

Feature

DC-DC converters Ideal for semiconductor, analytical, medical, and detector applications Accuracy, reliability and stability are critical for high voltage DC-DC applications. manufacturers, with over 20 years of experience providing accurate and reliable compact solutions. applications - allowing us to maximize functionality in a compact environment

Safety agency approval

ENI 55032:2015/A1:2020 EN IEC 62368-1:2020+A11:2020 IEC 62321-1:2013IEC 62321-2:2021IEC 62321-3-1:2013,

Up to 5-year warranty (Refer to Instruction Manual)

CE marking

Low Voltage Directive **RoHS Directive**

ROHS+REACH marking

Electrical Equipment Safety Regulations **RoHS** Regulations

EMI

- · PCA300F, PCA600F
 - Complies with FCC-B, CISPR32-B, EN55011-B, EN55032-B, VCCI-B
- · PCA1000F. PCA1500F
 - Complies with FCC-A, CISPR32-A, EN55011-A, EN55032-A, VCCI-A

EMS Compliance : EN61204-3, EN61000-6-2

IEC60601-1-2 (2014), EN60601-1-2 (2015)

EN61000-4-2

EN61000-4-3

EN61000-4-4

EN61000-4-5

EN61000-4-6

FN61000-4-8

EN61000-4-11

Single channel high-speed small volume RS-485 isolated transceiver

Product Features:

Single input power supply

Equipped with isolated output power pins

Automatic data transmission and reception function

Up to 64 nodes can be connected

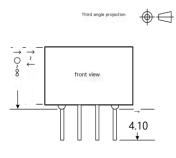
Electromagnetic radiation EMI is extremely low

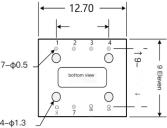
Working temperature range: -40 °C to+85 °C

Integrated power isolation, signal isolation, and bus

ESD protection functions

2 Product Description:


RSM485M. The main function will be to convert logical levels into differential levels of RS-485 protocol, achieving signal isolation; It is an RS-485 protocol transceiver module that uses IC integration technology to achieve power isolation, signal isolation, RS-485 communication, and bus protection. The product comes with a constant voltage isolation power supply, which can achieve 2500VDC electrical isolation. The product has automatic switching of transmission and reception functions, eliminating the need for transmission and reception control through control pins, which reduces the complexity of the design to a certain extent. The product can be easily embedded into user devices, enabling them to easily connect to RS485 protocol networks.


Scope of application:

Industrial communication, coal mining industry, power monitoring, building automation..

4. Appearance dimensions and pin specifications:

4.1 Appearance dimension diagram

Dimension unit: mm Terminal diameter tolerance: ±0.10 Unmarked tolerance: ±

Note:

5 Product Model Table

4.2 Suggested Printing Drawings

Note: The grid spacing is 2.54 * 2.54mm

4.3 Pin Definition

	Pin	
Serial Number	name	describe
1	RXD	Data receiving foot
2	TXD	Data sending pin
3	GND	Power input ground
4	VCC	Positive power input
5	RGND	Isolation output power ground
6	A	RS-485 pin A
7	В	RS-485 B-pin
8	VO	Isolation output power supply positive

PRODUCT MODEL	Power supply voltage range (VDC)	static current (mA,Typ)	maximum operating current (mA)	Transmission baud rate (kbps)	Nodes (pcs)	type
RSM485M	5 (3.15~5.25)	10	100	500	64	high speed

CAN Isolated Transceiver

RSM485M

6 specification parameters

6.1 Maximum limit parameters

Using beyond the following limit values may cause permanent damage to the module,

project	condition	minimum value	Nominal value	Maximum value	unit	
Input Voltage	RSM485M	-0.7	5	7	V dc	
Pin soldering temperature resistance	Manual welding @ 3-5 seconds		370		°C	
	Wave soldering @ 5-10 seconds		265			
hot plugging		Not Supported				

Note: This series of modules does not have input anti reverse connection function. It is strictly prohibited to input positive and negative connections in reverse, otherwise it will cause irreversible damage to the module.

6.2 Input Characteristics

project		symbol	condition	minimum value	Nominal value	Maximum value	unit
INPUT VOLTA	AGE	$V_{\rm CC}$	RSM485M	3.15	3.3	5.25	
TXD logic level	high level	V _{IH}		$0.7V_{CC}$		V _{CC} +0.5	
TAD logic level	Low Level	V _{IL}		0		$0.3V_{\rm CC}$	V_{DC}
DVD logic level	high level	V_{OH}	I _{RXD} =-2mA	2.0			
RXD logic level	Low Level	V_{OL}	I _{RXD} =2mA			0.8	
TXD driving cu	TXD driving current					2	1
RXD output current		I_{RXD}				2	mA
		VCC:3.3V		3.3V standard UA	ART interface		
serial	interface		VCC:5V	5V standard UART interface			

6.3 Output Characteristics

project	symbol	condition	minimum value	Nominal value	Maximum value	unit
Built in isolated output power supply voltage	$V_{\rm o}$	Rated input voltage				VDC
Differential output voltage (A-B)	V_{OD}	Nominal input voltage, differential	1.5		VO	VDC
Differential output current (A-B)	I_{OD}	load of 54Ω	28			mA
Bus interface protection				ESD electrostati	c protection	

6.4 Transmission Characteristics

project	symbol	condition	minimum value	Nominal value	Maximum value	unit
Built in pull-up and pull-down resistors				24		kΩ
Input impedance of transceiver		-7V≤VCM≤+12V	96			
Data transmission delay				180		
Data reception delay				120		ns

6.5 Characteristics of Truth Table

project	input	output		
	TXD	A	В	
Sending function	1	1	0	
	0	0	1	
	V _A -V _B	RXD		
Desciving function	≥-10mV	1		
Receiving function	≤-200mV	0		
	$-200 \text{mV} < V_A - V_B < -10 \text{mV}$	uncertain state		

6.6 General Characteristics

project	condition	minimum value	Nominal value	Maximum value	unit
Electrical isolation		Isolation at both	h ends (input and other		from each
Isolation Voltage	Test time 1 minute, leakage current<5mA, humidity<95%		2.5K		VDC
Working temperature range	Output as full load	-40		+85	°C
storage temperature		-55		+105	°C
Storage humidity	No condensation			95	%
Temperature rise of the casing during operation			20		°C
Usage environment	The presence of dust, strong vibrations, impacts, and gases that corrode product components in the surrounding environment may cause damage to the product				

6.7 Physical Characteristics

project	condition
Housing material	Black flame retardant and heat-resistant plastic (UL94-V0)
Package Size	12.70*10.16*7.70mm
weight	2.0g (nominal)
Cooling method	Natural air cooling

6.8 EMC Characteristics

classification	project	parameter	grade
	Electrostatic Discharge	IEC/EN 61000-4-2 Contact ± 4KV/Air ± 8KV (bare metal)	Perf.Criteria B
	Electrostatic Discharge	IEC/EN 61000-4-2 Contact ± 8KV/Air ± 15KV (recommended circuit shown in Figure 3)	Perf.Criteria B
	Pulse group immunity	IEC/EN 61000-4-4 ±2KV	Perf.Criteria B
EMS	Lightning surge	IEC/EN 61000-4-5 common mode ± 2KV (bare metal)	Perf.Criteria B
	immunity	IEC/EN 61000-4-5 differential mode \pm 2KV, common mode \pm 4KV (recommended circuit shown in Figure 3)	Perf.Criteria B
	Conducted disturbance immunity	IEC/EN61000-4-6 3Vr.m.s	Perf.Criteria A

7 Design references

7.1 Typical Applications

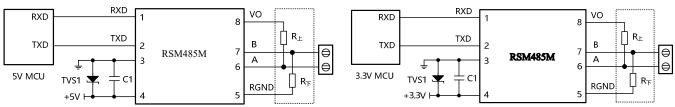


Figure 1. MCU 5V Power Supply Application Circuit

Figure 2. MCU 3.3V Power Supply Application Circuit

Figure 1 shows the connection diagram between the UART interface of the 5V MCU system and the RSM485M isolated transceiver module. The module must be powered by a 5V power supply, and the TXD and RXD pin interfaces of the module are matched with a voltage level of 5V and do not support 3.3V system voltage. Figure 2 shows the connection diagram between the UART interface of the 3.3V MCU system and the RSM485M isolated transceiver module. The module must be powered by a 3.3V power supply, and the TXD and RXD pin interfaces of the module are matched with a voltage level of 3.3V and do not support 5V system voltage.

7.2 Typical Recommended EMC Circuits

Due to the built-in pull-up and pull-down resistors and ESD protection devices in the A/B lines of the module, there is generally no need to add ESD protection devices when it is applied in a good environment, as shown in the typical connection circuit diagram in 7.1 Typical Applications.But if the application environment is relatively harsh (such as high voltage power, lightning strikes, etc.), it is recommended that users must add protective measures such as pull-down resistors, TVS tubes, common mode inductors, lightning protection tubes, shielded twisted pair cables, or single point grounding of the same network to the A/B terminals of the module.

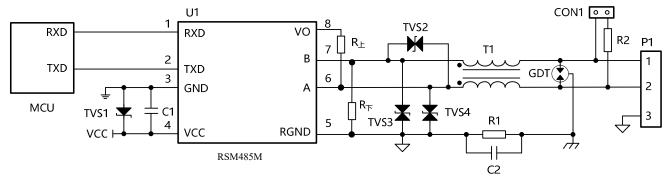


Figure 3EMC Recommended Circuit

If specific surge level requirements need to be met, it is recommended to use the recommended protection circuit shown in Figure 3. Table 1 provides a set of recommended device parameters, and the recommended circuit diagram and parameter values are for reference only. Please determine the appropriate parameter values based on the actual situation.

Table 1. Recommended EMC Parameters

label	model	label	model
C1	10μF, 25V	TVS1	SMBJ5.0A
C2	102, 2KV, 1206	TVS2	SMBJ12CA
GDT	3RL090M-5-S	TVS3, TVS4	SMBJ6.5CA
R1	1MΩ, 1206	T1	B82793S0513N201
R2	120Ω, 1206	U1	RSM485M module

CAN Isolated Transceiver

RSM485M

8 Product usage precautions

8.1 MCU IO port level matching

The TXD and RXD pin interfaces of RSM485M are matched with VCC power supply level.

8.2 Module RS485 A-B Bus Level Threshold Explanation

According to the characteristics of the truth table, the embedded isolated RS-485 transceiver module of this series has a high receiving level when the A/B line differential voltage is greater than or equal to+200mV; When the A/B line differential voltage is less than or equal to -200mV, the module's receiving level is low; When the differential voltage between A/B lines is greater than -200mV and less than+200mV, the module's receiving level is in an uncertain state, and the design should ensure that the module's receiving is not in this state. Therefore, when designing or applying RS-485 networks, users should decide whether to add a 120 Ω terminal resistor based on the actual situation. Usage principle: Regardless of whether the RS-485 network is in a static or dynamic state, it is necessary to ensure that the A/B line differential voltage is not between -200mV and+200mV, otherwise communication errors may occur.

8.3 Module Pin Description

When pins 5 and 8 are not in use, please suspend these pins.

8.4 Use of Shielded Wires

Please use shielded twisted pair cables for data transmission, and connect the shielding layer of the same network to the ground at a single point; If better anti-interference capability is required for the RS-485 network, double-layer shielded twisted pair cables can be used, with each node's RGND connected to the inner shielding layer and the outer shielding layer connected to the ground at a single point.

8.5 External pull-up and pull-down resistors

If the application environment is harsh (such as high voltage power, lightning strikes, etc.), ESD protection devices need to be added. Suitable pull-up and pull-down resistors and equivalent capacitors matched with ESD protection devices need to be externally connected to improve the waveform quality of communication signals.