

DATA SHEET

AUTOMOTIVE GRADE HIGH VOLTAGE CHIP RESISTORS

RV series 0.5%, 1%, 5%

sizes 0603/0805/1206/2010/2512

RoHS compliant

IEC 62368-1 Safety Certificate issued by UL Demko: sizes 0603/0805/1206

YAGEO

RV SERIES

SCOPE

This specification describes RV0603/0805/1206/2010/2512 high voltage chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

- Converter
- Printer equipment
- Battery charger
- Computer
- Power supply
- Car electronics

<u>FEATUR</u>ES

- AEC-Q200 qualified
- RoHS compliant
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Non-forbidden materials used in products/production
- Halogen Free Epoxy
- Moisture sensitivity level: MSL I
- IEC 62368-1:2018 safety certificate issued by UL Demko for the following sizes and resistance ranges:

- 0603: $100K\Omega$ to $12M\Omega$

0805: I00K Ω to 24M Ω

- 1206: 100K Ω to 27M Ω

*Please refer to UL certification

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

RV XXXX X X X XX XXXX L

(2) (3) (4) (5)

(I) SIZE

0603/0805/1206/2010/2512

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $J = \pm 5\%$

(3) PACKAGING TYPE

R = Paper/PE taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07= 7 inch dia, Reel

(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed resistance rules show in table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is system default code for ordering only (Note)

Resistance rule of global part number

Resistance code ru	le Example
XXKX	10K = 10,000 Ω
(10 to 97.6 KΩ)	97K6 = 97,600 $Ω$
XXXK	$100K = 100,000\Omega$
(100 to 976 K Ω)	$976K = 976,000\Omega$
XMXX	$IM = 1,000,000 \Omega$
(1 to 9.76 MΩ)	$9M76 = 9,760,000 \Omega$
XXMX	$10M = 10,000,000 \Omega$
(10 to 16 MΩ)	$27M = 27,000,000 \Omega$

ORDERING EXAMPLE

The ordering code of a RVI206 chip resistor, value I $M\Omega$ with ±5% tolerance, supplied in 7-inch tape reel is: RVI206JR-07IML.

NOTE

- I. All our R-Chip products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / 12NC can be added (both are on customer request)

XXX XXXXX L

RV SERIES

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and 12NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

12NC CODE

2322

	(1)			(2) (3) (4)		
SIZE TYPE		START TOL. RESISTANCE			EMBOSSED ⁽²⁾ TAPE ON REEL	PAPER/PE (2) TAPE ON REEL (units)
		IN ⁽¹⁾	(%)	RANGE	4,000	5,000
0805	VRCII	2322	±5%	47 to 10M Ω	-	792 61xxx
	VRC12	2322	±1%	47 to 10M Ω	-	793 6xxxx
1206	VRC01	2322	±5%	47 to 27M Ω	-	790 61xxx
	VRC02	2322	±1%	47 to 10M Ω	-	791 6xxxx
2512	VPRC221	2322	±5%	47 to 16M Ω	762 98xxx	-

- (I) The resistors have a 12-digit ordering code starting with 2322.
- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) "L" is optional symbol (Note).

ORDERING EXAMPLE

The ordering code of a VRC01 resistor, value 1 M Ω with ±5% tolerance, supplied in tape of 5,000 units per reel is: 232279061105L or RV1206JR-071ML.

Last digit of I2NC Resistance decade (3)	Last digit
0.01 to 0.0976 Ω	0
0.1 to 0.976 Ω	7
I to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	I
I to 9.76 K Ω	2
10 to 97.6 KΩ	3
100 to 976 K Ω	4
I to 9.76 $M\Omega$	5
10 to 97.6 $M\Omega$	6

Example:	0.02 Ω	=	0200 or 200
	0.3 Ω	=	3007 or 307
	ΙΩ	=	1008 or 108
	33 K Ω	=	3303 or 333
	$10~\text{M}\Omega$	=	1006 or 106

NOTE

- I. All our R-Chip products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

10

MARKING

YAGEO

RV0603/0805/1206/2010/2512

E-24 series: 3 digits, \pm 5%

First two digits for significant figure and 3rd digit for number of zeros

RV0603

E-24 series: 3 digits, $\pm 0.5\% \& \pm 1\%$

Exception values 10/11/13/15/20/75 of E24 series

One short bar under marking letter

E-96 series: 3 digits, $\pm 0.5\% \& \pm 1\%$

Including values 10/11/13/15/20/75 of E24 series

First two digits for E-96 marking rule and 3rd letter for number of zeros

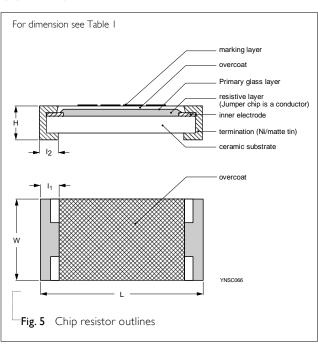
RV0805/1206/2010/2512

Both E-24 and E-96 series: 4 digits, $\pm 0.5\%$ & $\pm 1\%$

First three digits for significant figure and 4th digit for number of zeros

For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION


The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added. See fig.5

DIMENSIONS

Table I For outlines see fig. 5

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	l ₂ (mm)
RV0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
RV0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20
RV1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.45 ±0.20
RV2010	5.00 ±0.10	2.50 ±0.15	0.55 ±0.10	0.55 ±0.15	0.55 ±0.20
RV2512	6.35 ±0.10	3.10 ±0.15	0.55 ±0.10	0.60 ±0.20	0.60 ±0.20

OUTLINES

ELECTRICAL CHARACTERISTICS

Table 2

		CHARACTERISTICS					
TYPE	RESISTANCE RANGE	Rated Power	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Coefficient
RV0603	5% (E-24) 47 Ω to 10M Ω 1% (E-24/E-96) 47 Ω to 10M Ω 0.5% (E-24/E-96) 47 Ω to 10M Ω	1/10W		350V	500V	500V	
RV0805	5% (E-24) 47Ω to $22M\Omega$ 1% (E-24/E-96) 47Ω to $22M\Omega$ 0.5% (E-24/E-96) 47Ω to $10M\Omega$	1/8 W		400 V	800 V	800 V	47Ω≤R≤10MΩ
RV1206	5% (E-24) 47Ω to $27M\Omega$ 1% (E-24/E-96) 47Ω to $27M\Omega$ 0.5% (E-24/E-96) 47Ω to $15M\Omega$	1/4 W	-55 °C to +155 °C -	500 V	1,000 V	1,000 V	± 100ppm°C 10MΩ <r≤27mω< td=""></r≤27mω<>
RV2010	5% (E-24) 47 Ω to 22M Ω 1% (E-24/E-96) 47 Ω to 22M Ω 0.5% (E-24/E-96) 47 Ω to 10M Ω	3/4W		500 V	1,000 V	1,000 V	± 200ppm°C
RV2512	5% (E-24) 47 Ω to 16M Ω 1% (E-24/E-96) 47 Ω to 16M Ω 0.5% (E-24/E-96) 47 Ω to 10M Ω	IW	_	500 V	1,000 V	1,000 V	

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	reel Dimension	RV0603	RV0805	RV1206	RV2010	RV2512
Paper/PE taping reel (R)	7" (178 mm)	5,000	5,000	5,000		
Embossed taping reel (K)	7" (178 mm)				4,000	4,000

NOTE

1. For Paper/PE/Embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

6 10

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

POWER RATING

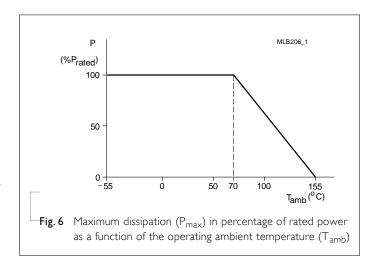
Each type rated power at 70 °C:

RV0603=1/10W; RV0805=1/8W; RV1206=1/4W;

RV2010=3/4W; RV2512=1W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

or max. working voltage whichever is less

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

Maximum working voltage can be applicable to resistors only if the resistance value is equal to or higher than the critical resistance value.

Chip Resistor Surface Mount RV SERIES 0603/0805/1206/2010/2512 (RoHS Compliant)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at T_A = 155 °C, unpowered	±(1.0%+0.05Ω)
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	±(2.0%+0.05Ω)
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	I,000 hours; 85 °C / 85% RH I 0% of operating power Measurement at 24±4 hours after test conclusion.	±(5.0%+0.05Ω)
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	±(3.0%+0.05Ω)
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	±(1.0%+0.05Ω) No visible damage
Thermal Shock	MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	±(1.0%+0.05Ω)
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, I pos. + I neg. discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	±(4.0%+0.05Ω)

Chip Resistor Surface Mount RV SERIES 0603/0805/1206/2010/2512 (RoHS Co

(J6U3/U8U5/	1206/2010	J/2512 (R	ohs Compliant))

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability	AEC-Q200 Test 18	Electrical Test not required Magnification 50X	Well tinned (≥95% covered)
- Wetting	J-STD-002	SMD conditions:	No visible damage
		(a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds.	C
		(b) Method B, steam aging 8 hours, dipping at 215 ± 3 °C for 5 ± 0.5 seconds.	
		(c) Method D, steam aging 8 hours, dipping at 260 ± 3 °C for 30 ± 0.5 seconds.	
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 100mm x 40mm glass epoxy resin PCB (FR4)	±(1.0%+0.05Ω)
		Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm	
		Holding time: minimum 60 seconds	
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/-55 °C and +25/+125 °C	Refer to table 2
resistance (1.c.re.)		Formula:	
		T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t_1 =+25 °C or specified room temperature	
		t_2 =-55 °C or +125 °C test temperature	
		R _I =resistance at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Short Time Overload	IEC60115-1 8.1	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	±(2.0%+0.05Ω)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 12	Mar. 01, 2023	-	- TCR updated
Version I I	Aug. 02, 2022	-	- 12 dimension updated, for size 1206, size 2010, size 2512
Version 10	Aug. 13, 2021	-	- Upgrade to Automotive Grade
Version 9	Feb. 01, 2021	-	- Update IEC62368-1 safety certificate declaration for sizes 0603/0805/1206
Version 8	Nov. 09, 2018	-	- Add AEC-Q200 for 47ohm ≤ R < 5Mohm
Version 7	Jul. 06, 2017	-	- Add IEC62368-1 safety certificate declaration for sizes 0603/0805/1206
Version 6	Dec. 01, 2016	-	- Extend resistor value of RV1206 0.5%
Version 5	Aug. 27, 2015	-	- Extend resistor range and add 0.5%
Version 4	Jan. 27, 2014	-	- RV0603 resistance range extend to $10M\Omega$ - Add RV2010
Version 3	Aug. 26, 2013	-	- Add RV0603
Version 2	Sep 29, 2011	-	- Type error correction
			- Change to dual brand datasheet that describes RV0805/1206/2512 with RoHS compliant
Version I	Nov 19, 2008	-	- Description of "Halogen Free Epoxy" added
			- Define global part number
			- New datasheet for high voltage chip resistors sizes of 0805/1206/2512, 5%, 1% tolerance with lead-free terminations
Version 0	Feb 14, 2006	-	- Replace the 0805/1206/2512 parts of pdf files: VRC01_02_11_12_51_3.pdf, VPRC221_5_3.pdf, and combine into a document.
			- Test method and procedure updated
			- PE tape added (paper tape will be replaced by PE tape)

RV SERIES

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.