

# R3114x SERIES

### 0.8% LOW VOLTAGE DETECTOR

NO.EA-160-160226

## **OUTLINE**

The R3114x series are CMOS-based voltage detector ICs with high detector threshold accuracy and ultra-low supply current, which can be operated at an extremely low voltage and is used for system reset as an example.

Each of these ICs consists of a voltage reference unit, a comparator, resistors for detector threshold setting, an output driver and a hysteresis circuit. The detector threshold is fixed with high accuracy internally and does not require any adjustment.

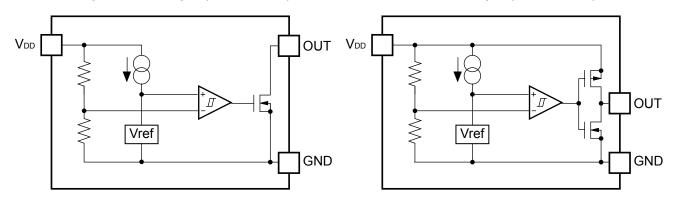
Two output types, Nch open drain type and CMOS type are available.

The R3114x series are operable at a lower voltage than that of the R3111x series, and can be driven by a single battery.

Three types of packages, SOT-23-5, SC-82AB, and DFN(PL)1010-4 are available.

### **FEATURES**

| Supply Current                                      | Typ. 0.35μA (-Vdet=1.5V, Vdd=-Vdet+1V)                   |
|-----------------------------------------------------|----------------------------------------------------------|
| Operating Voltage Range                             | 0.5V to 6.0V (Topt=25°C)                                 |
| Detector Threshold Range                            | 0.7V to 5.0V (0.1V steps)                                |
|                                                     | (For other voltages, please refer to MARK INFORMATIONS.) |
| Detector Threshold Accuracy                         | ±0.8% (-Vdet ≥ 1.5V)                                     |
| Temperature-Drift Coefficient of Detector Threshold | Typ. ±30ppm/°C                                           |
| Output Types                                        | Nch Open Drain "L" and CMOS                              |
| Packages                                            | DFN(PL)1010-4, SC-82AB, SOT-23-5                         |


#### **APPLICATIONS**

- CPU and Logic Circuit Reset
- Battery Checker
- Window Comparator
- · Wave Shaping Circuit
- · Battery Back-up Circuit
- Power Failure Detector

# **BLOCK DIAGRAMS**

## Nch Open Drain Output (R3114xxx1A)

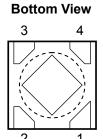
### CMOS Output (R3114xxx1C)



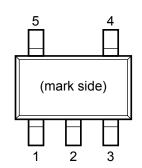
## **SELECTION GUIDE**

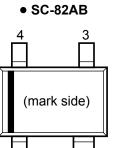
The package type, the detector threshold, the output type and the taping type for the ICs can be selected at the users' request.

| Product Name     | Package       | Quantity per Reel | Pb Free | Halogen Free |
|------------------|---------------|-------------------|---------|--------------|
| R3114Kxx1*-TR    | DFN(PL)1010-4 | 10,000 pcs        | Yes     | Yes          |
| R3114Qxx1*-TR-FE | SC-82AB       | 3,000 pcs         | Yes     | Yes          |
| R3114Nxx1*-TR-FE | SOT-23-5      | 3,000 pcs         | Yes     | Yes          |


xx: The detector threshold can be designated in the range from 0.7V(07) to 5.0V(50) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)

- \* : Designation of Output Type
  - (A) Nch Open Drain
  - (C) CMOS


## **PIN CONFIGURATIONS**


• DFN(PL)1010-4\*

Top View
4 3



• SOT-23-5





## **PIN DESCRIPTIONS**

## • DFN(PL)1010-4\*

| Pin No. | Symbol   | Description                   |
|---------|----------|-------------------------------|
| 1       | OUT      | Output Pin ("L" at detection) |
| 2       | NC       | No Connection                 |
| 3       | GND      | Ground Pin                    |
| 4       | $V_{DD}$ | Input Pin                     |

\*) Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

#### • SOT-23-5

| Pin No. | Symbol   | Description                   |
|---------|----------|-------------------------------|
| 1       | OUT      | Output Pin ("L" at detection) |
| 2       | $V_{DD}$ | Input Pin                     |
| 3       | GND      | Ground Pin                    |
| 4       | NC       | No Connection                 |
| 5       | NC       | No Connection                 |

#### • SC-82AB

| Pin No. | Symbol   | Description                      |
|---------|----------|----------------------------------|
| 1       | OUT      | Output Pin<br>("L" at detection) |
| 2       | $V_{DD}$ | Input Pin                        |
| 3       | NC       | No Connection                    |
| 4       | GND      | Ground Pin                       |

## **ABSOLUTE MAXIMUM RATINGS**

| Symbol          | Item                                   | Rating             | Unit |
|-----------------|----------------------------------------|--------------------|------|
| V <sub>DD</sub> | Supply Voltage                         | 7.0                | V    |
| Vout            | Output Voltage (Nch Open Drain Output) | Vss-0.3 to 7.0     | V    |
| <b>V</b> 001    | Output Voltage (CMOS Output)           | Vss-0.3 to VDD+0.3 | V    |
| Іоит            | Output Current                         | 20                 | mA   |
|                 | Power Dissipation (SOT-23-5)*          | 420                |      |
| PD              | Power Dissipation (SC-82AB)*           | 380                | mW   |
|                 | Power Dissipation (DFN(PL)1010-4)*     | 400                |      |
| Topt            | Operating Temperature Range            | -40 to 85          | °C   |
| Tstg            | Storage Temperature Range              | –55 to 125         | °C   |

<sup>\*)</sup> For Power Dissipation, please refer to PACKAGE INFORMATION.

#### **ABSOLUTE MAXIMUM RATINGS**

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

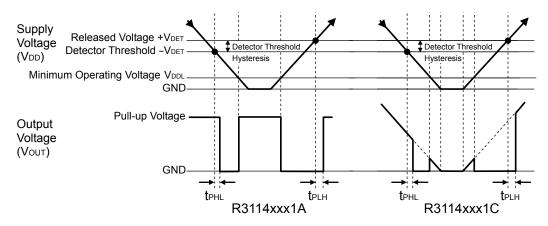
#### RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

## **ELECTRICAL CHARACTERISTICS**

• R3114xxx1A/C values indicate −40°C ≤ Topt ≤ 85°C, unless otherwise noted. Topt=25°C

| -Voer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Symbol           | Item                         |                                              | Cond                        | itions     |                             | Min.  | Тур. | Max.  | Unit       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|----------------------------------------------|-----------------------------|------------|-----------------------------|-------|------|-------|------------|
| Detector Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                              | Topt=25                                      | 5°C                         | 1.5V < -   | $V_{\text{DET}} \leq 5.0 V$ |       |      |       | V          |
| A0°C ≤ Topt ≤ 85°C   1.5V < -Vpet ≤ 5.0V   -Vpet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Voet             | Dotactor Throshold           |                                              |                             | 0.7V ≤ -\  | $V_{\text{DET}} \leq 1.5 V$ | -12   |      | +12   | mV         |
| Detector Threshold   V <sub>HYS</sub>   Detector Threshold   V <sub>DDE</sub> V <sub>DET</sub>   V <sub>DDET</sub>   V <sub>DDET</sub> | -VDET            | Detector Tilleshold          |                                              | ≤ Topt ≤                    | 1.5V < -   | $V_{\text{DET}} \leq 5.0 V$ | II I  |      |       | V          |
| New   Hysteresis   Vode   V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                              | 85°C                                         |                             | 0.7V ≤ -\  | $V_{\text{DET}} \leq 1.5 V$ | -22.5 |      | +22.5 | mV         |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VHYS             |                              |                                              |                             |            |                             |       |      |       | V          |
| Supply Current   Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                              |                                              |                             | 0.7V ≤ -\  | V <sub>DET</sub> < 1.6V     |       |      | 1.40  |            |
| Supply Current   Sup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                              | Von- V                                       | ner 0.1\/                   | 1.6V ≤ -\  | V <sub>DET</sub> < 3.1V     |       |      | 1.50  |            |
| $ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                              | <b>V</b> DD— <b>- V</b>                      | DET - <b>U. I V</b>         | 3.1V ≤ -\  | V <sub>DET</sub> < 4.1V     |       |      | 1.60  |            |
| $V_{\text{DD}=-V_{\text{DET}}} + 1.0V \\ V_{\text{DD}=-V_{\text{DET}}} + 1.0V \\ \hline \\ V_{\text{DD}=-V_{\text{DET}}} + 1.0V \\ \hline \\ \hline \\ V_{\text{DD}} \\ \hline \\ V_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lee              | Supply Current               |                                              |                             | 4.1V ≤ -\  | $V_{\text{DET}} \leq 5.0V$  |       |      | 1.70  | ^          |
| $   V_{\text{DDH}}   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 155              | опры оптент                  |                                              |                             | 0.7V ≤ -\  | V <sub>DET</sub> < 1.6V     |       |      | 1.20  | μΑ         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                              | V \/                                         | ner ±1 0\/                  | 1.6V ≤ -\  | V <sub>DET</sub> < 3.1V     |       |      | 1.20  |            |
| $ \begin{array}{ c c c c c c } \hline V_{DDH} & Maximum Operating Voltage \\ \hline V_{DDL} & Minimum Operating \\ \hline V_{Oltage*1} & T_{Opt=25^{\circ}C} & 0.50 \\ \hline -40^{\circ}C \le T_{Opt} \le 85^{\circ}C & 0.55 \\ \hline \hline V_{DD=0.55V, V_{DS=0.05V}} & 7 & \mu A \\ \hline \\ I_{OUT} & Output Current \\ (Driver Output Pin) & 1.1V \le -V_{DET} < 1.1V & V_{DD=1.0V} \\ \hline \\ I_{DEC} & V_{DD=0.5V} & 0.02 \\ \hline \\ I_{DEC} & 0.7V \le -V_{DET} < 1.6V & V_{DD=1.0V} \\ \hline \\ I_{DEC} & 0.40 \\ \hline \\ I_{DEC} & 0.50 \\ \hline \\ I_{DEC} & 0.50 \\ \hline \\ I_{DEC} & 0.55 \\ \hline \\ I_{DEC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                              | <b>V</b> DD— <b>- V</b>                      | DET TI.UV                   | 3.1V ≤ -\  | √ <sub>DET</sub> < 4.1V     |       |      | 1.30  |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                              |                                              |                             | 4.1V ≤ -\  | $V_{\text{DET}} \leq 5.0 V$ |       |      | 1.40  |            |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>DDH</sub> | Maximum Operating Voltage    |                                              |                             |            |                             |       |      | 6     | V          |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vasi             | Minimum Operating            | Topt=25                                      | 5°C                         |            |                             |       |      | 0.50  | V          |
| $  \text{Lout}   \text{Coutput Current} \\   Coutpu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V DDL            | Voltage*1                    | -40°C                                        | $\leq$ Topt $\leq$ 85°C     |            |                             |       |      | 0.55  | V          |
| $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                              |                                              | VDD=0.55V, V                | os=0.05V   |                             | 7     |      |       | μΑ         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                              |                                              | 0.7V ≤ -V <sub>DET</sub>    | < 1.1V     |                             | 0.02  |      |       |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                              | Nch                                          | 1.1V ≤ -V <sub>DET</sub>    | < 1.6V     |                             | 0.40  |      |       | <b></b> Λ  |
| $3.1 \text{V} \leq -\text{V}_{\text{DET}} \leq 5.0 \text{V} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Іоит             |                              |                                              | 1.6V ≤ -V <sub>DET</sub>    | < 3.1V     |                             | 1.00  |      |       | IIIA       |
| $Pch^{*2} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | (Enver Galpat i iii)         |                                              | 3.1V ≤ -V <sub>DET</sub>    | ≤ 5.0V     |                             | 2.40  |      |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                              | Dah*2                                        | $0.7V \le -V_{DET}$         | < 4.0V     |                             | 0.65  |      |       | <b>س</b> ۸ |
| Δ-V <sub>DET</sub> / Detector Threshold ppm /°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                              | PCn <sup>-2</sup>                            | 4.0V ≤ -V <sub>DET</sub>    | ≤ 5.0V     |                             | 0.90  |      |       | IIIA       |
| ΔTopt Temperature Coefficient ±30 /°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ILEAK            | Nch Driver Leakage Current*3 | V <sub>DD</sub> =6.0V, V <sub>DS</sub> =7.0V |                             |            |                             |       |      | 80    | nA         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                              |                                              |                             |            |                             |       | ±30  |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>t</b> PLH     | Output Delay Time            | V <sub>DD</sub> =0.                          | 55V to -V <sub>DET</sub> +2 | .0V or 6.0 | V                           |       | 40   |       | μS         |


All of unit are tested and specified under load conditions such that Topt=25°C except for Detector Threshold Temperature Coefficient.

<sup>\*1:</sup> Minimum operating voltage means the value of input voltage when output voltage maintains 0.1V or less. (In case of Nch Open Drain Output type, the output pin is pulled up with a resistance of  $470k\Omega$  to 5.0V)

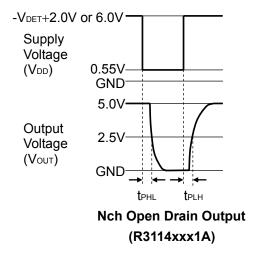
<sup>\*2:</sup> In case of CMOS type

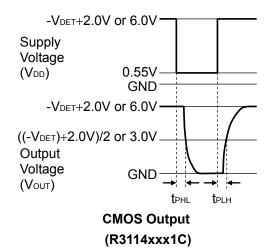
<sup>\*3:</sup> In case of Nch Open Drain type

### **TIMING CHART**



#### **DEFINITION OF OUTPUT DELAY TIME**


Output Delay Time (tplh) is defined as follows:


1. In the case of Nch Open Drain Output:

Under the condition of the output pin (OUT) is pulled up through a resistor of  $470k\Omega$  to 5V, the time interval between the rising edge of V<sub>DD</sub> pulse from 0.55V to (-V<sub>DET</sub>)+2.0V or the time interval of 6.0V pulse voltage is supplied, the becoming of the output voltage to 2.5V.

2. In the case of CMOS Output:

The time interval between the rising edge of  $V_{DD}$  pulse from 0.55V to  $(-V_{DET})+2.0V$  or the time interval of 6.0V pulse voltage is supplied, the becoming of the output voltage to  $((-V_{DET})+2.0V)/2$  or 3.0V.





## **ELECTRICAL CHARACTERISTICS BY DETECTOR THRESHOLD**

#### • R3114x071A/C to R3114x501A/C

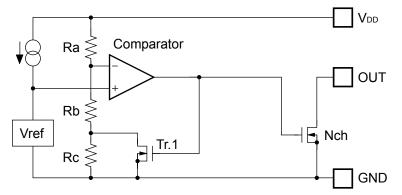
Bold values are checked and guaranteed by design engineering at  $-40^{\circ}$ C  $\leq$  Topt  $\leq$  85°C, unless otherwise noted.

|              |        |                 |        |               |       |                     |                   |          |        |          |                     | Topt=25°C           |
|--------------|--------|-----------------|--------|---------------|-------|---------------------|-------------------|----------|--------|----------|---------------------|---------------------|
| Part         |        | ector<br>shold1 |        | ctor<br>hold2 |       | Threshold<br>eresis | Supply            | Current1 | Supply | Current2 | Max. Op.<br>Voltage | Min. Op.<br>Voltage |
| Number       | -VDE   | T1 [V]          | -VDE   | T2 <b>[V]</b> | VHY   | s [V]               | Iss1              | [µA]     | Iss2   | [µA]     | VDDH [V]            | VDDL [V]            |
|              | Min.   | Max.            | Min.   | Max.          | Min.  | Max.                | Cond.             | Max.     | Cond.  | Max.     | Max.                | Max.                |
| R3114x071A/C | 0.6880 | 0.7120          | 0.6775 | 0.7225        | 0.028 | 0.049               |                   |          |        |          |                     |                     |
| R3114x081A/C | 0.7880 | 0.8120          | 0.7775 | 0.8225        | 0.032 | 0.056               |                   |          |        |          |                     |                     |
| R3114x091A/C | 0.8880 | 0.9120          | 0.8775 | 0.9225        | 0.036 | 0.063               |                   |          |        |          |                     |                     |
| R3114x101A/C | 0.9880 | 1.0120          | 0.9775 | 1.0225        | 0.040 | 0.070               |                   |          |        |          |                     |                     |
| R3114x111A/C | 1.0880 | 1.1120          | 1.0775 | 1.1225        | 0.044 | 0.077               |                   | 1.400    |        |          |                     |                     |
| R3114x121A/C | 1.1880 | 1.2120          | 1.1775 | 1.2225        | 0.048 | 0.084               |                   |          |        |          |                     |                     |
| R3114x131A/C | 1.2880 | 1.3120          | 1.2775 | 1.3225        | 0.052 | 0.091               |                   |          |        |          |                     |                     |
| R3114x141A/C | 1.3880 | 1.4120          | 1.3775 | 1.4225        | 0.056 | 0.098               |                   |          |        |          |                     |                     |
| R3114x151A/C | 1.4880 | 1.5120          | 1.4775 | 1.5225        | 0.060 | 0.105               |                   |          |        |          |                     |                     |
| R3114x161A/C | 1.5872 | 1.6128          | 1.5760 | 1.6240        | 0.064 | 0.112               |                   |          |        |          |                     |                     |
| R3114x171A/C | 1.6864 | 1.7136          | 1.6745 | 1.7255        | 0.068 | 0.119               |                   |          |        |          |                     |                     |
| R3114x181A/C | 1.7856 | 1.8144          | 1.7730 | 1.8270        | 0.072 | 0.126               |                   |          |        | 1.200    |                     |                     |
| R3114x191A/C | 1.8848 | 1.9152          | 1.8715 | 1.9285        | 0.076 | 0.133               |                   |          |        | 1.200    |                     |                     |
| R3114x201A/C | 1.9840 | 2.0160          | 1.9700 | 2.0300        | 0.080 | 0.140               |                   |          |        |          |                     |                     |
| R3114x211A/C | 2.0832 | 2.1168          | 2.0685 | 2.1315        | 0.084 | 0.147               |                   |          |        |          |                     |                     |
| R3114x221A/C | 2.1824 | 2.2176          | 2.1670 | 2.2330        | 0.088 | 0.154               |                   |          |        |          |                     |                     |
| R3114x231A/C | 2.2816 | 2.3184          | 2.2655 | 2.3345        | 0.092 | 0.161               |                   | 1.500    |        |          |                     |                     |
| R3114x241A/C | 2.3808 | 2.4192          | 2.3640 | 2.4360        | 0.096 | 0.168               |                   |          |        |          |                     |                     |
| R3114x251A/C | 2.4800 | 2.5200          | 2.4625 | 2.5375        | 0.100 | 0.175               |                   |          |        |          |                     |                     |
| R3114x261A/C | 2.5792 | 2.6208          | 2.5610 | 2.6390        | 0.104 | 0.182               |                   |          |        |          |                     | 0.50                |
| R3114x271A/C | 2.6784 | 2.7216          | 2.6595 | 2.7405        | 0.108 | 0.189               | ١.,               |          | .,     |          |                     |                     |
| R3114x281A/C | 2.7776 | 2.8224          | 2.7580 | 2.8420        | 0.112 | 0.196               | V <sub>DD</sub> = |          | VDD=   |          | •                   | 0.55                |
| R3114x291A/C | 2.8768 | 2.9232          | 2.8565 | 2.9435        | 0.116 | 0.203               | -VDET             |          | -VDET  |          | 6                   | 0.55                |
| R3114x301A/C | 2.9760 | 3.0240          | 2.9550 | 3.0450        | 0.120 | 0.210               | -0.1V             |          | +1.0V  |          |                     |                     |
| R3114x311A/C | 3.0752 | 3.1248          | 3.0535 | 3.1465        | 0.124 | 0.217               |                   |          |        |          |                     | *Note1              |
| R3114x321A/C | 3.1744 | 3.2256          | 3.1520 | 3.2480        | 0.128 | 0.224               |                   |          |        |          |                     | *INOIG I            |
| R3114x331A/C | 3.2736 | 3.3264          | 3.2505 | 3.3495        | 0.132 | 0.231               |                   |          |        |          |                     |                     |
| R3114x341A/C | 3.3728 | 3.4272          | 3.3490 | 3.4510        | 0.136 | 0.238               |                   |          |        |          |                     |                     |
| R3114x351A/C | 3.4720 | 3.5280          | 3.4475 | 3.5525        | 0.140 | 0.245               |                   | 4 000    |        | 4 200    |                     |                     |
| R3114x361A/C | 3.5712 | 3.6288          | 3.5460 | 3.6540        | 0.144 | 0.252               |                   | 1.600    |        | 1.300    |                     |                     |
| R3114x371A/C | 3.6704 | 3.7296          | 3.6445 | 3.7555        | 0.148 | 0.259               |                   |          |        |          |                     |                     |
| R3114x381A/C | 3.7696 | 3.8304          | 3.7430 | 3.8570        | 0.152 | 0.266               |                   |          |        |          |                     |                     |
| R3114x391A/C | 3.8688 | 3.9312          | 3.8415 | 3.9585        | 0.156 | 0.273               |                   |          |        |          |                     |                     |
| R3114x401A/C | 3.9680 | 4.0320          | 3.9400 | 4.0600        | 0.160 | 0.280               |                   |          |        |          |                     |                     |
| R3114x411A/C | 4.0672 | 4.1328          | 4.0385 | 4.1615        | 0.164 | 0.287               |                   |          |        |          | 1                   |                     |
| R3114x421A/C | 4.1664 | 4.2336          | 4.1370 | 4.2630        | 0.168 | 0.294               |                   |          |        |          |                     |                     |
| R3114x431A/C | 4.2656 | 4.3344          | 4.2355 | 4.3645        | 0.172 | 0.301               |                   |          |        |          |                     |                     |
| R3114x441A/C | 4.3648 | 4.4352          | 4.3340 | 4.4660        | 0.176 | 0.308               |                   |          |        |          |                     |                     |
| R3114x451A/C | 4.4640 | 4.5360          | 4.4325 | 4.5675        | 0.180 | 0.315               |                   |          |        |          |                     |                     |
| R3114x461A/C | 4.5632 | 4.6368          | 4.5310 | 4.6690        | 0.184 | 0.322               |                   | 1.700    |        | 1.400    |                     |                     |
| R3114x471A/C | 4.6624 | 4.7376          | 4.6295 | 4.7705        | 0.188 | 0.329               |                   |          |        |          |                     |                     |
| R3114x481A/C | 4.7616 | 4.8384          | 4.7280 | 4.8720        | 0.192 | 0.336               |                   |          |        |          |                     |                     |
| R3114x491A/C | 4.8608 | 4.9392          | 4.8265 | 4.9735        | 0.196 | 0.343               |                   |          |        |          |                     |                     |
| R3114x501A/C | 4.9600 | 5.0400          | 4.9250 | 5.0750        | 0.200 | 0.350               |                   |          |        |          |                     |                     |

<sup>\*</sup>Note1)  $V_{DD}$  value when output voltage is equal or less than 0.1V. In the case of Nch Open Drain output type, the output pin is pulled up to 5.0V through 470k $\Omega$  resistor.

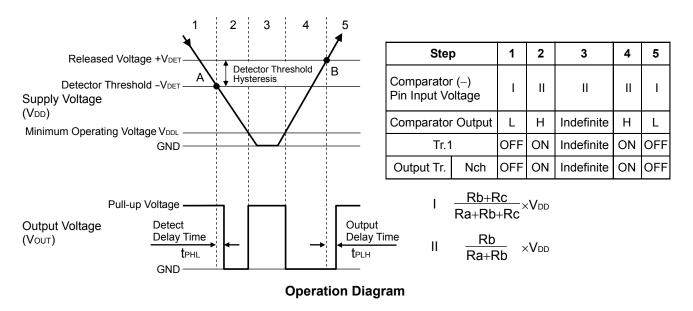
| Curr                                                     | er Output<br>ent1<br>[µA] | Curr                                                   | er Output<br>ent2<br>[mA] | Cur                                                     | er Output<br>rent<br>[mA] | Leakage                                                | Driver<br>e Current | Detector Threshold Temperature Coefficient  ∆-VDET/∆Topt [ppm/°C] | Output<br>Tim                                                           | ne   |
|----------------------------------------------------------|---------------------------|--------------------------------------------------------|---------------------------|---------------------------------------------------------|---------------------------|--------------------------------------------------------|---------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|------|
| Cond.                                                    | μΑ]<br>Min.               | Cond.                                                  | Min.                      | Cond.                                                   | Min.                      | Cond.                                                  | ([nA]<br>Max.       |                                                                   | Cond.                                                                   |      |
| Conu.                                                    | Willi.                    | V <sub>DD</sub> =<br>0.6V<br>V <sub>DS</sub> =<br>0.5V | 0.020                     | Cona.                                                   | Willi.                    | Cond.                                                  | WidX.               | Тур.                                                              | Cond.                                                                   | Тур. |
|                                                          |                           | V <sub>DD</sub> =<br>1.0V<br>V <sub>DS</sub> =<br>0.5V | 0.400                     |                                                         |                           |                                                        |                     |                                                                   |                                                                         |      |
| V <sub>DD</sub> =<br>0.55V<br>V <sub>DS</sub> =<br>0.05V | 7                         | V <sub>DD</sub> =<br>1.5V<br>V <sub>DS</sub> =<br>0.5V | 1.000                     | V <sub>DD</sub> =<br>4.5V<br>V <sub>DS</sub> =<br>-2.1V | 0.650                     | V <sub>DD</sub> =<br>6.0V<br>V <sub>DS</sub> =<br>7.0V | 80                  | ±30                                                               | V <sub>DD</sub> =<br>0.55V<br>↓<br>-V <sub>DET</sub><br>+2.0V<br>*Note2 | 40   |
| 0.000                                                    |                           | V <sub>DD</sub> =<br>3.0V<br>V <sub>DS</sub> =<br>0.5V | 2.400                     | V <sub>DD</sub> =<br>6.0V                               |                           | 7.50                                                   |                     |                                                                   | V <sub>DD</sub> =<br>0.55V                                              |      |
|                                                          |                           |                                                        |                           | V <sub>DS</sub> =<br>-2.1V                              | 0.900                     |                                                        |                     |                                                                   | 6.0V<br>*Note2                                                          |      |

#### \*Note2) 1. In the case of CMOS output type:


When the voltage is forced from 0.55V to  $(-V_{DET})+2.0V$  or a 6.0V pulse voltage is added to  $V_{DD}$ , time interval that the output voltage reaches  $((-V_{DET})+2.0V)/2$  or a 3.0V.

2. In the case of Nch Open Drain output type:

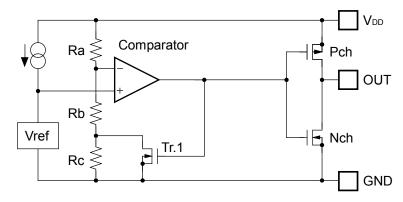
The output pin is pulled up to 5.0V through  $470k\Omega$ , and when the voltage is forced from 0.55V to (-VDET)+2.0V or a 6.0V pulse voltage is added to VDD, time interval that the output voltage reaches 2.5V.


### **OPERATION**

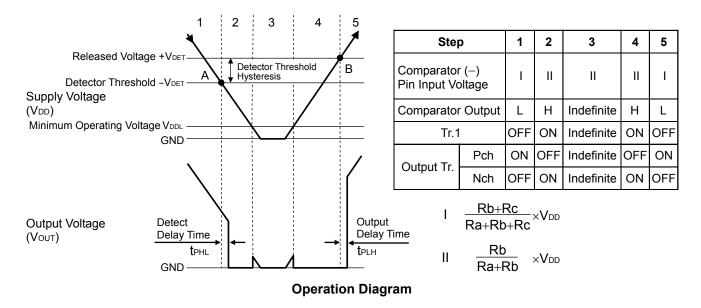
#### • Operation of R3114xxx1A



OUT pin should be pulled-up to VDD or an external voltage level.


#### Block Diagram (R3114xxx1A)



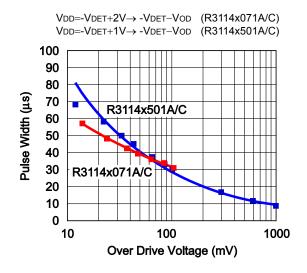

#### Explanation of operation

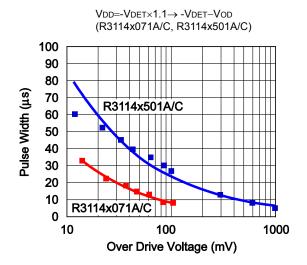
- Step 1. The output voltage is equal to the pull-up voltage.
- Step 2. At Point "A", Vref ≥ VDD×(Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-VDET).
- Step 3. When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite. The output voltage is equal to the pull-up voltage.
- Step 4. The output voltage is equal to the GND level.
- Step 5. At Point "B", Vref ≤ V<sub>DD</sub>×Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the pull-up voltage. The voltage level of Point B means a released voltage (+V<sub>DET</sub>).
- \*) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

#### • Operation of R3114xxx1C

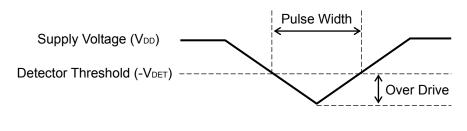


Block Diagram (R3114xxx1C)





#### Explanation of operation

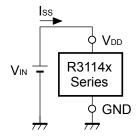
- Step 1. The output voltage is equal to the supply voltage ( $V_{DD}$ ).
- Step 2. At Point "A", Vref ≥ VDD×(Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-VDET).
- Step 3. When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite.
- Step 4. The output voltage is equal to the GND level.
- Step 5. At Point "B", Vref ≤ V<sub>DD</sub>×Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the supply voltage (V<sub>DD</sub>). The voltage level of Point B means a released voltage (+V<sub>DET</sub>).
- \*) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.


## Detector Operation vs. glitch input voltage to the VDD pin

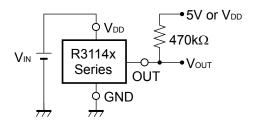
When the R3114x is at released, if the pulse voltage which the detector threshold or lower voltage, the graph below means that the relation between pulse width and the amplitude of the swing to keep the released state for the R3114x.



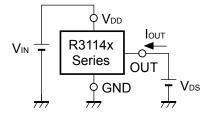



\*Vop: Over Drive Voltage

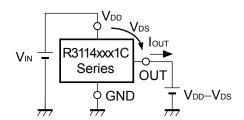



**VDD Input Waveform** 

This graph shows the maximum pulse conditions to keep the released voltage. If the pulse with larger amplitude or wider width than the graph above, is input to V<sub>DD</sub> pin, the reset signal may be output.

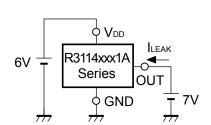

## **TEST CIRCUITS**



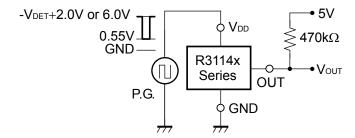

**Supply Current Test Circuit** 



**Detector Threshold Test Circuit** (Pull-up circuit is not necessary for CMOS Output type.)



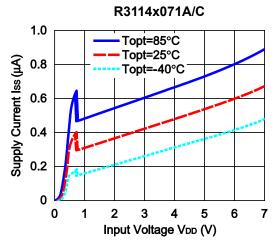

**Nch Driver Output Current Test Circuit** 

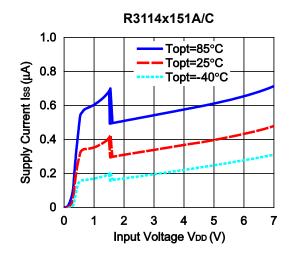


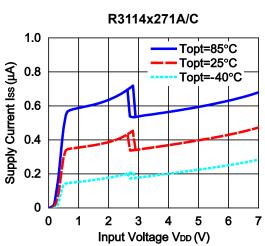

Pch Driver Output Current Test Circuit

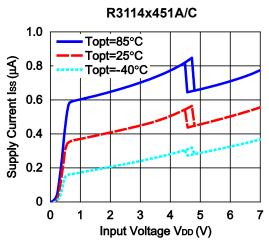
\*Apply to CMOS Output type only



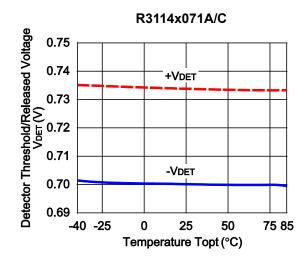

Nch Driver Leakage Current Test Circuit
\*Apply to Nch Driver Output type only

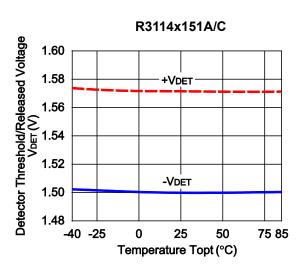




Output Delay Time Test Circuit (Pull-up circuit is not necessary for CMOS Output type.)

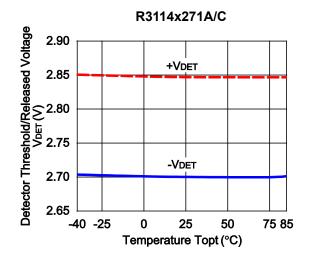

## TYPICAL CHARACTERISTICS

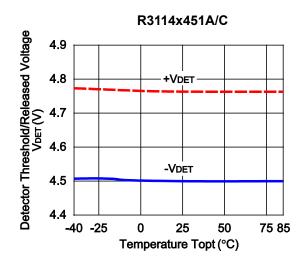
### 1) Supply Current vs. Input Voltage



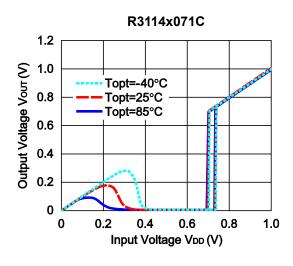



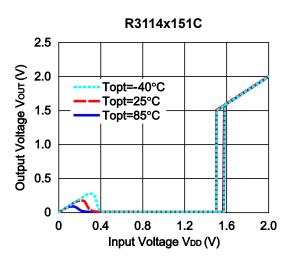


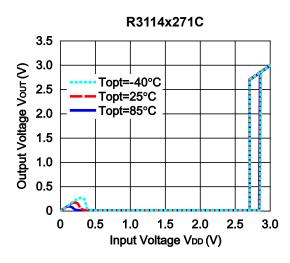



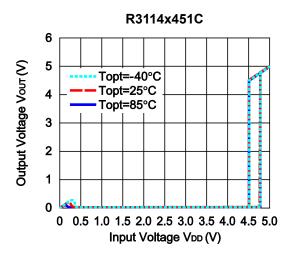


#### 2) Detector Threshold vs. Temperature

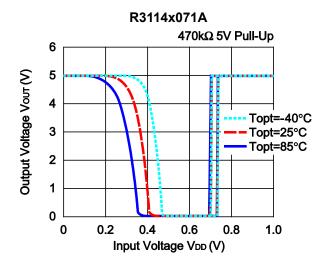


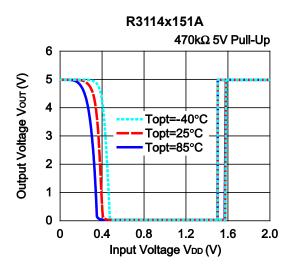


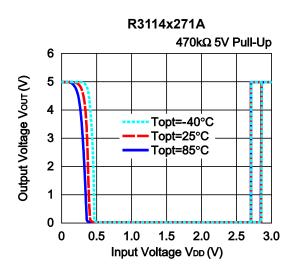


## R3114x

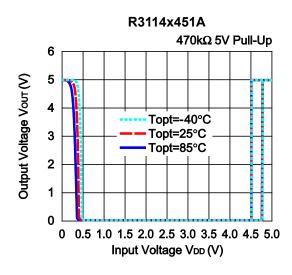


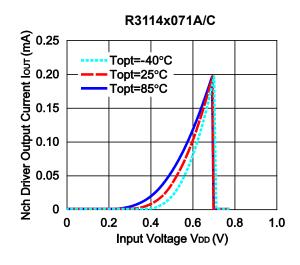


#### 3) Output Voltage vs. Input Voltage

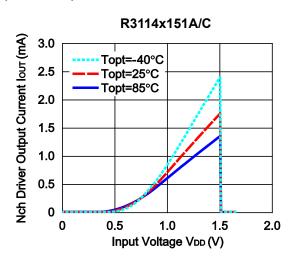


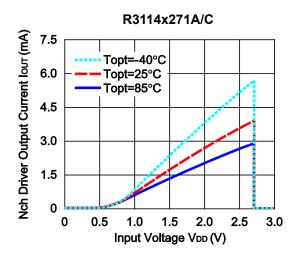



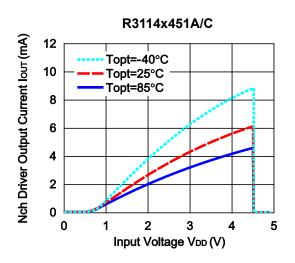


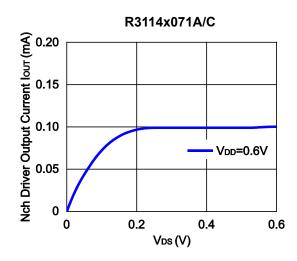



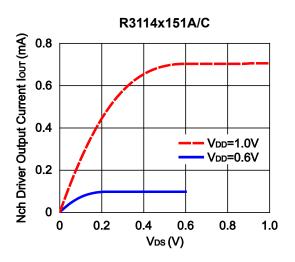


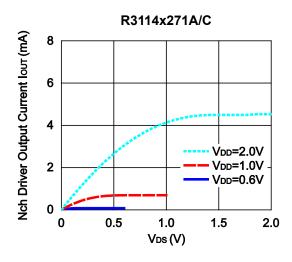



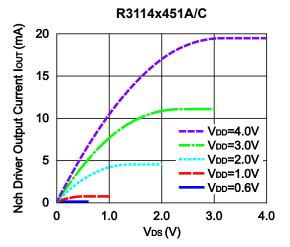


## 4) Nch Driver Output Current vs. Input Voltage (VDS=0.5V)



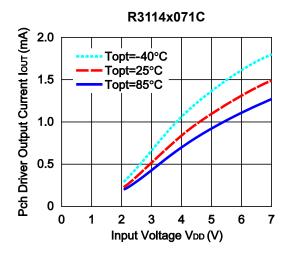


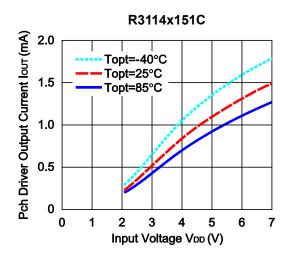


## R3114x

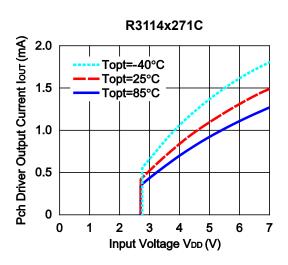


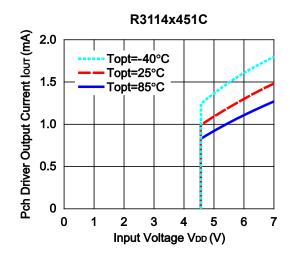




#### 5) Nch Driver Output Current vs. VDS

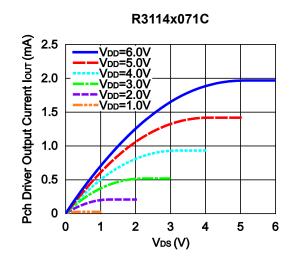


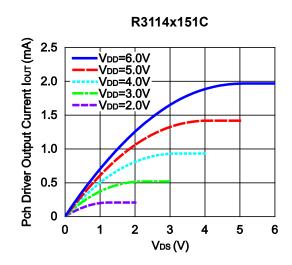



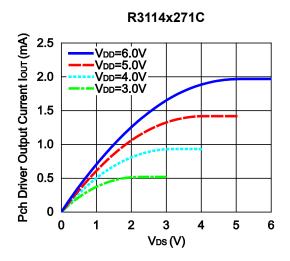



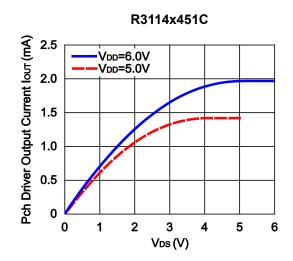

#### 6) Pch Driver Output Current vs. Input Voltage (VDS=-2.1V)



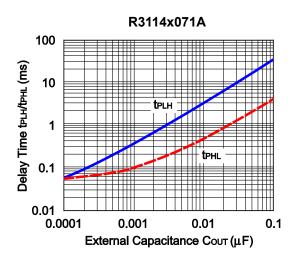



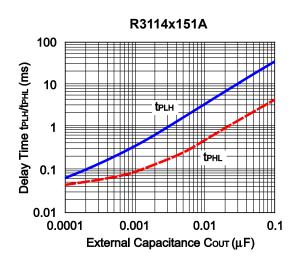


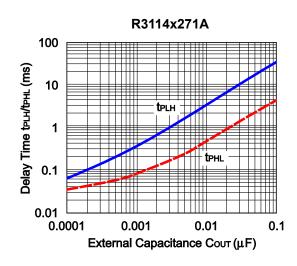



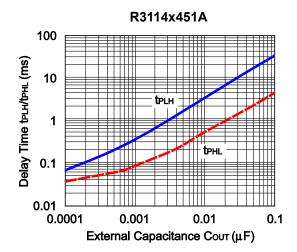


### 7) Pch Driver Output Current vs. VDS







## R3114x

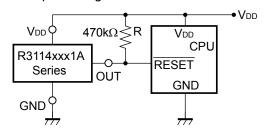


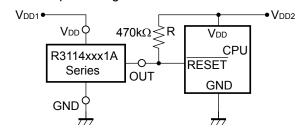

## 8) Output Delay Time vs. External Capacitance



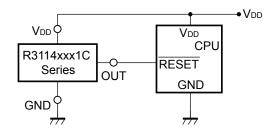




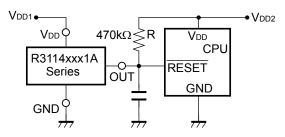




## TYPICAL APPLICATION

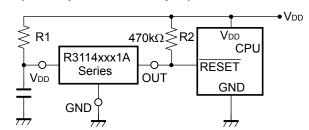
• R3114xxx1A CPU Reset Circuit 1 (Nch Open Drain Output)


Case1. Input Voltage to R3114xxx1A is equal to Input Voltage to CPU

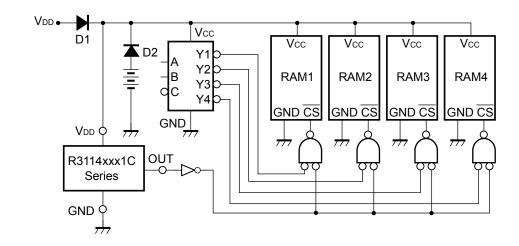



Case2. Input Voltage to R3114xxx1A is unequal to Input Voltage to CPU

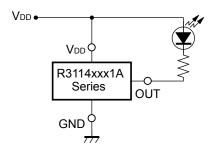



• R3114xxx1C CPU Reset Circuit (CMOS Output)

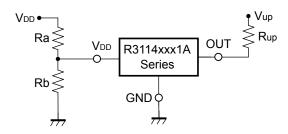



 R3114xxx1A Output Delay Time Circuit 1 (Nch Open Drain Output)




 R3114xxx1A Output Delay Time Circuit 2 (Nch Open Drain Output)



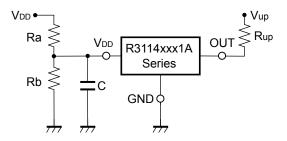

• Memory Back-up Circuit



## Voltage level Indicator Circuit (lighted when the power runs out) (Nch Open Drain Output)



## Detector Threshold Adjustable Circuit 1 (Nch Open Drain Output)

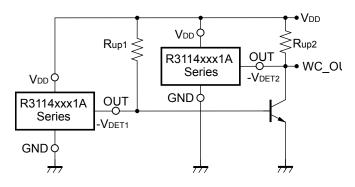


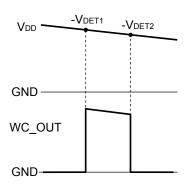

Adjustable Detector Threshold=(-VDET)×(Ra+Rb)/Rb

Hysteresis Voltage=(VHYS)×(Ra+Rb)/Rb

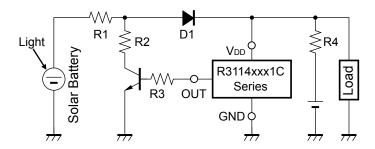
- \*1) To prevent oscillation, set Ra  $\leq 1k\Omega$ , Rb  $\leq 100\Omega$ .
- \*2) If the value of Ra is set excessively large, voltage drop may occur caused by the supply current of IC itself, and detector threshold and hysteresis voltage may vary.
- \*3) If Vup and VDD are connected, the voltage dropdown caused by Rup, may cause difference in the hysteresis voltage.

## Detector Threshold Adjustable Circuit 2 (Nch Open Drain Output)





Adjustable Detector Threshold=(-VDET)×(Ra+Rb)/Rb

Hysteresis Voltage=(VHYS)×(Ra+Rb)/Rb


- \*1) To prevent oscillation, set Ra  $\leq$  100k $\Omega$ , C  $\geq$   $\leq$  0.01 $\mu$ F.
- \*2) If the value of Ra is set excessively large, voltage drop may occur caused by the supply current of IC itself, and detector threshold and hysteresis voltage may vary.
- \*3) If Vup and VDD are connected, the voltage dropdown caused by Rup, may cause difference in the hysteresis voltage.
- \*4) If the value of Ra, Rb and C are set excessively large, the delay of the start-up may become too long.

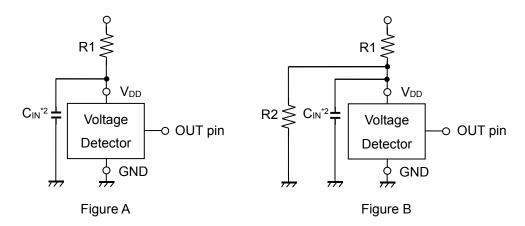
## Window Comparator Circuit (Nch Open Drain Output)





## • Over-charge Preventing Circuit




## **TECHNICAL NOTES**

#### When connecting resistors to the device's input pin

When connecting a resistor (R1) to an input of this device, the input voltage decreases by [Device's Consumption Current] x [Resistance Value] only. And, the cross conduction current\*1, which occurs when changing from the detecting state to the release state, is decreased the input voltage by [Cross Conduction Current] x [Resistance Value] only. And then, this device will enter the re-detecting state if the input voltage reduction is larger than the difference between the detector voltage and the released voltage.

When the input resistance value is large and the VDD is gone up at mildly in the vicinity of the released voltage, repeating the above operation may result in the occurrence of output.

As shown in Figure A/B, set R1 to become 100 k $\Omega$  or less as a guide, and connect C<sub>IN</sub> of 0.1  $\mu$ F and more to between the input pin and GND. Besides, make evaluations including temperature properties under the actual usage condition, with using the evaluation board like this way. As a result, make sure that the cross conduction current has no problem.



<sup>\*1</sup> In the CMOS output type, a charging current for OUT pin is included.

<sup>\*2</sup> Note the bias dependence of capacitors.



- The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.



#### Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

**Purchase information** 

https://www.nisshinbo-microdevices.co.jp/en/buy/