# **CAN Isolated Transceiver**

# SP00S12



equipment



Factor Correction







current limiting














# **SP-series**



# Feature

SP00S12 can be used for various signals
Transmission system to suppress lightning strikes
Interference signals such as surges and overvoltages,
And protect the device signal port.

This product is particularly suitable for CAN and Surge protection in communication fields such as RS-485. Application:

Widely used in

CANÿ RS-485

Surge protection in the field of communication

# Safety agency approval

ENI 55032:2015/A1:2020 EN IEC 62368-1:2020+A11:2020 IEC 62321-1:2013IEC 62321-2:2021IEC 62321-3-1:2013,

■ Up to 5-year warranty (Refer to Instruction Manual)

# CE marking

Low Voltage Directive RoHS Directive

# ■ ROHS+REACH marking

Electrical Equipment Safety Regulations RoHS Regulations

#### EMI

· PCA300F, PCA600F

Complies with FCC-B, CISPR32-B, EN55011-B, EN55032-B, VCCI-B

· PCA1000F, PCA1500F

Complies with FCC-A, CISPR32-A, EN55011-A, EN55032-A, VCCI-A

# EMS Compliance : EN61204-3, EN61000-6-2

IEC60601-1-2 (2014), EN60601-1-2 (2015)

EN61000-4-2

EN61000-4-3

EN61000-4-4

EN61000-4-5

EN61000-4-5 EN61000-4-6

EN61000-4-8

EN61000-4-11

# SP00S12



# SP00S12 signal surge suppressor Product Features:

- Low loss and fast response
- Suppress surge at the signal end
- Small size
- Current capacity: ≤ 500A (8/20 μ S simulated

lightning waveform)

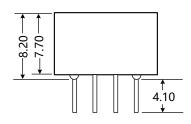
• Meet the surge level requirements of IEC/EN

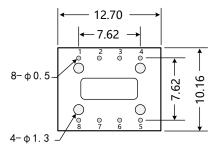
 $61000-4-5 \pm 4KV$ 

• The shell and sealing material comply with UL94

V-0 standard

# **2 Product Description:**


SP00S12 can be used in various signal transmission systems to suppress interference signals such as lightning strikes, surges, and overvoltages, and to protect equipment signal ports. This product is particularly suitable for surge protection in communication fields such as CAN and RS-485.

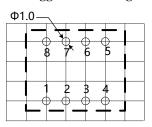

# Scope of application:

Industrial communication, coal mining industry, power monitoring, building automation ..

# 4. Appearance dimensions and pin specifications:

#### 4.1 Appearance dimension diagram






Note:

Dimensional unit: mm Terminal diameter tolerance

:  $\pm 0.10$  Unmarked tolerance:  $\pm 0.25$ 

#### 4.2 Suggested Printing Drawings



Note: The grid spacing is 2.54 \* 2.54mm

#### 4.3 Pin Definition

| Pin              |      |                     |  |  |  |
|------------------|------|---------------------|--|--|--|
| Serial<br>Number | name | describe            |  |  |  |
| 1                | A2   | Signal A output pin |  |  |  |
| 2                | PE   | ground              |  |  |  |
| 3                | re.  | ground              |  |  |  |
| 4                | B2   | Signal B output pin |  |  |  |
| 5                | B1   | Signal B input pin  |  |  |  |
| 6                | GND  | signal ground       |  |  |  |
| 7                | GND  | signai ground       |  |  |  |
| 8                | A1   | Signal A input pin  |  |  |  |



# **5 Product Model Table**

| PRODUCT<br>MODEL | Maximum operating voltage (VDC) | Maximum transmission baud rate (Mbps) | Rated current (mA) | Maximum current capacity (A) |
|------------------|---------------------------------|---------------------------------------|--------------------|------------------------------|
| SP00S12          | 12                              | 10                                    | 50                 | 500                          |

# 6 specification parameters

# **6.1 Protection Characteristics**

| project          | symbol | minimum<br>value | Nominal value | Maximum<br>value | unit |
|------------------|--------|------------------|---------------|------------------|------|
| current capacity | Id     |                  |               | 500              | A    |

# **6.2 Transmission Characteristics**

| project                      | symbol                         | condition              | minimum<br>value | Nominal<br>value | Maximum<br>value | unit |
|------------------------------|--------------------------------|------------------------|------------------|------------------|------------------|------|
| working voltage              | Uc                             |                        | -7               |                  | 12               | V    |
| transfer rate                | Vs                             |                        |                  |                  | 10               | Mbps |
| Rated current                | Ie                             |                        |                  |                  | 50               | mA   |
|                              | Rs <sub>(A1-A2)</sub>          | normal temperature     |                  | 12               |                  | Ω    |
|                              | Rs <sub>(B1-B2)</sub>          | normal temperature     |                  | 12               |                  |      |
| equivalent series resistance | Rs <sub>(A1-A2)</sub>          | Full temperature range | 1                |                  | 25               |      |
|                              | Rs <sub>(B1-B2)</sub>          | Full temperature range | 1                |                  | 25               |      |
| Pin to pin capacitance       | C <sub>(A1-B1)</sub>           |                        |                  | 25               |                  |      |
|                              | C <sub>(A2-B2)</sub>           |                        |                  | 25               |                  |      |
|                              | C <sub>(A1-GND) (B1-GND)</sub> |                        |                  | 50               |                  | pF   |
|                              | C <sub>(A2-PE)</sub> (B2-PE)   |                        |                  | 2                |                  |      |

# 6.3 Design Standards

| parameter      | test configuration                                                                                          | Meet standards                 |
|----------------|-------------------------------------------------------------------------------------------------------------|--------------------------------|
| g · ·          | Unshielded symmetrical communication line, external resistance of 80 $\Omega$ , as shown in Figures 3 and 4 | IEC/EN 61000-4-5 ±4KV 1.2/50μs |
| Surge immunity | Unshielded symmetrical communication line, external resistance 50 $\Omega$ , as shown in Figures 3 and 4    | IEC/EN 61000-4-5 ±4KV 10/700μs |

#### **6.4 General Characteristics**

| project                                         | condition                                                                                                                                                  | minimum<br>value | Nominal<br>value | Maximum<br>value | unit |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------|
| Working temperature range                       | Output as full load                                                                                                                                        | -40              |                  | +85              | °C   |
| storage temperature                             |                                                                                                                                                            | -40              |                  | +85              | °C   |
| Storage humidity                                | No condensation                                                                                                                                            |                  |                  | 95               | %    |
| Temperature rise of the casing during operation |                                                                                                                                                            |                  | 5                | 10               | °C   |
| Usage environment                               | The presence of dust, strong vibrations, impacts, and gases that corrode product components in the surrounding environment may cause damage to the product |                  |                  |                  |      |

# **6.5 Physical Characteristics**

| project          | condition                                                  |
|------------------|------------------------------------------------------------|
| Housing material | Black flame retardant and heat-resistant plastic (UL94-V0) |
| Package Size     | 12.70*10.16*7.70mm                                         |



| project        | condition           |
|----------------|---------------------|
| weight         | 2.0g (nominal)      |
| Cooling method | Natural air cooling |

# 7 Design references

# 7.1 Typical Applications

The SP00S12 signal surge suppressor can be used on various bus nodes that require protection to achieve the design required protection level.

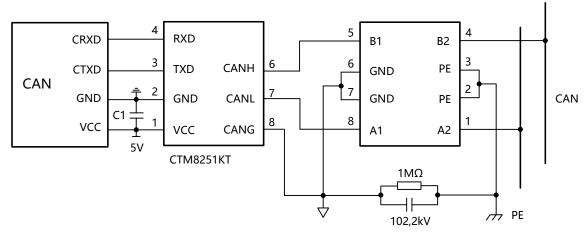



Figure 1. CTM8251KT application circuit

Figure 1 shows the application of SP00S12 in CAN serial communication. Adding SP00S12 to the communication port of a CAN transceiver circuit CTM8251KT can easily meet the surge level requirements of IEC/EN 61000-4-5 common mode and differential mode  $\pm$  4KV for the CAN signal port.

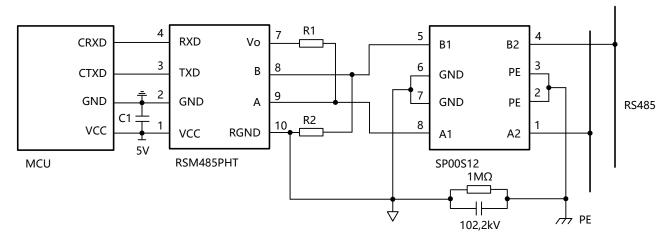



Figure 2. RSM485PHT application circuit

Figure 2 shows the application of SP00S12 in RS485 serial communication. By connecting the signal port of SP00S12 to the differential



signal ports A and B of the RSM485PHT module, the 485 communication port can meet the surge level requirements of IEC/EN 61000-4-5 common mode  $\pm 4KV$  and differential mode  $\pm 2KV$ 

#### 7.2 Surge immunity test

The surge suppression level of the product meets the IEC/EN 61000-4-5  $\pm 4$ KV protection requirements, and the test configuration is based on the unshielded symmetrical communication line in IEC/EN 61000-4-5. The specific test circuit is shown in Figure 3. During the testing process, apply different levels of surge voltage to the surge suppressor and measure the voltage waveform at its signal input and output terminals.

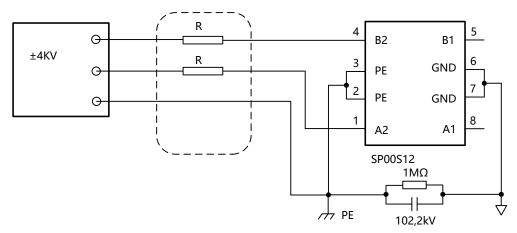



Figure 3 Common mode surge test

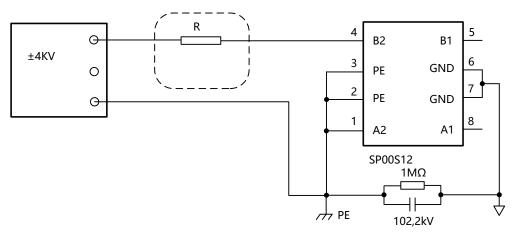



Figure 4 Differential surge test

Calculation of R when using a 1.2/50uS generator:  $R=2 \times 40 \Omega=80 \Omega$  Calculation of R when using a 10/700uS generator:  $R=2 \times 25 \Omega=50 \Omega$