

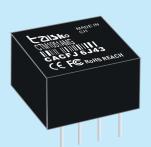
electric

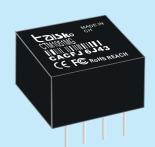
Facto

equipment Correction

current

limiting





Approvals

Feature

DC-DC converters Ideal for semiconductor, analytical, medical, and detector applications Accuracy, reliability and stability are critical for high voltage DC-DC applications. manufacturers, with over 20 years of experience providing accurate and reliable compact solutions. applications - allowing us to maximize functionality in a compact environment

Safety agency approval

ENI 55032:2015/A1:2020 EN IEC 62368-1:2020+A11:2020 IEC 62321-1:2013IEC 62321-2:2021IEC 62321-3-1:2013,

Up to 5-year warranty (Refer to Instruction Manual)

CE marking

Low Voltage Directive **RoHS** Directive

ROHS+REACH marking

Electrical Equipment Safety Regulations **RoHS** Regulations

EMI

- · PCA300F, PCA600F
 - Complies with FCC-B, CISPR32-B, EN55011-B, EN55032-B, VCCI-B
- · PCA1000F. PCA1500F
 - Complies with FCC-A, CISPR32-A, EN55011-A, EN55032-A, VCCI-A

EMS Compliance : EN61204-3, EN61000-6-2

IEC60601-1-2 (2014), EN60601-1-2 (2015)

- EN61000-4-2
- EN61000-4-3
- EN61000-4-4
- EN61000-4-5
- EN61000-4-6
- FN61000-4-8
- EN61000-4-11

1 Product features:

Compliant with ISO 11898-2 standard

Unpowered nodes do not affect the bus

A single network can connect at least 110 nodes

The shell and sealing material comply with UL94-V0 standard

Ultra small size, standard DIP8 package

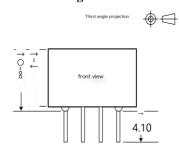
Has extremely low electromagnetic radiation and high

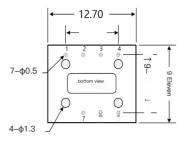
resistance to electromagnetic interference

Good high and low temperature characteristics, meeting the requirements of industrial grade products

2 Product Description:

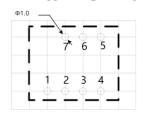
The CTM1051AMG/CTM1051MG ultra small volume high-speed CAN isolation transceiver module series is a CAN bus transceiver module that integrates isolation power supply, signal isolation chip, and CAN transceiver chip. The main function of the product is to convert the logic level into the differential level of the CAN bus, achieving signal isolation; The product comes with a constant voltage isolation power supply,


It can achieve electrical isolation of 2500VDC and has high ESD protection function. The product can be easily embedded into user devices, making it easy for the devices to connect to the CAN bus network.


3 Scope of application:

Automotive electronics, instruments, meters, railway transportation, petrochemicals, power monitoring, industrial control, smart homes...

4 Appearance dimensions and pin specifications:


4.1 Appearance dimension diagram

Note: Dimension unit: mm Terminal diameter tolerance: ± 0.10 Unmarked tolerance: ± 0.25

4.2 Suggested printing image

Note: The grid spacing is 2.54 * 2.54mm

4.3 Pin Definition

Pin		describe
Serial Number	name	describe
1	RXD	CAN controller connection terminal receiving pin
2	TXD	CAN controller connection terminal sending pin
3	GND	Power input ground
4	VCC	Positive power input
5	CANG	Isolation power output ground
6	CANL	CAN signal connection terminal CANL pin
7	CANH	CAN signal connection terminal CANH pin

5 Product Model Table

PRODUCT MODEL	Power supply voltage range (VDC)	static current (mA,Typ)	maximum operating current (mA)	Transmission baud rate (bps)	Nodes (pcs)	type	
CTM1051AMG	3.3 (3.15~3.45)	44	100	40k∼1M	110	high	
CTM1051MG	5 (4.75~5.25)	35	90		110	speed	

6 Specification parameters

6.1 Maximum limit parameter

Using beyond the following limit values may cause permanent damage to the module,

project	condition	minimu m value	Nomin al value	Maxim um value	unit
Input Voltage	CTM1051AMG	-0.7	3.3	5	V 1-
input voltage	CTM1051MG	-0.7	5	7	V dc
Pin soldering	Manual welding @ 3-5 seconds		370		°C
temperature resistance	Wave soldering @ 5-10 seconds		265		
hot pluggin g		Not Suppor ted			

Note: This series of modules does not have input anti reverse connection function. It is strictly prohibited to input positive and negative connections in reverse, otherwise it will cause irreversible damage to the module.

6.2 Input characteristics

project		symb ol	condition	minimu m value	Nominal value	Maximu m value	unit
INPUT		V _{CC}	CTM1051AMG	3.15	3.3	3.45	
VOLTAG E	VOLTAG		CTM1051MG	4.75	5	5.25	
TXD logic level	high level	V _{IH}		0.7V _{CC}		V _{CC} +0.5	V _{DC}
	Low Level	V _{IL}		0		0.3V _{CC}	
RXD logic level	high level	V _{OH}	I _{RXD} =-2mA	2.0			
	Low Level	V _{OL}	I _{RXD} =2mA			0.8	
TXD driving	TXD driving current					2	4
RXD output o	RXD output current I _{RXI}					2	mA
00	serial		CTM1051AMG	3.3V standard CAN controller interface			erface
	erface		CTM1051MG		5V standard CAN controller interface		

CAN Isolated Transceiver

CTMXXXAMG

6,3output characteristic

proje	ct	symbol	minimum value	Nominal value	Maximum value	unit
Explicit level (logic 0)	CANH	$V_{(OD)CANH}$	2.75	3.5	4.5	
Explicit level (logic 0)	CANL	$V_{(OD)CANL}$	0.5	1.5	2.25	
Logic level (logic 1)	CANH	$V_{(OR)CANH}$	2	2.5	3	
Logic level (logic 1)	CANL	$V_{(OR)CANL}$	2	2.5	3	VDC
Differential	Explicit (Logic 0)	$V_{\operatorname{diff}(d)}$	1.5	2	3	
voltage level	Implicit (Logic 1)	$V_{\mathrm{diff}(r)}$	-0.05	0	0.05	
Maximum v pins	vithstand voltage of bus	V_x	-58		+58	
Bus transient voltage		$V_{ m trt}$	-150		+100	
Bus pin leakage current		$(V_{CC}=0V, V_{CANH/L}=5V)$	-5		+5	μА
Bus interprotect		Compliant with ISO/DIS 11898 standard, twisted pair output				

6.3 Transmission characteristics

	roje ct	symbol	minimu m value	Nominal value	Maxim um value	unit
Data latency	TXD transmission delay	t_{T}		55	115	ns
	RXD receiving delay	t _R		65	135	
	Loop Delay	$t_{\mathrm{PD}(\mathrm{TXD-RXD})}$		120	250	
TXD exp	licit timeout	$T_{to(dom)TXD}$	0.3	1	12	ms

6.4 General characteristics

project	condition	minimu m value	Nominal value	Maxim um value	unit
Electrical isolation			plation at both end om each other)	s (input and outp	ut are isolated
Isolation Voltage	Test time 1 minute, leakage current<5mA, humidity<95%		3500		VDC
Working temperature range	Output as full load	-40		+105	℃
storage temperature		-55		+125	°C
Storage humidity	No condensation			95	%
Temperature rise of the casing during operation			20		°C
Usage environment	The presence of dust, strong vibrations, impacts, and gases that corrode product components in the surrounding environment may cause damage to the product				

6.5 physical property

project	condition		
Housing material Black flame retardant and heat-resistant plastic (UL94-V0)			
Package Size 12.70*10.16*7.70mm			
weight	2.0g (nominal)		
Cooling method	Natural air cooling		

6.6 EMC characteristics

classificati on	project	para mete r	grade
	Electrostatic	IEC/EN 61000-4-2 Contact ±4KV/Air ±8KV (bare metal)	Perf.Criteria B
	Discharge	IEC/EN 61000-4-2 Contact ±8KV/Air ±15KV (recommended circuit shown in Figure 4)	Perf.Criteria B
EMS	Pulse group immunity	IEC/EN 61000-4-4 ±2KV	Perf.Criteria B
Lightning surge immunity		IEC/EN 61000-4-5 common mode ±2KV (bare metal)	Perf.Criteria B
		IEC/EN 61000-4-5 differential mode ± 2 KV, common mode ± 4 KV (recommended circuit shown in Figure 4)	Perf.Criteria B
	Conducted disturbance immunity	IEC/EN61000-4-6 3Vr.m.s	Perf.Criteria A

7 design reference

7.1 Typical applications

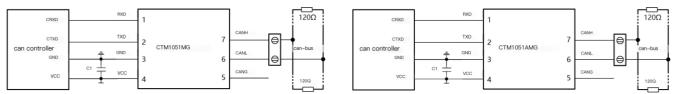


Figure 1. Circuit diagram of CAN controller 5V power supply application

2CAN controller 3.3V power supply application circuit

In general, the module is connected to the power supply, port, CAN controller, and CAN network bus, and can be used directly without the need for external components. Figure 1 shows the connection diagram between the 5V CAN controller interface and the CTM1051MG isolated transceiver module. The module must be powered by a 5V power supply, and the TXD and RXD pin interfaces of the module are matched with a voltage level of 5V and do not support 3.3V system voltage. Figure 2 shows the connection diagram between the 3.3V CAN controller interface and the CTM1051AMG isolated transceiver module. The module must be powered by a 3.3V power supply, and the TXD and RXD pin interfaces of the module are matched with a voltage level of 3.3V and do not support 5V system voltage.

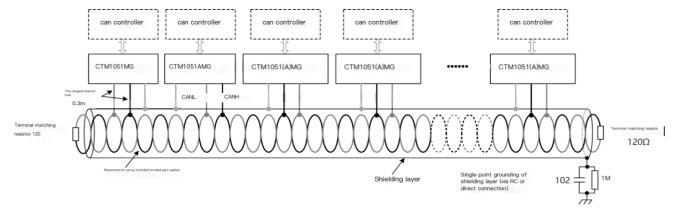
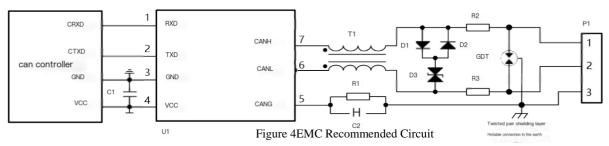


Figure 3. Schematic diagram of typical network connection for a single CAN Bus



A typical CAN Bus network is shown in the figure above, with each network capable of connecting 110 single CTM isolated CAN transceiver modules. The longest communication distance for general modules is 10km, while high-speed modules support a minimum baud rate of 40kbps and a longest communication distance of 1km. If more nodes or longer communication distances need to be connected, they can be extended through devices such as CAN repeaters.

Note: The bus communication distance is related to communication speed and field applications, and can be designed according to actual applications and reference to relevant standards. Communication cables should be selected as twisted pair or shielded twisted pair and kept as far away from interference sources as possible. When communicating over long distances, the terminal resistance value needs to be selected based on the communication distance, cable impedance, and number of nodes.

7.2 EMC Typical Recommended Circuit

When generally used in environments with good conditions, there is no need to add ESD protection devices, as shown in the typical connection circuit diagram in 7.1 Typical Applications.But if the application environment is relatively harsh (such as high voltage power, lightning strikes, etc.), it is recommended that users must add TVS tubes, common mode inductors, lightning protection tubes, shielded twisted pair cables, or single point grounding of the same network to the CANH/CANL terminal of the module for protection.

If specific surge level requirements need to be met, it is recommended to use the recommended protection circuit shown in Figure 4. Table 1 provides a set of recommended device parameters, and the recommended circuit diagram and parameter values are for reference only. Please determine the appropriate parameter values based on the actual situation.

Table 1. Recommended EMC Parameters

label	model	label	model
C1	10μF, 25V	D1, D2	1N4007
C2	102, 2KV, 1206	D3	SMBJ15CA
GDT	3RL090M-5-S	T1	B82793S0513N201
R1	1MΩ, 1206	U1	CTM1051 module
R2, R3	2.7Ω, 2W		

CAN Isolated Transceiver

CTMXXXAMG

8 Product usage precautions

8.1 CAN controller IO port level matching

The TXD and RXD pin interfaces of CTM1051MG are matched with a voltage level of 5V and do not support 3.3V system voltage; The TXD and RXD pin interfaces of CTM1051AMG match a voltage level of 3.3V and do not support 5V system voltage.

8.2 Module Pin Description

When pin 8 of the module is not connected and pin 5 is not in use, please suspend this pin.

8.3 Bus terminal matching resistor

When forming a CAN bus network, regardless of the number of nodes, distance, or working speed, terminal resistors need to be added to the bus.

8.4 The use of shielded wires

Please use shielded twisted pair cables for data transmission, and connect the shielding layer of the same network to the ground at a single point; If better anti-interference capability is required for the CAN network, double-layer shielded twisted pair cables can be used, with each node's CANG connected to the inner shielding layer and the outer shielding layer connected to the ground at a single point.