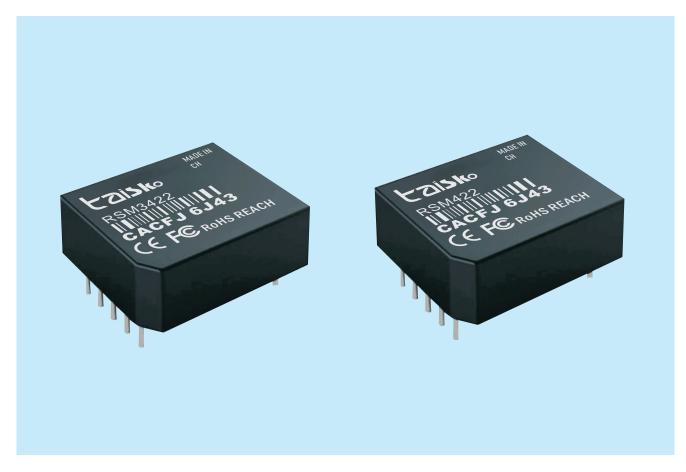
CAN Isolated Transceiver

RSMXX422

equipment

Factor Correction

current



Feature

RS485 isolated transceiver It is an integrated transceiver chip

Isolation chip and DC/DC

Integrated isolated power supply The interface isolation transceiver module

Can completely replace tradition

The optocoupler isolation scheme

In the past, we needed to send and receive chips

Isolation chip/optocoupler

Only by isolating the power supply can it be achieved

The entire isolation and transmission plan

Now we only need to collect

Using an RS485

Isolation transceiver module

It can be easily achieved

Greatly simplified the customer's design.

Safety agency approval

ENI 55032:2015/A1:2020

EN IEC 62368-1:2020+A11:2020

IEC 62321-1:2013IEC 62321-2:2021IEC 62321-3-1:2013,

Up to 5-year warranty (Refer to Instruction Manual)

CE FCC marking

Low Voltage Directive **RoHS Directive**

ROHS REACH marking

Electrical Equipment Safety Regulations RoHS Regulations

EMI

· PCA300F, PCA600F

Complies with FCC-B, CISPR32-B, EN55011-B, EN55032-B, VCCI-B

· PCA1000F. PCA1500F

Complies with FCC-A, CISPR32-A, EN55011-A, EN55032-A, VCCI-A

EMS Compliance: EN61204-3, EN61000-6-2

IEC60601-1-2 (2014), EN60601-1-2 (2015)

EN61000-4-2

EN61000-4-3

EN61000-4-4

EN61000-4-5

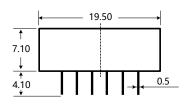
EN61000-4-6

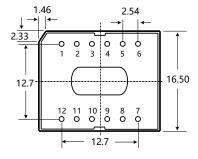
FN61000-4-8 EN61000-4-11

Embedded isolated RS-422 transceiver Product Features:

Single input power supply
Isolated output power pin
Can connect up to 256 nodes
Good electromagnetic radiation immunity
Integrated power isolation, signal isolation, and bus
ESD protection functions

2 Product Description:

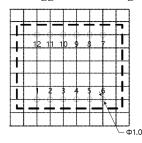

RSM3422 / RSM422, The main function will be to convert logical levels into differential levels of RS-422 protocol, achieving signal isolation; It is an RS-422 protocol transceiver module that uses IC integration technology to achieve power isolation, signal isolation, RS-422 communication, and bus protection. The product comes with a constant voltage isolation power supply, which can achieve 2500VDC electrical isolation. Conveniently embed user devices to enable easy connection to RS-422 protocol networks.


Scope of application:

Industrial communication, coal mining industry, power monitoring, building automation..

4. Appearance dimensions and pin specifications:

4.1 Appearance Dimensions


Note:

Dimension unit: mm

Terminal diameter tolerance: ± 0.10

Unmarked tolerance: ± 0.25

4.2 Suggested Printing Drawings

Note: The grid spacing is 2.54 * 2.54mm

4.3 Pin Definition

	Pin	
Serial Number	name	describe
1	VCC	Positive power input
2	GND	Power input ground
3	TXD	Sending feet
4	RXD	Receiving feet
5	DE	Send Enable Foot
6	RE	Receiving Enabling Feet
7	RGND	Isolation power output ground
8	Y	Y foot
9	Z	Z foot
10	В	B foot
11	A	A foot
12	Vo	Isolation power output positive

5 Product Model Table

PRODUCT MODEL	Power supply voltage range (VDC)	static current (mA,Typ)	maximum operating current (mA)	Transmission baud rate (Mbps)	Nodes (pcs)	type
RSM3422	3.3 (3.15~3.45)	38	130	10	256	ultra high- speed
RSM422	5 (4.75~5.25)	36	110	10	256	ultra high- speed

6 specification parameters

6.1 Maximum limit parameters

Using beyond the following limit values may cause permanent damage to the module,

project	condition	minimum value	Nominal value	Maximum value	unit
Imput Valtage	RSM3422	-0.7	3.3	5	V dc
Input Voltage	RSM422	-0.7	5	7	v de
Pin soldering	Manual welding @ 3-5 seconds		370		%
temperature resistance	Wave soldering @ 5-10 seconds		265		
hot plugging		Not Supported			

Note: This series of modules does not have input anti reverse connection function. It is strictly prohibited to input positive and negative connections in reverse, otherwise it will cause irreversible damage to the module.

6.2 Input Characteristics

project		symbol	condition	minimum value	Nominal value	Maximum value	unit
INPUT VOLTA	CE	V	RSM3422	3.15	3.3	3.45	
INPUT VOLTA	MGE	V_{CC}	RSM422	4.75	5	5.25	
TVD 1i- 11	high level	V _{IH}		0.7V _{CC}		V _{CC} +0.5	
TXD logic level	Low Level	V _{IL}		0		0.3V _{CC}	
DVD la sia lassal	high level	V_{OH}	$I_{RXD}=-2mA$	2.0			V_{DC}
RXD logic level	Low Level	V _{OL}	I _{RXD} =2mA			0.8	V DC
DE logic level	high level	V _{IH}		0.7V _{CC}		V _{CC} +0.5	
DE logic level	Low Level	V _{IL}		0		0.3V _{CC}	
DE 1i-11	high level	V _{OH}		0.7V _{CC}		V _{CC} +0.5	
RE logic level	Low Level	Vol		0		0.3V _{CC}	
TXD driving cu	rrent	I _{TXD}				2	
DE driving cur	DE driving current					2	
RE driving current		I_{RE}				2	mA
RXD output cur	RXD output current					2	
			RSM3422		3.3V standard UA	ART interface	
serial i	nterface		RSM422	5V standard UART interface			

6.3 Output Characteristics

project	symbol	condition	minimum value	Nominal value	Maximum value	unit
Isolation output power supply voltage	Vo	D-4-1 in mot on 14	4.95	5.15	5.35	VDC
Isolate output power supply current	Io	Rated input voltage	100			mA

CAN Isolated Transceiver

RSMXX422

project	symbol	condition	minimum value	Nominal value	Maximum value	unit
Differential output voltage (Y-Z)	V _{OD}	Nominal input voltage, differential load of 100Ω	2		VO	VDC
		Nominal input voltage, differential load of 54 Ω	1.5		VO	VDC
Differential output current (Y-	I _{OD}	Nominal input voltage, differential load of 100Ω	20			mA
Z)		Nominal input voltage, differential load of 54 Ω	28			mA
Bus interface protection		Y/Z A/B feet	ESD electrostatic protection			

6.4 Transmission Characteristics

project	symbol	condition	minimum value	Nominal value	Maximum value	unit
Input impedance of transceiver		-7V≤VCM≤+12V	96			kΩ
Data transmission delay				40		
Data reception delay				50		
Drive enable/disable delay				200		ns
Receive enable/disable delay				1400		

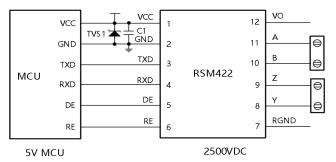
6.5 Characteristics of Truth Table

project	input			out	put
	RE	DE	TXD	Y	Z
	X	1	1	1	0
Sending function	X	1	0	0	1
	0	0	X	High	h-Z
	1	0	X	Shutdown	
	RE	DE	V _A -V _B	RX	TD .
	0	X	≥-10mV	1	
Receiving function	0	X	≤-200mV	0	1
	0	X	Open/Shorted	1	
	1	X	X	1	

6.6 General Characteristics

project	condition	minimum value	Nominal value	Maximum value	unit
Electrical isolation		Isolation at both ends (input and output are isolated from each other)			d from each
Isolation Voltage	Test time 1 minute, leakage current<5mA, humidity<95%		2.5K		VDC
Working temperature range	Output as full load	-40		+85	$^{\circ}$
storage temperature		-55		+105	$^{\circ}$
Storage humidity	No condensation			95	%
Temperature rise of the casing during operation			20		${\mathfrak C}$
Usage environment	The presence of dust, strong vibrations, impacts, and gases that corrode product components in the surrounding environment may cause damage to the product				

6.7 Physical Characteristics


project	condition
Housing material	Black flame retardant and heat-resistant plastic (UL94-V0)
Package Size	19.50*16.50*7.10mm
weight	4.0g (nominal)
Cooling method	Natural air cooling

6.8 EMC Characteristics

classification	project	parameter	grade
		IEC/EN 61000-4-2 Contact ± 4KV/Air ± 8KV (bare metal)	Perf.Criteria B
	Electrostatic Discharge	IEC/EN 61000-4-2 Contact ± 8KV/Air ± 15KV (recommended circuit shown in Figure 3)	Perf.Criteria B
	Pulse group immunity	IEC/EN 61000-4-4 ±2KV	Perf.Criteria B
EMS	Lightning surge	IEC/EN 61000-4-5 common mode ± 2KV (bare metal)	Perf.Criteria B
	immunity	IEC/EN 61000-4-5 differential mode ± 2KV, common mode ± 4KV (recommended circuit shown in Figure 3)	Perf.Criteria B
	Conducted disturbance immunity	IEC/EN61000-4-6 3Vr.m.s	Perf.Criteria A

7 Design references

7.1 Typical Applications

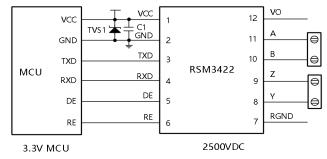


Figure 1. MCU 5V Power Supply Application Circuit

Figure 2. MCU 3.3V Power Supply Application Circuit

Figure 1 shows the connection diagram between the UART interface of the 5V MCU system and the RSM422 isolated transceiver module. The module must be powered by a 5V power supply, and the TXD and RXD pin interfaces of the module are matched with a voltage level of 5V and do not support 3.3V system voltage. Figure 2 shows the connection diagram between the UART interface of the 3.3V MCU system and the RSM3422 isolated transceiver module. The module must be powered by a 3.3V power supply, and the TXD and RXD pin interfaces of the module are matched with a voltage level of 3.3V, which does not support 5V system voltage.

7.2 Typical Recommended EMC Circuits

Due to the built-in ESD protection devices on the Y/Z A/B lines inside the module, there is generally no need to add ESD protection devices when applied in environments with good conditions, as shown in the typical connection circuit diagram in 7.1 Typical Applications.But if the application environment is relatively harsh (such as high voltage power, lightning strikes, etc.), it is recommended that users must add protective measures such as TVS tubes, common mode inductors, lightning protection tubes, shielded twisted pair cables, or single point grounding of the same network to the Y/Z A/B terminal of the module.

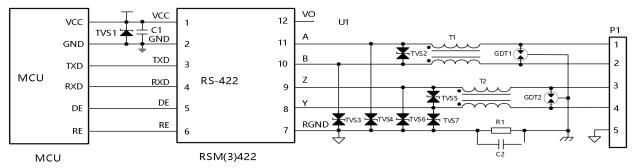


Figure 3EMC Recommended Circuit

If specific surge level requirements need to be met, it is recommended to use the recommended protection circuit shown in Figure 3. Table 1 provides a set of recommended device parameters, and the recommended circuit diagram and parameter values are for reference only. Please determine the appropriate parameter values based on the actual situation.

Table 1. Recommended EMC Parameters

label	model	label	model
C1	10μF, 25V	TVS1	SMBJ5.0A
C2	102, 2KV, 1206	TVS2,TVS5	SMBJ12CA
GDT	3RL090M-5-S	TVS3, TVS4,TVS6,TVS7	SMBJ6.5CA
R1	1ΜΩ, 1206	T1,T2	B82793S0513N201
R2	120Ω, 1206	U1	RSM (3) 422 module

8 Product usage precautions

8.1 MCU IO port level matching

The TXD, RXD, DE, and RE pin interfaces of RSM422 are matched with a voltage level of 5V and do not support a 3.3V system level; The TXD, RXD, DE, and RE pin interfaces of RSM3422 are matched with a voltage level of 3.3V and do not support 5V system voltage.

8.2 Module RS422 A-B Bus Level Threshold Explanation

According to the characteristics of the truth table, the embedded isolated RS-422 transceiver module of this series has a high receiving level when the A/B line differential voltage is greater than or equal to -10mV; When the A/B line differential voltage is less than or equal to -200mV, the module's receiving level is low; When the differential voltage between A/B lines is greater than -200mV and less than -10mV, the module's receiving level is in an uncertain state, and the design should ensure that the module's receiving is not in this state. So when designing or applying RS-422 networks, users need to decide whether to add a $120~\Omega$ terminal resistor based on the actual situation. Usage principle: Regardless of whether the RS-422 network is in a static or dynamic state, it is necessary to ensure that the A/B line differential voltage is not between -200mV and -10mV, otherwise communication errors may occur.

8.3 Module Pin Description

When module pins 7 and 12 are not in use, please suspend this pin.