MSKSEMI 美森科

ESD

TVS

TSS

MOV

GDT

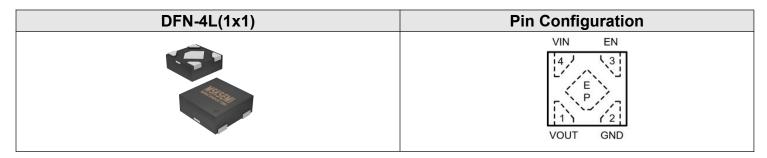
PIFD

MS3236-x.xYUTDN4

Product specification

GENERAL DESCRIPTION

The MS3236-x.xYUTDN4 is a low- I_Q low dropout linear r egulator with 300mA driving current. The MS3236-x.xYU TDN4 shows good power dissipation with <0.1uA shutd own current and 0.8uA quiescent current of light load f or portable devices. The MS3236-x.xYUTDN4 provides 0.8~3.6V output voltage for multiple application and it is with build-in thermal shutdown and current limit protecti on functions.


FEATURES

- 0.8uA quiescent current at light load
- ±2% output voltage accuracy
- 1.5~5.5V input range
- 0.8~3.6V output range
- Thermal shutdown protection
- Current limit protection
- RoHS Compliant and Halogen Free

APPLICATIONS

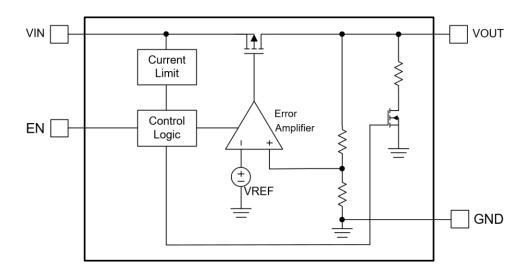
- Cellular and smart phone
- Audio/Video equipment
- Battery-power equipment
- Portable electric devices

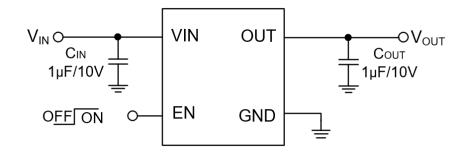
Reference News

MARKING

MS3236-1.2YUTDN4		MS3236-1.5YUTDN4	MS3236-1.8YUTDN4	MS3236-2.5YUTDN4	MS3236-2.8YUTDN4	MS3236-3.0YUTDN4	MS3236-3.3YUTDN4	
	AF	AI	AJ	AO	AR	AU	AW	
	• **	**	**	**	**	**	**	

ORDER INFORMATION


P/N	PKG	QTY	
MS3236-1.2YUTDN4			
MS3236-1.5YUTDN4			
MS3236-1.8YUTDN4			
MS3236-2.5YUTDN4	DFN-4L(1x1)	10000PCS	
MS3236-2.8YUTDN4			
MS3236-3.0YUTDN4			
MS3236-3.3YUTDN4			


Pin Description

Pin No	Pin Name	Pin Description		
DFN-4L(1x1)				
4	VIN	Input of the regulator.		
2	GND	Ground.		
3	EN	Enable control input, Active High.		
	NC	No Internal Connection.		
1	VOUT	Output of the regulator.		
EP	Exposed Pad	The exposed pad should be connected to a large ground plane		
	Exposed Pad	to maximize thermal performance.		

Functional Block Diagram

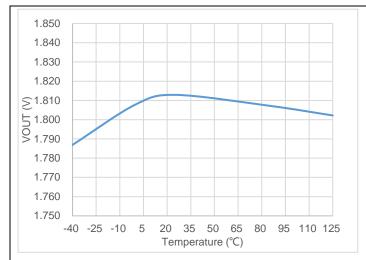
Typical Application Circuit

Absolute Maximum Ratings (Note 1)

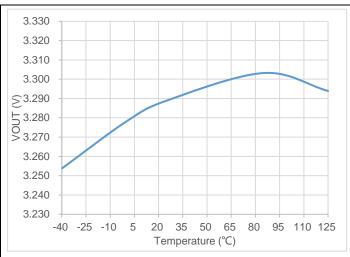
VIN	
VOUT	
EN	
VOUT to VIN	
Power Dissipation, PD @ T _A = 25°C	
DFN-4L(1x1)	0.4W
Package Thermal Resistance	
DFN-4L(1x1), θ JA	250°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	
ESD Susceptibility	
HBM (Human Body Model)	2kV
CDM (Charged Device Model)	200V
Recommended Operating Conditions	
VIN	1.5V to 5.5V
Junction Temperature Range	

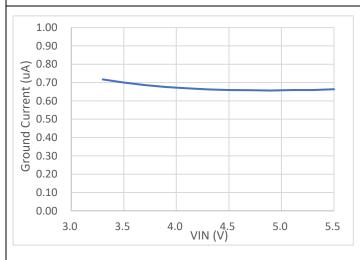
Electrical Characteristics

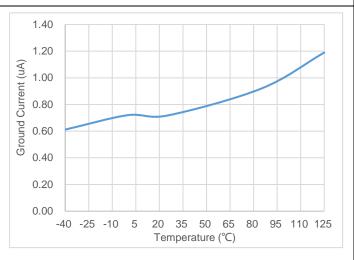
VIN = EN = 5V, $C_{IN}=1\mu F$, $C_{OUT}=1\mu F$, $T_A=25^{\circ}C$, unless otherwise noted.

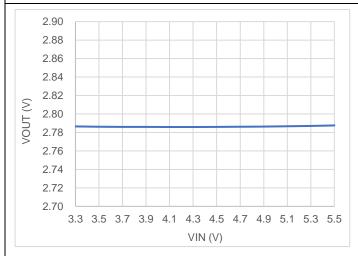

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage	V _{IN}		1.5		5.5	V
Output Voltage Accuracy	V _{OUT}	VIN=VOUT+1V, I _{OUT} =10mA	-2		+2	%
VIN Shut Down Current	I _{SD}	EN=0V			0.1	μA
VIN Quiescent Current	lα	VIN > VOUT, EN=VIN, no load		0.8	1	μΑ
Current Limit	ILIMIT	VIN=5V, Load = VOUT*90%		500		mA
Short Current	I _{SC}	VOUT=0V		150		mA
		VOUT=3.3V, IouT=200mA		180		
Dropout Voltage	V _{DROP}	VOUT=2.8V, I _{OUT} =200mA		200		mV
(Note 2)		VOUT=1.8V, Iout=200mA		280		
(Note 2)		VOUT=1.2V, I _{OUT} =200mA		420		
Line Regulation	ΔV _{LINE}	VIN=VOUT+0.5V to 5.5V		500 150 180 200 280		mV
Line Regulation	ΔVLINE	I _{OUT} =20mA				IIIV
Load Regulation	ΔV_{LOAD}	I _{OUT} =1mA to 300mA		20		mV
Enable High Voltage	V _{ENH}		1.5			V
Enable Low Voltage	V _{ENL}				0.4	٧
Device County Dejection Date	PSRR	f=100Hz and I _{OUT} =10mA		66		40
Power Supply Rejection Rate		f=1kHz and Iout=10mA		50		dB
Output Noise Voltage	eno	10Hz to 100kHz and Cout=1uF		80		μV _{RMS}
Output Discharge Resistance	Rdischg			60		Ω
Thermal Shutdown Threshold	T _{SD}			165		${\mathbb C}$
Thermal Shutdown Hysteresis	ΔT _{SD}			20		${\mathfrak C}$

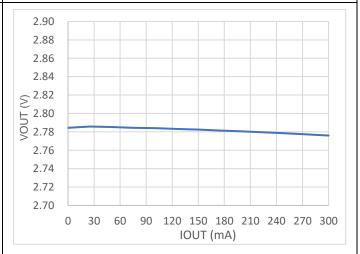
Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.


Note 2. The dropout voltage is defined as VIN – VOUT, when VOUT is 95% of the normal value of VOUT.

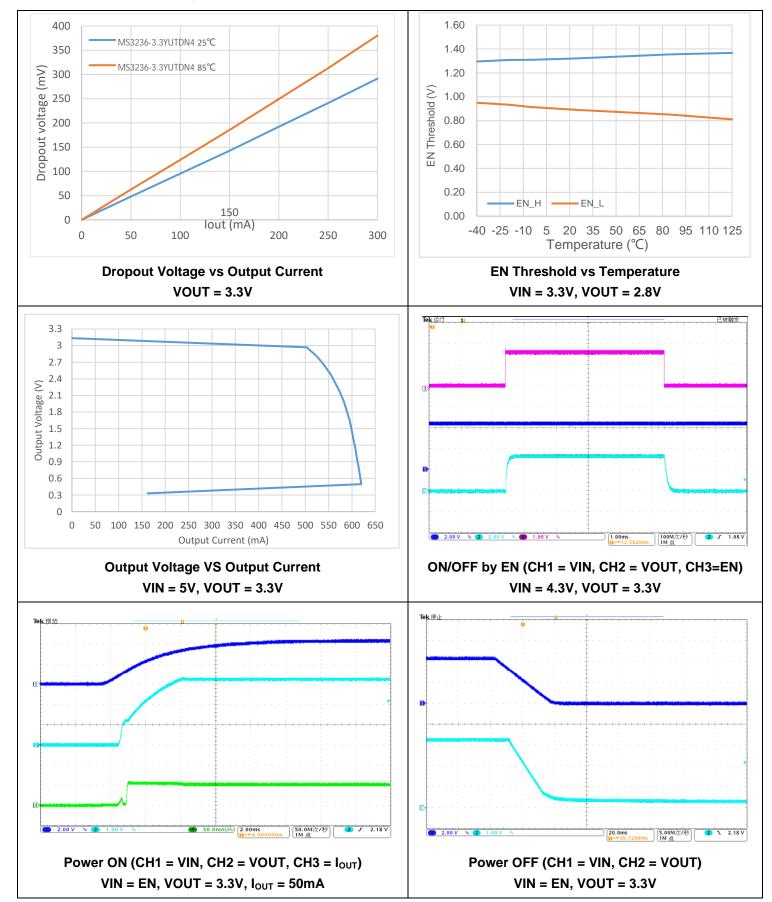

Typical Operating Characteristics


Output Voltage vs Temperature VIN = 2.8V, VOUT = 1.8V, I_{OUT} = 20mA

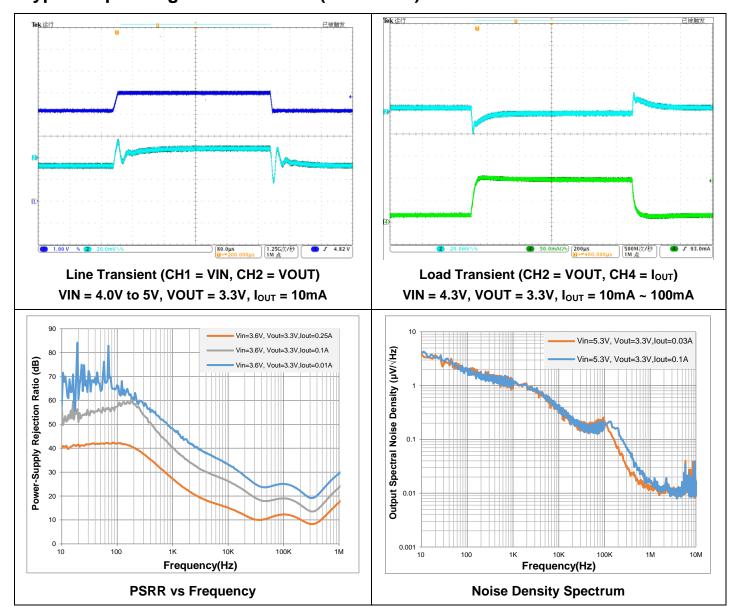

Output Voltage vs Temperature VIN = 4.3V, VOUT = 3.3V, I_{OUT} = 20mA


Ground Current vs Input Voltage VOUT = 2.8V, no load

Ground Current vs Temperature VIN = 3.3V, VOUT = 2.8V, no load


Output Voltage vs Input Voltage VOUT = 2.8V, I_{OUT} = 20mA

Output Voltage vs Output Current VIN = 3.6V, VOUT = 2.8V



Typical Operating Characteristics(continued)

Typical Operating Characteristics(continued)

Application Information

Input and Output Capacitor Requirements

The external input and output capacitors of MS3236-x. xYUTDN4 series must be properly selected for stability and performance. Use a $1\mu F$ or larger input capacitor and place it close to the IC's VIN and GND p ins. Any output capacitor meeting the minimum $1m\Omega$ E SR (Equivalent Series Resistance) and effective capacitance between $1\mu F$ and $22\mu F$ requirement may be used. Place the output capacitor close to the IC's VOUT and GND pins. Increasing capacitance and decreasing ESR can improve the circuit's PSRR and line transient re sponse.

Enable Function

The MS3236-x.xYUTDN4 series has an EN pin to turn on or turn off the regulator, When the EN pin is in logic high, the regulator will be turned on. When the EN pin is in logic low, the shutdown current is almost 0μ A typical. The EN pin may be directly tied to VIN to keep the part on.

Current Limit

The MS3236-x.xYUTDN4 series contain the current limiter of output power transistor, which monitors and controls the transistor, limiting the output current to 500mA (typical). The output can be shorted to ground indefinitely without damaging the part.

Auto Discharge Function

The MS3236-x.xYUTDN4 series can discharge the output capacitor. When the VIN ready and EN pin is in logic low, the internal NMOS between VOUT and GND will be turned on. The discharge resistance (Rdischg) is 6 0 Ω (at VIN=5V,typical).

Dropout Voltage

The MS3236-x.xYUTDN4 series use a PMOS pass transistor to achieve low dropout. When (V $^{\text{IN}}$ – V $^{\text{OUT}}$) is less than the dropout voltage (V $^{\text{DROP}}$), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the R $^{\text{DS(ON)}}$ of the PMOS pass element. V $^{\text{DROP}}$ scales approximately with the output current because the PMOS device behaves as a resistor in dropout condition.

As any linear regulator, PSRR and transient response are degraded as (VIN – VOUT) approaches dropout condition.

OTP (Over Temperature Protection)

The over temperature protection function of MS3236-x. xYUTDN4 series will turn off the P-MOSFET when the junction temperature exceeds 165°C (typical). Once the junction temperature cools down by approximately 20°C, the regulator will automatically resume operation.

Thermal Considerations

For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below:

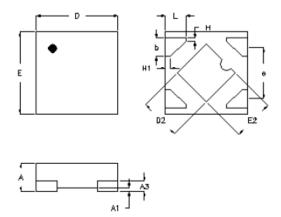
$$PD(Max) = (125^{\circ}C - 25^{\circ}C) / (250^{\circ}C/W) = 0.4W$$

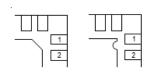
For SOT-23-5 / DFN1*1 packages.

$$PD(Max) = (125^{\circ}C - 25^{\circ}C) / (330^{\circ}C/W) = 0.3W$$

For SOT23-3 package.

Power dissipation (PD) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:


$$PD = (VIN - VOUT) \times I_{OUT}$$


Layout Consideration

By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the MS3236-xxYUTDN4 ground pin using as wide and as short of a copper trace as is practical. Connections using long trace lengths, narrow trace widths, and/or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

DFN1*1 Package

DETAIL A

Pin #1 ID and Tie Bar Mark Options

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.300	0.400	0.012	0.016	
A1	0.000	0.050	0.000	0.002	
A3	0.117	0.162	0.005	0.006	
b	0.175	0.275	0.007	0.011	
D	0.900	1.100	0.035	0.043	
D2	0.450	0.550	0.018	0.022	
E	0.900	1.100	0.035	0.043	
E2	0.450	0.550	0.018	0.022	
e	0.625		0.025		
L	0.200	0.300	0.008	0.012	
Н	0.039		0.002		
H1	0.	064	0.003		

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.