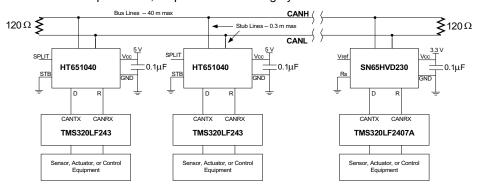
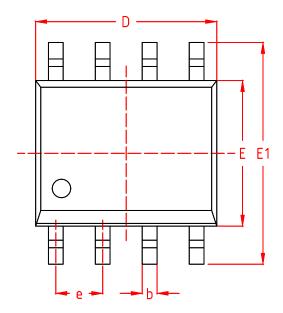
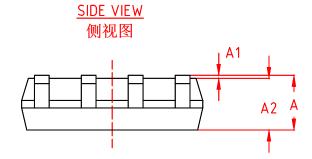
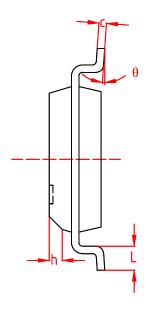


Figure 25. Typical HT651040 Application

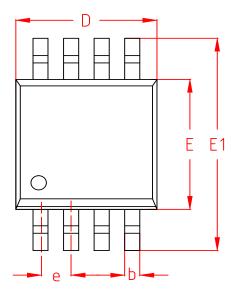

Thermal Shutdown


The HT651040 has a thermal shutdown that turns off the driver outputs when the junction temperature nears 190°C. This shutdown prevents catastrophic failure from bus shorts, but does not protect the circuit from possible damage. The user should strive to maintain recommended operating conditions, and not exceed absolute maximum ratings at all times. If the HT651040 is subjected to many or long durations faults that can put the device into thermal shutdown, it should be replaced.

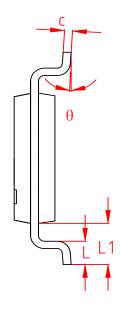

SOP8 package information

TOP VIEW 正视图

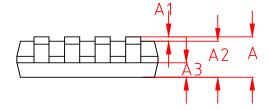
SIDE VIEW 侧视图



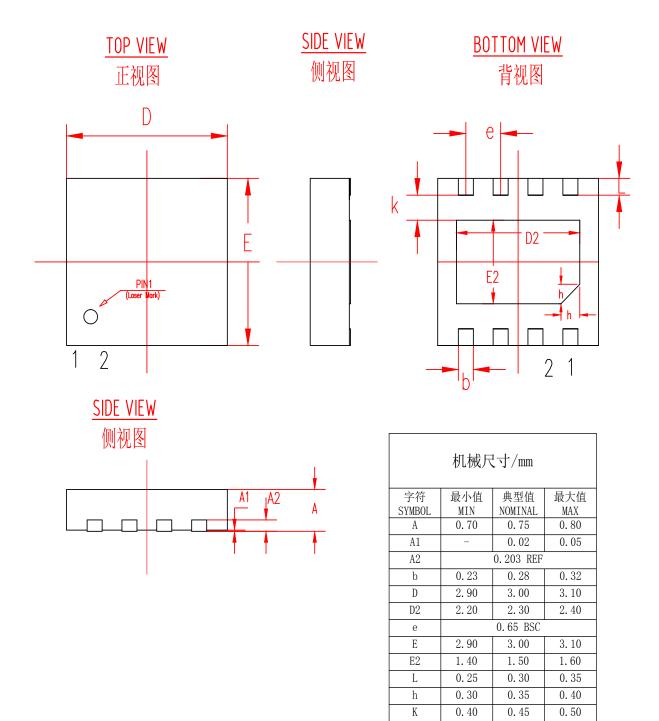
机械尺寸/mm					
	Dimensions				
字符 SYMBOL	最小值 MIN	典型值 NOMINAL	最大值 MAX		
Α	-	ı	1.75		
A1	0.10	0.15	0.25		
A2	1.30	1.40	1.50		
b	0.35	ı	0.50		
С	0.19	_	0.25		
D	4.80	4.90	5.00		
E	3.80	3.90	4.00		
E1	5.80	6.00	6.20		
e	1.27 BSC				
h	0.25		0.45		
L	0.50	-	0.80		
θ	0°		8°		



MSOP8 package information



SIDE VIEW 侧视图


SIDE VIEW 侧视图

	机械尺寸/mm				
	Dimer	<u>nsions</u>			
字符	最小值	典型值	最大值		
SYMBOL	MIN	NOMINAL	MAX		
Α	-	-	1.10		
A1	0.05	ı	0.15		
A2	0.75	0.85	0.95		
A3	0.30	0.35	0.40		
b	0.28	_	0.36		
С	0.15	_	0.19		
D	2.90	3.00	3.10		
E	2.90	3.00	3.10		
E1	4.70	4.90	5.10		
е	0.65 BSC				
L1	0.95 REF				
L	0.40	_	0.70		
θ	0°	-	8°		

DFN8L(3X3X0.75-P0.65) package information

