

250V, 220mΩ typ., 16A N-Channel MOSFET

General Description

The 16N25 uses advanced planar stripe DMOS technology and design to provide excellent RDS(ON). These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, DC-AC converters for uninterrupted power supplies and motor controls.

Product Summary

BVDSS	RDS(on) max.	ID
250V	0.245Ω	16A

Applications

- Switch mode power supplies (SMPS)
- PWM Motor Controls
- DC-DC converters

TO-220/263/220F Pin Configuration

Features

- Low On-Resistance
- 100% avalanche tested
- Fast Switching
- RoHS Compliant

TO-220 TO-263 TO-220F (CMP16N25) (CMB16N25)

Absolute Maximum Ratings

Symbol	Parameter	220/263	220F	Units
V_{DS}	Drain-Source Voltage 250		50	V
V_{GS}	Gate-Source Voltage	±:	±30	
I _D @T _C =25°C	Continuous Drain Current	16	16*	Α
I _D @T _C =100°C	Continuous Drain Current	10	10*	Α
I _{DM}	Pulsed Drain Current ^(Note 1)	50	50*	Α
EAS	Single Pulse Avalanche Energy ^(Note 2)	360		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	5.5		V/ns
P _D @T _C =25°C	Total Power Dissipation	140	45	W
T _{STG}	Storage Temperature Range	-55 to 150		°C
T _J	Operating Junction Temperature Range -55 to 150		o 150	°C

^{*} Drain current limited by maximum junction temperature.

Thermal Data

Symbol	Parameter	220/263	220F	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient	62.5	62.5	°C/W
R ₀ JC	Thermal Resistance Junction-case	0.9	2.78	°C/W

CMP16N25/CMB16N25/CMF16N25

250V, 220mΩ typ., 16A N-Channel MOSFET

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	250			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25℃ , I _D =250uA		0.31		V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V , I _D = 8A		0.22	0.245	Ω
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2		4	V
	Dunin Course Looke as Course	V _{DS} =250V, V _{GS} =0V			10	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =200V , V _{GS} =0V , TC=125℃			100	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm30V$, V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =15V , I _D =8A (Note 4)		11		S
Qg	Total Gate Charge	I _D =16A		40	52	
Q _{gs}	Gate-Source Charge	V _{DS} =200V		5.5		nC
Q_gd	Gate-Drain Charge	V _{GS} = 10V (Note 4, 5)		23		
$T_{d(on)}$	Turn-On Delay Time	V _{DD} =125V		15		
T _r	Rise Time	I _D =16A		130		no
$T_{d(off)}$	Turn-Off Delay Time	R _G =25Ω		135		ns
T _f	Fall Time	(Note 4, 5)		105		
C _{iss}	Input Capacitance			1200		
C _{oss}	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		170		pF
C _{rss}	Reverse Transfer Capacitance			55		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			16	Α
I _{SM}	Pulsed Source Current				50	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =15A , T _J =25℃			1.5	V
trr	Reverse Recovery Time	V _{GS} =0V, I _S =16A , T _j =25 °C d₁F/d₁=100A/µs		260		ns
Qrr	Reverse Recovery Charge			2.47		μC

Note

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature
- 2. L = 1mH, I_{AS} = 27A, V_{DD} =50V, Starting T_J = 25°C
- 3. $I_{SD} \le 16 A, di/dt \le 300 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$
- 4.PulseTest Pulsewidth≤300µs,Dutycycle≤2%
- $5.\,Essentially\,independent of operating\,temperature$

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.