

Products Catalog

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors Hybrid

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors INDEX

	Item		Page				
Safety and Legal	Matters to Be Observed / Matter	s to Be Observed When Using This Product	1				
	<u>Line-up</u>		8				
	Series flow chart		10				
Solootion guido	Voltage - Capacitance ta	<u>ble</u>	11				
Selection guide	Explanation of part numbers						
	Recommended reflow so	ldering / Mounting specifications	16				
	Packing specifications		18				
	ZA series	: 105 ℃ 10000 h	19				
	ZC series	: 125 ℃ 4000 h	22				
	ZK series	: 125 ℃ 4000 h	25				
	ZKU series	: 125 ℃ 4000 h	27				
Surface mount	ZL series	: 135 °C 4000 h	29				
	ZT series	: 125 ℃ 4000 h	31				
	ZTU series	: 135 °C 4000 h	33				
type	ZV series	: 135 °C 4000 h	35				
	ZS series	: 135 ℃ 4000 h	37				
	ZSU series	: 125 ℃ 4000 h	39				
	<u>ZU series</u>	: 135 ℃ 4000 h	41				
	ZUU series	: 135 ℃ 4000 h	43				
	ZE series	: 145 ℃ 2000 h	45				
	ZF series	: 150 ℃ 1000 h	47				
	ZA-A series	: 105 ℃ 10000 h	49				
	ZC-A series	: 125 ℃ 4000 h	51				
	ZK-A series	: 125 ℃ 4000 h	54				
	ZKU-A series	: 125 ℃ 4000 h	56				
Radial lead type	ZT-A series	: 125 ℃ 4000 h	58				
	ZS-A series	: 135 ℃ 4000 h	60				
	ZSU-A series	: 125 ℃ 4000 h	62				
	ZE-A series	: 145 ℃ 2000 h	64				
	ZF-A series	: 150 ℃ 1000 h	66				

Safety and Legal Matters to Be Observed

Product specifications and applications

- Please be advised that this product and product specifications are subject to change without notice for improvement purposes. Therefore, please request and confirm the latest delivery specifications that explain the specifications in detail before the final design, or purchase or use of the product, regardless of the application. In addition, do not use this product in any way that deviates from the contents of the company's delivery specifications.
- Unless otherwise specified in this catalog or the product specifications, this product is intended for use in general electronic equipment (AV products, home appliances, commercial equipment, office equipment, information and communication equipment, etc.).

 When this product is used for the following special cases, the specification document suited to each application shall be signed/sealed (with Panasonic Industry and the user) in advance. These include applications requiring special quality and reliability, wherein their failures or malfunctions may directly threaten human life or cause harm to the human body (e.g.: space/aircraft equipment, transportation/traffic equipment, combustion equipment, medical equipment, disaster prevention/crime prevention equipment, safety equipment, etc.).

Safety design and product evaluation

- Please ensure safety through protection circuits, redundant circuits, etc., in the customer's system design so that a defect in our company's product will not endanger human life or cause other serious damage.
- This catalog shows the quality and performance of individual parts. The durability of parts varies depending on the usage environment and conditions. Therefore, please ensure to evaluate and confirm the state of each part after it has been mounted in your product in the actual operating environment before use.
 If you have any doubts about the safety of this product, then please notify us immediately, and be sure to conduct a technical review including the above protection circuits and redundant circuits at your company.

Laws / Regulations / Intellectual property

- The transportation of dangerous goods as designated by UN numbers, UN classifications, etc., does not apply to this product. In addition, when exporting products, product specifications, and technical information described in this catalog, please comply with the laws and regulations of the countries to which the products are exported, especially those concerning security export control.
- Each model of this product complies with the RoHS Directive (Restriction of the use of hazardous substances in electrical and electronic equipment) (2011/65/EU and (EU) 2015/863). The date of compliance with the RoHS Directive and REACH Regulation varies depending on the product model. Further, if you are using product models in stock and are not sure whether or not they comply with the RoHS Directive or REACH Regulation, please contact us by selecting "Sales Inquiry" from the inquiry form.
- During the manufacturing process of this product and any of its components and materials to be used, Panasonic Industry does not intentionally use ozone-depleting substances stipulated in the Montreal Protocol and specific bromine-based flame retardants such as PBBs (Poly-Brominated Biphenyls) / PBDEs (Poly-Brominated Diphenyl Ethers). In addition, the materials used in this product are all listed as existing chemical substances based on the Act on the Regulation of Manufacture and Evaluation of Chemical Substances.
- With regard to the disposal of this product, please confirm the disposal method in each country and region where it is incorporated into your company's product and used.
- The technical information contained in this catalog is intended to show only typical operation and application circuit examples of this product. This catalog does not guarantee that such information does not infringe upon the intellectual property rights of Panasonic Industry or any third party, nor imply that the license of such rights has been granted.
- Design, materials, or process related to technical owned by Panasonic Industry are subject to change without notice.

Panasonic Industry will assume no liability whatsoever if the use of our company's products deviates from the contents of this catalog or does not comply with the precautions. Please be advised of these restrictions.

Matters to Be Observed When Using This Product

(Conductive polymer hybrid aluminum electrolytic capacitor / Aluminum electrolytic capacitor)

Use environments and cleaning conditions

- This product (capacitor) is intended for standard general-purpose use in electronic equipment, and is not designed for use in the specific environments described below. Using the product in such specific environments or service conditions, therefore, may affect the performance of the product.
 - Check with us about the performance and reliability of the product first before using the product.
 - (1) Used at a temperature higher than the upper limit category temperature or lower than the lower limit category temperature.
 - (2) Used in an environment where the product is directly exposed to water, salt water, oil, etc., or in a liquid, such as water, oil, chemicals, and organic solvents.
 - (3) Used in an outdoor environment where the product is exposed to direct sunlight, ozone, radiation, UV-rays, etc., or in a dusty place.
 - (4) Used in a wet place (dew concentration on a resistor, water leakage, etc.), a place exposed to sea breeze, or a place filled with a corrosive gas, such as Cl₂, H₂S, NH₃, SO₂, or NO_χ.
 - (5) Used in an environment filled with a toxic gas (hydrogen sulfide, sulfurous acid, nitrous acid, chlorine and chlorine compound, bromine and bromine compound, ammonia, etc.)
 - (6) Used in an environment where static electricity and electromagnetic waves are strong.
 - (7) Located close to heating component or a flammable material, such as a vinyl cable.
 - (8) Sealed with a resin, etc.
 - (9) Cleansed with a solvent, water, or a water-soluble cleaner, to remove solder flux after soldering.
 - (10) Used in an environment where an acidic or alkali atmosphere is present.
 - (11) Used in an environment where excessive vibration or mechanical shocks exceeding a specified range is applied to the product (even if the applied vibration or mechanical shocks is within the specified range, it may cause the product to resonate, in which a large vibration acceleration may be generated. Make sure to evaluate/check such vibrations or impacts applied to the product in an actual service condition).
 - (12) Used under a low atmospheric pressure condition or depressurized condition.
- The capacitor withstands an immersion cleaning process where the board carrying the product is immersed in a cleaning solution of 60 °C or lower for less than 5 minutes and withstands an ultrasonic cleaning process as well. However, ensure to thoroughly rinse and dry it. Some cleaning methods erase or blur notes on the capacitor in some cases. Some types of capacitors are not washable and some cleaning solutions cannot be used to clean a capacitor. If you are not sure about which type of capacitor is not washable or which cleaning solution cannot be used, please contact us. Solvents you can use to clean the board are as follows.
 - Pine Alpha ST-100S, Aqua Cleaner 210SEP, Cleanthrough 750H/750L/710M, Sun Elec B-12, Techno Cleaner 219, Cold Cleaner P3-375, DK Be clear CW-5790, Terpene Cleaner EC-7R, Techno Care FRW-17/FRW-1/FRV-1
- Keep the cleaning solution under strict contamination control (conductivity, pH, specific gravity, water content, etc.).

 A contaminated cleaning solution will show a high chlorine concentration, thereby corroding the interior of the capacitor in some cases. Keep the flux concentration in the cleaning solution at a 2% mass or less.
- Unless otherwise specified in the specifications, avoid cleaning the capacitor with a halogen-based solvent, an alkaline solvent, a petroleum-based solvent, xylene, or acetone. Using a halogen-based solvent may result in a case where the solvent infiltrates (leaks) into the capacitor and break-down releasing chlorine, which reacts with aluminum which can corrode the capacitor interior. 1-1-1 trichloroethane is particularly harmful to a capacitor. Never use it to clean a capacitor. A alkaline solvent may corrode (dissolve) an aluminum case, a petroleum-based solvent and xylene may damage the sealing rubber and accelerate its deterioration, and acetone may erase notes on the capacitor.

 To protect the global environment, refrain from using an ozone depleting substance as the cleaning solution.
- To protect the global environment, remain from using an ozone depicting substance as the dearing solution.
- Right after the board cleaning, subject the capacitor to a forced drying process so that no cleaning solution remains between the sealing part of the capacitor and the printed board.

 Set a drying temperature equal to or lower than the upper limit category temperature.
- When an adhesive or coating agent is used to fix the capacitor and prevent dampening of the board, specific types of solvents included in some adhesives or coating agents may corrode the capacitor. Select a non-halogen solvent for the material making up the adhesive or coating agent. Do not use a chloroprene-based polymer.

 Solidify and dry the adhesive or coating agent sufficiently to prevent its solvent component from remaining on the capacitor. Leave at least 1/3 of the sealing part unsealed on the surface to which the adhesive or coating agent is applied.

- Do not use the product in a structure sealed by potting or molding. The pressure of a molding resin on a capacitor may deform the capacitor. In addition, the resin covering the capacitor may affect its heat dissipation performance or may leak into the product. These factors lead to the significant degradation of the capacitor's characteristics and reliability. There is also a concern that an electrolytic solution permeating the sealing rubber may agglomerate and cause a short circuit.
- When the capacitor is used in a circuit where an impact voltage is applied or a high voltage is applied in a short period (transient phenomenon) or a high pulse voltage is applied, make sure to use the capacitor at a voltage equal to or lower than its rated voltage.
- The product contains an electrolytic. Improper use of the capacitor leads not only to the rapid degradation of its characteristics but also to electrolytic leakage. These problems damage the circuit board and may lead to destruction of the entire circuit set.

Response to anomalies and handling conditions

- When you see gas coming out of an activated pressure relief valve of a capacitor during use of a circuit set, turn off the main power supply of the circuit set or pull the power cord plug out of the wall-outlet. If you leave the power supply on and the capacitor short-circuits, it will damage the circuit, or the gas can turn into a liquid, which will cause the circuit to short. In the worst case scenarios, these events may develop into a more serious incident, such as burnout of the circuit set. The gas coming out of the pressure relief valve of a capacitor is not smoke, but is the electrolytic solution in its gaseous state.
- When the pressure valve of the capacitor is activated, it emits a high-temperature gas of over 100 °C. Do not bring your face near the valve. In case the gas jetting out of the valve gets in your eyes or comes into your mouth, wash your eyes with water or rinse your mouth immediately. If the gas hits your skin, wash it away with soap.
- If you touch a terminal of the product during use of the circuit set, you will get an electric shock. The aluminum case of the product has an exposed part with no insulation. Do not touch the exposed part because it is as dangerous as the terminal.
- Do not create a short circuit between terminals of the product by inserting a conductor therebetween. Do not splash a conductive solution, such as an acidic or alkali solution, on the capacitor. It puts the capacitor in a shorted state, which causes the circuit to fail and destroys the capacitor as well.
- When a silicone material containing a relatively large amount of a low-molecular-weight siloxane is located close to the product, it may cause the capacitor problems with its electrical performance.
- When electronic equipment having the capacitor built therein is exported to overseas markets, wooden packaging materials are fumigated with a halogen compound, such as methyl bromide. In such cases, if the packaging material subjected to the fumigation treatment is not dried sufficiently, halogen remaining on the packaging material may leach into the capacitor during transportation and trigger a corrosive reaction in the capacitor. When carrying out the fumigation treatment, carefully examine the dried packaging material to confirm that no halogen remains on the packaging material. Never fumigate the entire electronic equipment in its packaged state.

Reliability and product life

- The product life is affected by temperatures. In general, a 10 °C drop in the temperature will double the life. Use the capacitor at a temperature as low as possible from the upper limit category temperature.
- Using a capacitor under a temperature condition outside a specified temperature range causes heavy degradation of the capacitor characteristics, which may result in breakage of the capacitor. You need to confirm not only the ambient temperature and internal temperature of the capacitor but also the temperature of the capacitor's top surface, which is given by radiant heat from built-in heating elements (a power transistor, IC, resistance, etc.) and heat generated by self-heating induced by ripple current. Do not place a heating element on the back of the capacitor.

■ The product life is given by the following equation.

$$L2 = L1 \times 2 \xrightarrow{T_1 - (T_2 + \Delta T)} Where T_1 \ge T_2$$

L1 : Guaranteed life (h) at temperature T₁ (°C)

L2 : Expected life (h) at temperature T₂ (°C) * In the case of a hybrid type, category temperature (°C)

T1 : Upper category temperature (°C) + temperature increase caused by rated ripple current (°C)

T2 : Ambient temperature of capacitor (°C)

△T : Temperature increase caused by ripple current (°C)

■ Do not use the product for a period longer than its specified service life. A capacitor with its service life ended may cause the following problems: rapid degradation of the product characteristics, short circuit, unnecessary activation of the pressure valve, electrolytic solution leakage, etc. Note that the estimated service life is not longer than 15 years due to the limited environment-resistant property of the sealing rubber.

■ When the capacitor is used under a high-temperature condition for a long period, minute cracks develop on the surface of the sealing rubber or the case surface turns brown in some cases. These phenomena, however, have no effects on the reliability of the capacitor.

■ A capacitor conforming to "AEC-Q200" refers to a capacitor having passed some or all of evaluation test items defined in AEC-Q200.

To know the detailed specifications of each capacitor or specific evaluation test scores, please contact us. We issue a the product specifications sheet for each product ordered. Please confirm the product specifications sheet when you place an order to us.

Circuit design and circuit board design

■ The electrical characteristics change as a result of temperature/frequency fluctuations. Take electrical characteristic changes into consideration when working out a circuit design.

(1) Temperature fluctuations

High-temperature condition : increase in leak current

Low-temperature condition : decrease in capacitance, increase in the tangent to the loss angle,

increase in impedance (the hybrid type is excluded), etc.

(2) Frequency fluctuations

High-frequency condition : decrease in capacitance, increase in the tangent to the loss angle,

decrease in impedance, etc.

Low-frequency condition : more heat generation by ripple current as a result of an increase in

equivalent series resistance

■ The group of factors described below may lead to rapid degradation of the capacitor characteristics, short circuit, or electrolytic solution leakage. They may give rise to sharp heat/gas generation, too, in which case the increasing internal pressure actuates the pressure valve, causes the electrolytic solution to leak out of the sealing part, and, in a worst-case scenario, causes an explosion or ignition incident. When a capacitor bursts, it may scatter flammable materials (electrolytic solution, etc.) in its surroundings.

(1) Reverse voltage: The capacitor has preset polarity. Do not apply a reverse voltage to the capacitor. Confirm the polarity indicated on the capacitor and then use it.

(2) Charge/discharge: Avoid using the capacitor in a circuit that frequently repeats sharp charge/discharge cycles or a circuit that requires relatively slow but highly frequent charge/discharge cycles. In cases where you use the capacitor in such circuits, make sure to inform us of the charge/discharge conditions. Ensure that a rush current does not exceed 100 A.

(3) ON/OFF: Avoid using the capacitor in an on/off circuit that repeatedly switches on and off more than 10,000 times a day. In cases where you use the product in such circuits, make sure to inform us of the circuit conditions, etc.

- (4) Overvoltage: Do not apply an overvoltage higher than the rated voltage (higher than the surge voltage when the voltage application period is short). A peak value given by superposing a ripple voltage (AC component) on a DC voltage must be equal to or lower than the rated voltage.
- (5) Ripple current: Do not allow an excessively large ripple current (larger than the rated ripple current specified in the specifications) to flow through the capacitor. Even if a ripple current flow in the capacitor is equal to or smaller than the rated ripple current, a reverse voltage flow may be generated in the capacitor when the DC bias voltage is low flow in the capacitor. Keep the ripple current flow within a range in which no reverse voltage is generated.
 Even if the ripple current flow is kept equal to or smaller than the rated ripple current, using the capacitor for a period longer than its service life intensifies the degradation of the ESR characteristics, resulting in an increase in internal

heating caused by the ripple current. As a result, the pressure valve is actuated, the exterior case or rubber swells, the electrolytic solution leaks, and, in a worst-case scenario, the capacitor short-circuits and ignites or explodes.

- Because the impedance of the capacitor is close to the circuit impedance, capacitors connected in parallel in the circuit may damage the whole current balance, in which, a ripple current higher than the rated ripple current may flow in some of the capacitors. To prevent concentration of ripple current on the low-impedance side, use capacitors with the same part number and avoid the partiality of cable impedances. Do not use capacitors connected in series.
- When the capacitor is mounted on a double-side wiring board, do not place the wiring pattern directly underneath where the product is mounted. In case the electrolytic solution leaks out, it may short-circuit the pattern and cause tracking or migration. Consider a case where the product is a radial lead capacitor and is mounted on a board with through-holes. In this case, if the sealing part of the capacitor and the board surface stick close to each other, solder flows up to the capacitor during a dip soldering process, which may cause short circuit between the anode and cathode of the capacitor. In such a case, the outer laminate of the product may be damaged. The position of holes, therefore, must be determined properly.
- When designing a printed board carrying radial lead capacitors, make through-holes across the gap equal to the gap between the leads (terminals) of the capacitor. If the gap between the through-holes is narrower or wider than the gap between the leads, stress is applied to the leads when the capacitor is inserted in the holes.

 This may result in increasing leak current, short circuit, wire breaking, or electrolytic solution leakage.
- A capacitor which has the pressure valve on the case must be provided with a space formed above the pressure valve so that the pressure valve operates without hinderance. When the product is 6.3 mm to 16 mm in diameter, form a space of 2 mm or larger. When the product is 18 mm in diameter, form a space of 3 mm or larger.
 If the space is not large enough, it will impair the operability of the pressure valve and may lead to an explosion incident.
- Design the circuit in such that the pattern, especially a line pattern carrying high voltage or large current, is not formed above the pressure valve. Upon its activation, the pressure valve emits a flammable high-temperature gas of over 100 °C. This may cause a secondary accident, such as the gas condensing on the pattern and the wire sheathing being melted and catching on fire.
- Be careful with resonance of the capacitor mounted on the board. When a large load is applied to the capacitor at the frequency close to the resonance frequency, it may cause the capacitor to come off or widely change its characteristics.
- Completely isolate the case of the capacitor from the cathode terminal and the circuit pattern.
- The laminate or outer sleeve covering of the product is for displaying information on the product and does not have a guaranteed insulating function.
 - The laminate may turn brown under a high-temperature condition. However, that does not cause problems with markings recognition on the product surface or electrical performance.
 - The outer sleeve may crack when dipped in a xylene or toluene solution and exposed to high temperature.

Mounting conditions

- Do not reuse a capacitor that was incorporated in a circuit set and energized in the past. Do not use a capacitor that was dropped on the floor.
 - Do not use a capacitor in its compressed form. Compressing the capacitor makes it less airtight, resulting in poor performance, shorter guaranteed life, and electrolyte leakage.
- \blacksquare A re-striking voltage is generated in a capacitor in some cases. In such a case, let the capacitor discharge through a resistor of about 1 kΩ.
- When a capacitor is kept in storage for a long period, you may find the leak current from the capacitor has increased. In such a case, make voltage adjustment through a resistor of about 1 kΩ.
- Before mounting the capacitor on the board, confirm the ratings (capacitance, rated voltage, etc.) and polarity of the capacitor. Before mounting a surface-mounted type capacitor, confirm its terminal dimensions and land size. Before mounting a radial lead type capacitor, confirm its terminal interval and hole interval. If the terminal interval is not the specified one, stress is applied to internal elements, which may cause problems, such as a short circuit and insufficient mounting strength.
 - When the terminal interval and the hole interval of the radial lead type capacitor do not match and therefore the capacitor's leads need to be readjusted, make sure that the readjustment does not apply any stress to the capacitor's body.

- Confirm the applied pressure when using an automatically mounting process for a surface-mounted type capacitor. Excessive pressure may result in increasing leak current, short circuit, the capacitor coming off from the board, and the like. When automatically mounting the radial lead type capacitor, check the wear of a cutter for cutting the leads and confirm that the angle of clinching the leads is not too acute with regards to the board. Clinching the leads at too acute of an angle applies tensile stress to the leads, which may lead to destruction of the capacitor.
- Follow soldering conditions (preheating, soldering temperature/time, the number of soldering, etc.) in the specification sheet. A high peak temperature or a long heating time causes the degradation of electrical characteristics or a reduction in the guaranteed life. Note that the specified soldering conditions indicate conditions under which the degradation of capacitor characteristics do not occur but do not indicate conditions under which stable soldering can be performed. Check and set conditions under which stable soldering can be performed, on a case-by-case basis. Measure the temperature of the capacitor, using a thermocouple bonded to the top of the capacitor with an epoxy-based adhesive. This temperature measurement must be conducted in a mass-production setup.
- The surface-mounted type capacitor is soldered by reflow soldering only. It cannot be soldered by flow soldering or dip soldering. Carry out reflow soldering with an atmospheric heat transfer method using infrared hot air, etc. When carrying out two rounds of reflow processes, carry out the second reflow process after the capacitor's temperature settles down to a normal temperature. In the case of VPS reflow, a sharp rise in the capacitor temperature causes a change in the characteristics and appearance of the capacitor, which may give rise to a problem with capacitor mounting. We therefore recommend execution of VPS flow at a temperature rise rate of 3 °C/second or lower. For more information about this matter, please contact us.
- Reflow soldering, under the reflow conditions we recommend, might result in discoloring or swelling of the case or crack formation on the ink mark indicating the cathode. These minor problems, however, do not affect the reliability of the capacitor at all.
- A 6.3-mm diameter vibration-resistant capacitor has a structure that covers the auxiliary terminals to the sides of a seat plate. In cases where you confirm formation of a fillet on the sides of the auxiliary terminals by an image recognition means, etc., examine soldering conditions for the formation of a sufficient fillet on the auxiliary terminals in advance before carrying out the soldering process.

 Even if the formation of a sufficient fillet on the auxiliary terminals is not confirmed, a solder junction between the lower surface of the auxiliary terminals and the board ensures vibration-resistant performance, meaning the reliability of the capacitor is not affected.
- The radial lead type capacitor cannot be soldered by reflow soldering. Do not dip the capacitor body, except the leads, in solder. Heat from the solder raises the internal pressure of the capacitor and destroys it. Solder the capacitor according to the following soldering conditions: soldering temperature of 260 °C ±5 °C and soldering time of 10 seconds ±1 second.
- Ensure that other components do not come in contact with the capacitor during the soldering process. When a radial lead type capacitor is set in close contact with the board, check the soldered state of the capacitor well, because its sealing rubber has no venting structure.
- When manually soldering the capacitor, follow the soldering conditions (soldering temperature/time) specified in the specification sheet or adopt a soldering temperature of 350 °C and a soldering time of 3 seconds or less. When you need to remove a capacitor already soldered, remove it after the solder is melted sufficiently so that no stress is applied to the terminals of the capacitor. Be careful not to let the solder iron tip touch the capacitor. The solder iron touching the capacitor may damage the capacitor.
- When the temperature of the capacitor becomes extremely high due to preheating, solidification of the setting resin, etc., may cause the outer sleeve of the capacitor to shrink or crack. When treating the capacitor in a thermosetting furnace, etc., place the capacitor in an atmosphere of 150 °C for 2 minutes or less.
- Do not tilt or twist the capacitor soldered to a printed board or hold the capacitor to carry the board or hit the capacitor against something. Such actions apply a force to the internal elements through the terminals and may destroy the product.
- Using highly active halogenous (chlorine-based or bromic) solder flux poses a concern that residual solder flux will have negative impact on the performance and reliability of the capacitor. Check the influence of residual solder flux before using such solder flux.

Storage conditions

- A capacitor left for a long period is prone to have a greater flow of leak current. This happens because the oxide film deteriorates under a no-load condition. Voltage application to the capacitor reduces the leak current. However, at the start of voltage application, a large flow of film recovery current increases the leak current, which may cause a circuit failure, etc.
- The storage period of a capacitor is 42 months from the shipment inspection day. However, the storage period of capacitors not listed in the following table is specified as 12 months.

 Store the capacitor in a place where a normal temperature condition (5°C to 35°C) and a normal humidity condition (45% to 85%) are maintained and direct sunlight is blocked.

Product category	Series	Storage period
Hybrid type	All hybrid series	
Surface-mounted type other than the hybrid type	S (hot lead-free reflow), HA (hot lead-free reflow) HB (hot lead-free reflow, 5.4 mm in height) HC, HD, FCA, FC, FKA, FK, FKS, FP,FT, FH, FN TG, TK, TP, TC, TCU, TQ	42 months from the shipment inspection day
Radial lead type other than the hybrid type	FC-A, FK-A, HD-A, TA-A, TP-A, FP-A	

- Avoid storing the capacitor in environments not specified in the delivery specification sheet or in the following environments or conditions.
 - (1) Used at a temperature higher than the upper limit category temperature or lower than the lower limit category temperature
 - (2) Environments where the capacitor is exposed to water, salt water, or oil
 - (3) Environments where dew concentrates on the capacitor
 - (4) Environments filled with a toxic gas (hydrogen sulfide, sulfurous acid, nitrous acid, chlorine and chlorine compound, bromine and bromine compound, ammonia, etc.)
 - (5) Environments where the product is exposed to ozone, radiation, UV-rays, etc.
 - (6) Environments where vibrations or mechanical shocks exceeding a specified range is applied to the capacitor

Reference information

Guidelines

Some of the product use guidelines described herein are excerpted from JEITA RCR-2367D "Safety application guide for fixed aluminum electrolytic capacitors for use in electronic equipment," a technical report issued by the Japan Electronics and Information Technology Industries Association on October 2017. For more detailed information, please see the above technical report.

Intellectual property

Panasonic Group provides customers with safe products and services. We are also making great efforts to protect our intellectual property rights for Panasonic Group products. Typical patents related to this product are as follows. (Hybrid type)

[U.S. patent]

USP Nos. 7497879, 7621970, 9208954, 9595396, 9966200, 10453618, 10559432, 10679800, 10685788, and 10790095.

[Japanese patent]

Japanese Patent No. 5360250

[European patent]

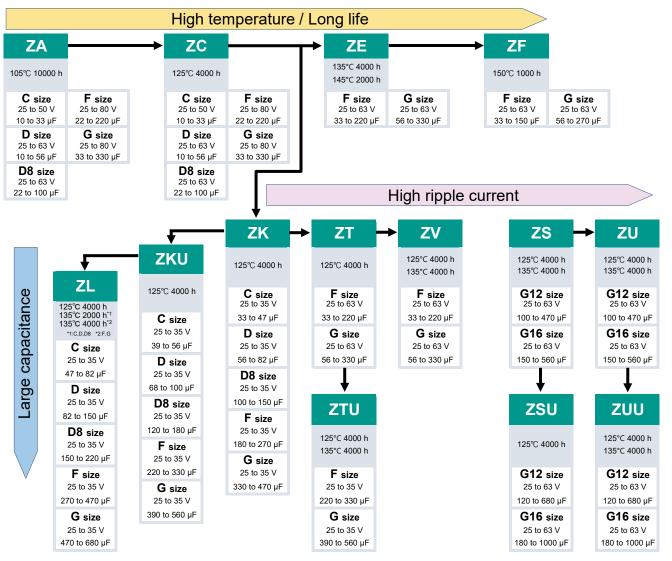
EP-A Nos. 1808875 and 2698802

Line up

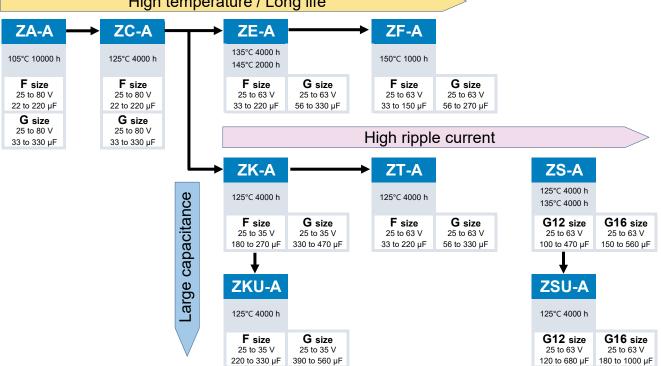
Surface mount type

Series	Part No.	Features	Small size	Large cap.	High ripple	High temp.	Long life	Category temperature range (°C)	Rated voltage range	ESR (mΩ)	Capacitance range (µF)	Size code	(m	ze im)
			S	La	 : : :	Ξ̈́	Ľ		(V)			0)	øD	L
									25 to 50	80 to 120	10 to 33	С	5.0	5.8
		Low ESR							20 10 00	50 to 120	10 to 56	D	6.3	5.8
ZA	EEHZA	High ripple current	•					-55 to 105	25 to 63	30 to 80	22 to 100	D8	6.3	7.7
_ `		Long life 105 ℃ 10000 h						00 10 100		27 to 45	22 to 220	F	8.0	10.2
		100 € 1000011							25 to 80	20 to 36	33 to 330	G	10.0	10.2
									25 to 50	80 to 120	10 to 33	С	5.0	5.8
		Low ESR								50 to 120	10 to 56	D	6.3	5.8
ZC	EEHZC	High ripple current	•				•	-55 to 125	25 to 63	30 to 80	22 to 100	D8	6.3	7.7
		Long life 125 ℃ 4000 h								27 to 45	22 to 220	F	8.0	10.2
									25 to 80	20 to 36	33 to 330	G	10.0	10.2
-										80 to 100	33 to 47	С	5.0	5.8
		Large capacitance								50 to 60	56 to 82	D	6.3	5.8
ZK	EEHZK	High ripple current Long life	•	•	•		•	-55 to 125	25 to 35	30 to 35	100 to 150	D8	6.3	7.7
		125 ℃ 4000 h								27	180 to 270	F	8.0	10.2
										20	330 to 470	G	10.0	10.2
										80 to 100	39 to 56	С	5.0	5.8
		Large capacitance								50 to 60	68 to 100	D	6.3	5.8
ZKU	EEHZKU-	Long life	•	•	•		•	-55 to 125	25 to 35	30 to 35	120 to 180	D8	6.3	7.7
		125 ℃ 4000 h								27	220 to 330	F	8.0	10.2
										20	390 to 560	G	10.0	10.2
										58 to 60	47 to 82	С	5.0	5.8
		405 °C 4000 h								38 to 40	82 to 150	D	6.3	5.8
ZL	EEHZL	125 °C 4000 h 135 °C 4000 h	•	•	•		•	-55 to 135	25 to 35	24 to 26	150 to 220	D8	6.3	7.7
		100 € 4000 11								18 to 20	270 to 470	F	8.0	10.2
										14 to 16	470 to 680	G	10.0	10.2
ZT	EEHZT	125 ℃ 4000 h		•	•		•	-55 to 125	25 to 63	22 to 32	33 to 220	F	8.0	10.2
		120 0 1000 11		Ŭ	Ŭ		Ŭ	00 10 120	20 10 00	16 to 25	56 to 330	G	10.0	10.2
ZTU	EEHZTU-	125 ℃ 4000 h		•	•		•	-55 to 135	25 to 35	22	220 to 330	F	8.0	10.2
		135 ℃ 4000 h						00 10 100	20 10 00	16	390 to 560	G	10.0	10.2
ZV	EEHZV	125 °C 4000 h		•			•	-55 to 135	25 to 63	16 to 22	33 to 220	F	8.0	10.2
	221121	135 °C 4000 h			Ŭ			00 10 100	20 10 00	12 to 16	56 to 330	G	10.0	10.2
ZS	EEHZS	125 ℃ 4000 h		•	•		•	-55 to 135	25 to 63	14 to 19	100 to 470	G12	10.0	12.5
		135 ℃ 4000 h							20 10 00	11 to 15	150 to 560	G16	10.0	16.5
ZSU	EEHZSU-	125 ℃ 4000 h		•	•		•	-55 to 125	25 to 63	14 to 19	120 to 680	G12	10.0	12.5
		120 0 1000 11		Ŭ	Ŭ				20 10 00	11 to 15	180 to 1000	G16	10.0	16.5
ZU	EEHZU	125 ℃ 4000 h		•	•		•	-55 to 135	25 to 63	10 to 12	100 to 470	G12	10.0	12.5
		135 ℃ 4000 h		Ŭ	Ŭ				20 10 00	8 to 10	150 to 560	G16	10.0	16.5
ZUU	EEHZUU-	125 ℃ 4000 h		•	•		•	-55 to 135	25 to 63	10 to 12	120 to 680	G12	10.0	12.5
		135 ℃ 4000 h		_	_					8 to 10	180 to 1000	G16	10.0	16.5
ZE	EEHZE	145 ℃ 2000 h				•	•	-55 to 145	25 to 63	27 to 40	33 to 220	F	8.0	10.2
		135 ℃ 4000 h						55.5110	20 .0 00	20 to 30	56 to 330	G	10.0	10.2
ZF	EEHZF	150 ℃ 1000 h				•	•	-55 to 150	25 to 63	27 to 40	33 to 150	F	8.0	10.2
	_ /	.55 € 156611						23.0 100		20 to 30	56 to 270	G	10.0	10.2

Line up


Radial lead type

Series	Part No.	Features	size	cap.	pple	emb.	life	Category temperature	Rated voltage	ESR	Capacitance range	epoo		ze m)
Ser	raitino.	r eatures	Small	Large	High ripple	High temp	Long life	range (℃)	range (V)	(mΩ)	(µF)	Size	øD	L
ZA-A	EEHAZAB	105 ℃ 10000 h						-55 to 105	25 to 80	27 to 45	22 to 220	F	8.0	9.5
	LLIIAZAD	103 € 1000011						-00 to 100	20 10 00	20 to 36	33 to 330	G	10.0	9.5
ZC-A	EEHAZCB	125 ℃ 4000 h					•	-55 to 125	25 to 80	27 to 45	22 to 220	F	8.0	9.5
20-7	LLI IAZCB	123 C 4000 11						-55 to 125	25 10 00	20 to 36	33 to 330	G	10.0	9.5
ZK-A	EEHAZKB	125 ℃ 4000 h		•			•	-55 to 125	25 to 35	27	180 to 270	F	8.0	9.5
ZIN-A	EENAZKB	125 C 4000 II		•				-55 to 125	25 10 55	20	330 to 470	G	10.0	9.5
ZKU	EEHAZKUB	125 ℃ 4000 h					•	-55 to 125	25 to 35	27	220 to 330	F	8.0	9.5
-A	EEHAZKUB	125 C 4000 II		•				-55 to 125	25 10 55	20	390 to 560	G	10.0	9.5
ZT-A	EEHAZTB	125 ℃ 4000 h					•	-55 to 125	25 to 63	22 to 32	33 to 220	F	8.0	9.5
21-7	LLIIAZIB	123 C 4000 11						-55 to 125	25 10 05	16 to 25	56 to 330	G	10.0	9.5
ZS-A	EEHAZSB	125 ℃ 4000 h					•	-55 to 135	25 to 63	14 to 19	100 to 470	G12	10.0	11.7
23-A	EENAZSB	135 ℃ 4000 h		•				-55 to 155	25 10 05	11 to 15	150 to 560	G16	10.0	15.7
ZSU	EEHAZSUB	125 ℃ 4000 h		•			•	-55 to 125	25 to 63	14 to 19	120 to 680	G12	10.0	11.7
-A	LLITAZSOB	123 C 4000 11						-55 to 125	25 10 05	11 to 15	180 to 1000	G16	10.0	15.7
ZE-A	EEHAZEB	145 ℃ 2000 h					•	-55 to 145	25 to 63	27 to 40	33 to 220	F	8.0	9.5
ZE-A	LENAZEB	135 ℃ 4000 h						-55 10 145	20 10 03	20 to 30	56 to 330	G	10.0	9.5
ZF-A	EEHAZFB	150 ℃ 1000 h						-55 to 150	25 to 63	27 to 40	33 to 150	F	8.0	9.5
ΔΓ - Α	EENAZFB	150 C 1000 ft						-55 10 150	20 10 03	20 to 30	56 to 270	G	10.0	9.5


Series flow chart

Surface mount type

Radial lead type

High temperature / Long life

Voltage - Capacitance table (SMD type) (Vol. : 25 to 80 V / Cap. : 10 to 120 μF)

Series [Size] (ESR mΩ)

μF	10	22	27	33	39	47	56	68	82	100	120
-w		ZA [C]		ZA [C]		ZA [D]	ZA [D]	ZA [D8]	ZK [D]	ZA [D8]	
		(80)		(80)		(50)	(50)	(30)	(50)	(30)	
		ZC [C] (80)		ZC [C] (80)		ZC [D] (50)	ZC [D] (50)	ZC [D8] (30)	ZL [C] (58)	ZČ [Ď8] (30)	
		(00)		(00)		ZK [C]	ZKU [C]	ZK [D]	(56)	ZKU [D]	
						(80)	(80)	(50)		(50)	
25											
	ZA [C]	ZA [C]	ZA [D]	ZA [D]	ZKU [C]	ZA [D]	ZK [D]	ZA [D8]	ZL [D]	ZA [F]	ZKU [D8]
	(100) ZC [C]	(100) ZC [C]	(60)	(60) ZC [D]	(100)	(60) ZC [D]	(60)	(35) ZC [D8]	(40)	(27) ZC [F]	(35)
	(100)	(100)		(60)		(60)		(35)		(27)	
		, ,		ZK [C]		ZL [C]		ZKU [D]		ZK [D8]	
				(100)		(60)		(60)		(35)	
										ZF [F] (30)	
35										(50)	
	74 (01	74 ID1		74 (D0)		74 [[]	7C (C)	74 [[]		74 (01	70 (0)
	ZA [C] (120)	ZA [D] (80)		ZA [D8] (40)		ZA [F] (30)	ZF [F] (35)	ZA [F] (30)		ZA [G] (28)	ZC [G] (28)
	ZC [C]	ZC [D]		ZC [D8]		ZC [F]	(00)	ZC [F]		ZC [G]	ZT [G]
	(120)	(80)		(40)		(30)		(30)		(28)	(23)
								ZT [F] (25)		ZT [G] (23)	ZV [G] (14)
								ZE [F]		ZE [G]	(14)
50								(30)		(28)	
								ZV [F] (19)		ZF [G]	
								(19)		(28) ZV [G]	
										ZV [G] (14)	
	ZA [D]	ZA [D8]		ZA [F]		ZA [F]	ZA [G]	ZA [G]	ZA [G]	ZS [G12]	ZSU [G12]
	(120)	(80)		(40)		(40)	(30)	(30)	(30)	(19)	(19)
	ZC [D]	ZC [D8]		ZC [F]		ZC [F]	ZC [G]	ZC [G]	ZC [G]	ZU [G12]	ZUÙ [G12]
	(120)	(80)		(40)		(40)	(30)	(30)	(30)	(12)	(12)
				ZT [F] (32)		ZT [F] (32)	ZT [G] (25)	ZT [G] (25)	ZT [G] (25)		
63				ZE [F]		ZV [F]	ZE [G]	ZV [G]	ZE [G]		
03				(40)		(22)	(30)	(16)	(30)		
				ZF [F] (40)			ZF [G] (30)		ZV [G] (16)		
				ZV [F]			ZV [G]		(10)		
				(22)			(16)				
		ZA [F]		ZA [G]		ZA [G]					
		(45)		(36)		(36)					
80		ZC [F]		ZC [G]	-	ZC [G]					
	-	(45)		(36)		(36)					
	II.	1	I.	I.	1	1	l	I.	I.	I.	

Size list øx L (mm)

С	5.0x5.8	D	6.3x5.8	F	8.0x10.2	G	10.0x10.2
		D8	6.3x7.7			G12	10.0x12.5
				=		G16	10.0x16.5

Voltage - Capacitance table (SMD type) (Vol. : 25 to 80 V / Cap. : 150 to 1000 μF)

Series [Size] (ESR mΩ)

γμF	150	180	220	270	330	390	470	560	680	1000
	ZA [F] (27)	ZKU [D8] (30)	ZA [F] (27)	ZK [F] (27)	ZA [G] (20)		ZK [G] (20)	ZKU [G] (20)	ZSU [G12] (14)	ZSU [G16] (11)
	ZC [F] (27)	(00)	ZC [F] (27)	ZF [G] (20)	ZC [G] (20)		ZS [G12] (14)	ZS [G16] (11)	ZUU [G12] (10)	
	ZK [D8] (30)		ZT [F] (22)	(20)	ZKU [F] (27)		ZU [G12] (10)	ZU [G16] (8)	ZL [G] (14)	(0)
	ZF [F] (27)		ZE [F] (27)		ZT [G] (16)		ZL [F] (18)	ZTU [G] (16)	(14)	
25	ZL [D] (38)		ZV [F] (16)		ZE [G] (20)		(10)	(10)		
	(36)		ZL [D8] (24)		ZTU [F] (22)					
			(24)		ZV [G] (12)					
					(12)					
	ZA [F]	ZK [F]	ZA [G]	ZA [G]	ZK [G]	ZKU [G]	ZS [G16]		ZSU [G16]	
	(27) ZC [F]	(27)	(20) ZC [G]	(20) ZC [G]	(20) ZS [G12]	(20) ZTU [G]	(11) ZSU [G12]		(11) ZUU [G16]	
	(27) ZT [F]		(20) ZKU [F]	(20) ZT [G]	(14) ZU [G12]	(16)	(14) ZU [G16]		(9)	
	(22) ZE [F]		(27) ZTU [F]	(16) ZE [G]	(11)		(9) ZUU [G12]			
35	(27) ZF [G]		(22)	(20) ZV [G]			(11) ZL [G]			
	(23) ZV [F]			(12) ZL [F]			(16)			
	(16) ZL [D8]			(20)						
	(26)									
	ZS [G12]	ZSU [G12]	ZS [G16]	ZSU [G16]						
	(17) ZU [G12]	(17) ZUU [G12]	(13) ZU [G16]	(13) ZUU [G16]						
	(12)	(12)	(10)	(10)						
50										
30										
	ZS [G16]	ZSU [G16]								
	(15) ZU [G16]	(15) ZUU [G16]								
	(10)	(10)								_
63										
03										
90										
80										

Size list øx L (mm)

С	5.0x5.8	D	6.3x5.8	F	8.0x10.2	G	10.0x10.2
		D8	6.3x7.7			G12	10.0x12.5
		,	•	-		G16	10.0x16.5

Voltage - Capacitance table (Radial lead type) (Vol. : 25 to 80 V / Cap. : 22 to 150 μF)

Series [Size] (ESR mΩ)

											ESR mΩ)
VμF	22	27	33	39	47	56	68	82	100	120	150
											ZA [F]
											(27)
											ZC [F]
											(27)
											ZF [F] (27)
25											(/
									ZA [F]		ZA [F]
									(27)		(27)
									ZC [F]		ZC [F]
	_								(27)		(27)
									ZF [F] (30)		ZK [F] (22)
35									(33)		ZE [F]
											(27)
											ZF [G]
											(23)
					ZA [F]	ZF [F]	ZA [F]		ZA [G]	ZC [G]	ZS [G12]
					(30)	(35)	(30)		(28)	(28)	(17)
					ZC [F]		ZC [F]		ZC [G]	ZT [G]	
					(30)		(30)		(28)	(23)	
							ZT [F] (25)		ZT [G] (23)		
50							ZE [F]		ZE [G]		
							(30)		(28)		
									ZF [G]		
									(28)		
			ZA [F]		ZA [F]	ZA [G]	ZA [G]	ZA [G]	ZS [G12]	ZSU [G12]	ZS [G16]
			(40)		(40)	(30)	(30)	(30)	(19)	(19)	(15)
			ZC [F]		ZC [F]	ZC [G]	ZC [G]	ZC [G]			
	-		(40)		(40)	(30)	(30)	(30) ZT [G]			
			ZT [F] (32)		ZT [F] (32)	ZT [G] (25)	ZT [G] (25)	(25)			
63			ZE [F]		(0=)	ZE [G]	(=0)	ZE [G]			
			(40)			(30)		(30)			
			ZF [F]			ZF [G]					
			(40)			(30)					
	ZA [F]		ZA [G]		ZA [G]						
	(45)		(36)		(36)						
80	ZC [F]		ZC [G]		ZC [G]						
30	(45)		(36)		(36)						
	list av L										

Size list $\, \sigma \, x \, L \, (mm) \,$

F 8.0 x 9.5 G 10.0 x 9.5 G12 10.0 x 11.7 G16 10.0 x 15.7

8.0 x 9.5

Voltage - Capacitance table (Radial lead type) (Vol. : 25 to 80 V / Cap. : 180 to 1000 μF)

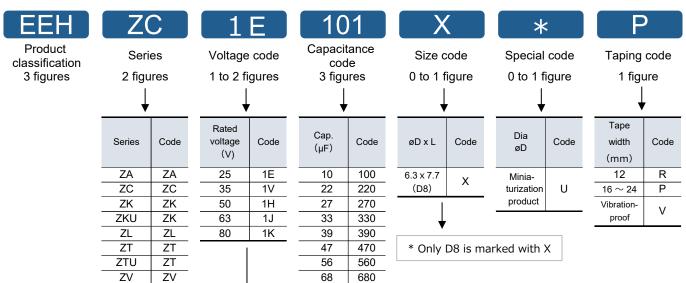
Series [Size] (ESR mΩ)

VμF	180	220	270	330	390	470	560	680	1000
		ZA [F]	ZK [F]	ZA [G]		ZK [G]	ZKU [G]	ZSU [G12]	
		(27)	(27)	(20)		(20)	(20)	(14)	(11)
		ZC [F] (27)	ZF [G] (20)	ZC [G] (20)		ZS [G12] (14)	ZS [G16] (11)		
		ZT [F]	(=0)	ZKU [F]		()	()		
25		(22)		(27)					
		ZE [F] (27)		ZT [G] (16)					
		(21)		ZE [G]					
				(20)					
	ZK [F]	ZA [G]	ZA [G]	ZK [G]	ZKU [G]	ZS [G16]		ZSU [G16]	
	(27)	(20)	(20)	(20)	(20)	(11)		(11)	
		ZC [G]	ZC [G]	ZS [G12]		ZSU [G12]			
		(20) ZKU [F]	(20) ZT [G]	(14)		(14)			
25		(27)	(16)						
35			ZE [G]						
			(20)						
	ZSU [G12]	79 [G16]	ZSU [G16]						
	(17)	(13)	(13)						
50									
	7SILIG161								
	ZSU [G16] (15)								
00									
63									
80									
Size	list øxL(n	nm)	ı			1	ı	1	

10.0 x 11.7

G16

10.0 x 15.7


G12

10.0 x 9.5

♦ Part number system

Surface mount type

82

100

120

150

180

220

270

330

390

470

560

680

1000

820

101

121

151

181

221

271

331

391

471

561

681

102

* If the total figures number of the part number exceeds 12 figures, "1" is omitted. e.g.) $1E \rightarrow E$

ZS

ZSU

ZU

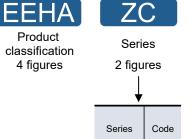
ZUU

ZΕ

ZF

ZS

ZS

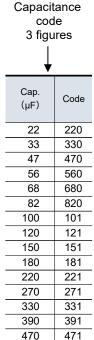

ZU

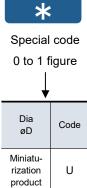
ZU

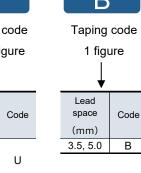
ZΕ

ZF

· Radial lead type




Series	Code
ZA	ZA
ZC	ZC
ZK	ZK
ZKU	ZK
ZT	ZT
ZS	ZS
ZSU	ZS
ZE	ZE
ZF	ZF


1 to 2 figure Rated voltage Code (V) 25 1E 35 1V 1H 50 63 1J 80 1K

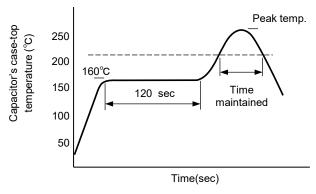
Voltage code

* If the total figures number of the part number exceeds 12 figures, "1" is omitted. e.g.) $1E \rightarrow E$

560

680

1000


561

681

102

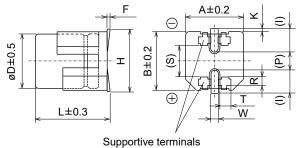
Recommended reflow soldering

Size code	C, D, D8	F, G, G12, G16				
Peak temp.	260℃ (255℃)	245℃	260℃			
Time in peak temperature	≥ 250°C 5 s (10 s)	≧ 240°C 10 s	≧ 250°C 5 s			
T:	≧ 230°C 30 s	≧ 230°C 30 s	≧ 230°C 30 s			
Time maintained	≧ 217°C 40 s	≧ 217°C 40 s	≧ 217°C 40 s			
mamamou	≧ 200°C 70 s	≧ 200°C 70 s	≧ 200°C 70 s			
Reflow cycles	2 times	2 times	1 time			

^{*} For reflow, use a thermal condition system such as infrared and radiation (IR) or hot blas.

Specifications for radial lead type

- Flow soldering condition
 - < RoHS compliant >

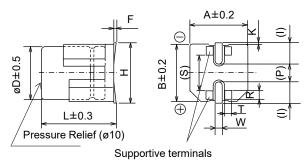

	Temperature	Time	Flow number	
Soldering condition	260°C + 5°C or less	10 sec +1 sec or less	1 time	

Vibration-proof products

The size and shape are different frome standard products.

Please inquire details of our company.

< Size code : D, D8 >



() Reference size

Unit: mm øD L A, B H max. F Τ W Size code 6.3 6.1 6.6 7.8 D 0 to +0.15 2.4 0.65 ± 0.1 D8 6.3 8.0 6.6 7.8 0 to +0.15 2.4 0.65±0.1

Size code	Р	k	(R	S	T
D	2.2	0.35	+0.15 -0.20	1.1±0.2	3.3	1.05±0.2
D8	2.2	0.35	+0.15 -0.20	1.1±0.2	3.3	1.05±0.2

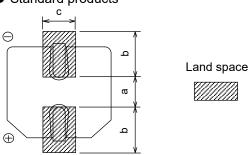
< Size code : F, G, G12, G16 >

()Reference size

							Unit : mm
Size cod	e øD	L	A, B	H max.	F	I	W
F	8.0	10.5	8.3	10.0	0 to +0.15	3.4	1.2±0.2
G	10.0	10.5	10.3	12.0	0 to +0.15	3.5	1.2±0.2
G12	10.0	12.8	10.3	11.0*1	0 to +0.15	3.2	1.2±0.2
G16	10.0	16.8	10.3	11.0*1	0 to +0.15	3.2	1.2±0.2
							*1:±0.2

Р Size code Κ R S Т 3.1 0.70 ± 0.2 0.70±0.2 1.3±0.2 F 5.3 G 4.6 0.70±0.2 0.70 ± 0.2 6.9 1.3±0.2 G12 4.6 0.70±0.2 6.9 1.3±0.2 4.6 G16 0.70±0.2 6.9 1.3±0.2

^{*} Reflow temperature is measured on capacitor's case top.


Mounting specification

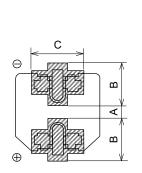
Land / Pad pattern

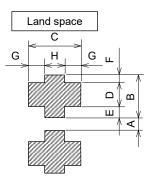
The circuit board land/pad pattern size for chip capacitors is specified in the following table.

The land pitch influences installation strength.

Standard products

			Unit: mm
Size code	а	b	С
C : ø5×L5.8	1.5	2.8	1.6
D : ø6.3×L5.8	1.8	3.2	1.6
D8 : ø6.3×L7.7	1.8	3.2	1.6
F : ø8×L10.2	3.1	4.0	2.0
G : ø10×L10.2	4.6	4.1	2.0
G12: ø10×L12.5	4.6	4.1	2.0
G16: ø10×L16.5	4.6	4.1	2.0

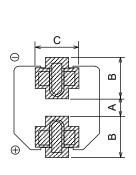

When size "a" is wide, back fillet can be made,

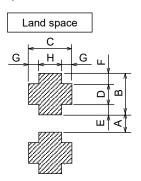

decreasing fitting strength.

* Take mounting conditions, solderability and fitting strength into consideration when selecting parts for your design.

Vibration-proof products

< Size code : D, D8 >


				Offic . ITITIT
Size code	Α	В	С	D
D : ø6.3×L6.1	1.2	3.6	3.2	2.0
D8 : ø6.3×L8.0	1.2	3.6	3.2	2.0


Size code	Е	F	G	Н
D : ø6.3×L6.1	0.95	0.65	1.0	1.2
D8 : ø6.3×L8.0	0.95	0.65	1.0	1.2

Larger dimension of "A" may prevent back fillet from being

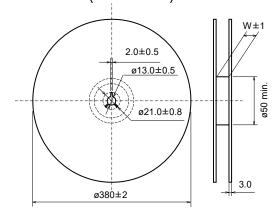
formed adequately to obtain required solder strength.

< Size code : F, G, G12, G16 >

				Unit : mm
Size code	Α	В	С	D
F : ø8×L10.5	2.7	4.0	4.7	1.3
G : ø10×L10.5	3.9	4.4	4.7	1.3
G12: ø10×L12.8	3.9	4.4	4.7	1.3
G16: ø10×L16.8	3.9	4.4	4.7	1.3

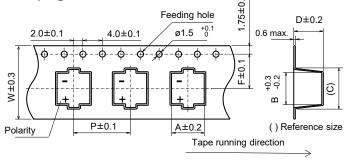
Size code	Е	F	G	Н
F : ø8×L10.5	1.0	1.7	1.1	2.5
G : ø10×L10.5	1.2	1.9	1.1	2.5
G12: ø10×L12.8	1.2	1.9	1.1	2.5
G16: ø10×L16.8	1.2	1.9	1.1	2.5

When size "A" is wide, back fillet can be made,


decreasing fitting strength.

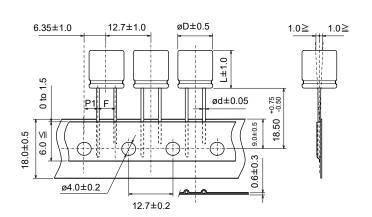
- * Take mounting conditions, solderability and fitting strength into consideration when selecting parts for your design.
- * The vibration-proof capacitors of size ø6.3 has support terminals extending from the bottom side to the lead edge. Then, make sure to find appropriate soldering conditions to form fillet on the support terminals if required for appearance inspection.

Packaging specifications

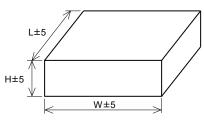

Specifications for surface mount type

• Reel dimensions (not to scale)

	Unit : mm
Size code	W
С	14.0
D, D8	18.0
F G G12 G16	26.0


Taping dimensions

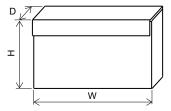
XAsk factory for technical specifications

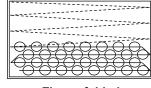

Radial lead type

Taping dimensions

					Unit : mm
Size code	øD	L	ød	F	P1
F	8.0	9.5	0.6	3.5±0.5	4.60±0.50
G	10.0	9.5	0.6	5.0+0.8/-0.2	3.85±0.50
G12	10.0	11.7	0.8	5.0+0.8/-0.2	3.85±0.50
G16	10.0	15.7	0.8	5.0+0.8/-0.2	3.85±0.50

Dimensions of outer carton box


		Unit : mm
Size code	Н	W, L
С	180	395
D, D8	220	395
F, G, G12, G16	180	395


Min.packing quantity

Size code	Min.packing quantity (pcs.)
C, D	1000
D8	900
F, G	500
G12	400
G16	250

							Unit: mm
Size code	Α	В	С	D	Р	F	W
С	5.7	5.7	8.0	6.4	12.0	5.5	12.0
D	7.0	7.0	9.0	6.4	12.0	7.5	16.0
D8	7.0	7.0	9.0	8.4	12.0	7.5	16.0
F	8.7	8.7	12.5	11.0	16.0	11.5	24.0
G	10.7	10.7	14.5	11.0	16.0	11.5	24.0
G12	10.7	10.7	14.5	13.7	16.0	11.5	24.0
G16	10.7	10.7	14.5	17.5	20.0	11.5	24.0

Dimensions of outer carton box / Packaging method

Zigzag folded

			Unit : mm
Size code	W	Н	D
F	340 max.	230 max.	55 max.
G	340 max.	170 max.	55 max.
G12	340 max.	170 max.	55 max.
G16	340 max.	170 max.	55 max.

Min.packing quantity

Size code	Min.packing quantity (pcs.)
F	1000
G	500
G12	500
G16	500

INDUSTRY

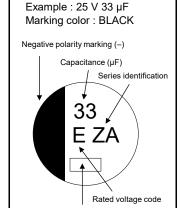
Hybrid

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZA series

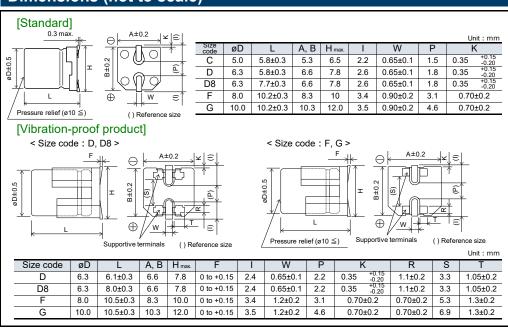
High temperature lead-free reflow



Features

- Endurance : 10000 h at 105 ℃
- Low ESR and high ripple current (over 70% lower ESR and 100% higher ripple current than V-FP)
- High voltage (to 80 V)
- Characteristics dependencies in frequency and low temperature are as small as polymer type
- Vibration-proof product is available upon request (ø6.3, ø8, ø10)
- AEC-Q200 compliant
- RoHS compliant

Specifications									
Size code	С		D	D8		F		G	
Category temp. range	–55 ℃ to +105 ℃								
Rated voltage range	25 V to 50 V		25 V t	to 63 V		25	V to 80 V		
Nominal cap.range	10 μF to 33 μF	10 J	ıF to 56 μF	22 µF to 10	00 μF	22 μF to 220 μF	33 µF t	o 330 µF	
Capacitance tolerance			±20 % (120 Hz / +20 °C)						
Leakage current	$I \le 0.01 \text{ CV } (\mu A), 2$	minutes) x (Rated volta	ge in V)	
Dissipation factor (tan δ)			Please s	ee the attached	characteristi	cs list			
Surge voltage (V)			Rated	voltage × 1.25	(15 ℃ to 35	℃)			
	+105 °C ± 2 °C, 10000 h					rated voltage.			
	Capacitance chang		Within ±30% of	of the initial value	Э				
	Dissipation factor (tan δ)		≦ 200 % of the initial limit						
Endurance	ESR		≤ 200 % of the initial limit						
	Leakage current		Within the initi	ial limit					
	ESR after endurance		Size code C D D8 F G						
	(Ω / 100 kHz)(-40 °C			D	D8	F	G 25 V to 80 V F 33 µF to 330 µ IF) x (Rated voltage in V		
	, , , , , , ,		2.0	1.4	8.0	0.4	V to 80 V 33 μF to x (Rated voltag		
	After storage for 1000 ho					en being			
Shelf life	stabilized at +20 ℃, cap		shall meet the li	mits specified in	endurance.				
	(With voltage treatment)								
	+85 °C ± 2 °C, 85 % to 9								
	Capacitance change		Within ±30% of the initial value						
Damp heat (Load)	Dissipation factor (ta	ın ð)		≦ 200 % of the initial limit					
	ESR		≤ 200 % of the initial limit						
	Leakage current		Within the initi						
	After reflow soldering an	d then be	eing stabilized a	at +20 °C, capaci	tors shall me	et the			
Resistance to	following limits.		1400	60					
soldering heat	Capacitance change			of the initial value	9				
	Dissipation factor (ta		Within the initi						
	Leakage current		Within the initi	ial limit					


Marking

R. voltage code	Unit: V
Е	25
V	35
Н	50
J	63
K	80

Lot number

Dimensions (not to scale)

♦ Part number system

e.g.: EEHZA1E220R

EEHProduct

classification

Series Code
ZA ZA

Rated vol. (V) Code*1

25 1E

35 1V

50 1H

63 1J

80 1K

220									
Capacitance (µF)	Code	Capacitance (µF)	Code						
10	100	68	680						
22	220	100	101						
27	270	150	151						
33	330	220	221						
39	390	270	271						
47	470	330	331						
56	560								
		-							

D8 size Code ØDxL(mm)

Tape width (mm) Code

12 R

16 to 24 P

Vibration proof V

Characteristics list

Endurance : 105 ℃ 10000 h

	Case size (mm)				Specification			Part n	Min.packaging q'ty (pcs)		
Rated voltage (V)	Capacitance (±20 %) (µF)	øD	Standard	Vibration -proof	Size code	Ripple current ^{*1} (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Standard product	Vibration-proof product	Taping
	22	5.0	5.8	-	С	900	80	0.14	EEHZA1E220R	-	1000
	33	5.0	5.8	-	С	900	80	0.14	EEHZA1E330R	-	1000
	47	6.3	5.8	6.1	D	1300	50	0.14	EEHZA1E470P	EEHZA1E470V	1000
	56	6.3	5.8	6.1	D	1300	50	0.14	EEHZA1E560P	EEHZA1E560V	1000
25	68	6.3	7.7	8.0	D8	2000	30	0.14	EEHZA1E680XP	EEHZA1E680XV	900
	100	6.3	7.7	8.0	D8	2000	30	0.14	EEHZA1E101XP	EEHZA1E101XV	900
	150	8.0	10.2	10.5	F	2300	27	0.14	EEHZA1E151P	EEHZA1E151V	500
	220	8.0	10.2	10.5	F	2300	27	0.14	EEHZA1E221P	EEHZA1E221V	500
	330	10.0	10.2	10.5	G	2500	20	0.14	EEHZA1E331P	EEHZA1E331V	500
	10	5.0	5.8	-	С	900	100	0.12	EEHZA1V100R	-	1000
	22	5.0	5.8	-	С	900	100	0.12	EEHZA1V220R	-	1000
	27	6.3	5.8	6.1	D	1300	60	0.12	EEHZA1V270P	EEHZA1V270V	1000
	33	6.3	5.8	6.1	D	1300	60	0.12	EEHZA1V330P	EEHZA1V330V	1000
^-	47	6.3	5.8	6.1	D	1300	60	0.12	EEHZA1V470P	EEHZA1V470V	1000
35	68	6.3	7.7	8.0	D8	2000	35	0.12	EEHZA1V680XP	EEHZA1V680XV	900
	100	8.0	10.2	10.5	F	2300	27	0.12	EEHZA1V101P	EEHZA1V101V	500
	150	8.0	10.2	10.5	F	2300	27	0.12	EEHZA1V151P	EEHZA1V151V	500
	220	10.0	10.2	10.5	G	2500	20	0.12	EEHZA1V221P	EEHZA1V221V	500
	270	10.0	10.2	10.5	G	2500	20	0.12	EEHZA1V271P	EEHZA1V271V	500
	10	5.0	5.8	-	С	750	120	0.10	EEHZA1H100R	-	1000
	22	6.3	5.8	6.1	D	1100	80	0.10	EEHZA1H220P	EEHZA1H220V	1000
	33	6.3	7.7	8.0	D8	1600	40	0.10	EEHZA1H330XP	EEHZA1H330XV	900
50	47	8.0	10.2	10.5	F	1800	30	0.10	EEHZA1H470P	EEHZA1H470V	500
	68	8.0	10.2	10.5	F	1800	30	0.10	EEHZA1H680P	EEHZA1H680V	500
	100	10.0	10.2	10.5	G	2000	28	0.10	EEHZA1H101P	EEHZA1H101V	500
	10	6.3	5.8	6.1	D	1000	120	0.08	EEHZA1J100P	EEHZA1J100V	1000
	22	6.3	7.7	8.0	D8	1500	80	0.08	EEHZA1J220XP	EEHZA1J220XV	900
	33	8.0	10.2	10.5	F	1700	40	0.08	EEHZA1J330P	EEHZA1J330V	500
63	47	8.0	10.2	10.5	F	1700	40	0.08	EEHZA1J470P	EEHZA1J470V	500
	56	10.0	10.2	10.5	G	1800	30	0.08	EEHZA1J560P	EEHZA1J560V	500
	68	10.0	10.2	10.5	G	1800	30	0.08	EEHZA1J680P	EEHZA1J680V	500
	82	10.0	10.2	10.5	G	1800	30	0.08	EEHZA1J820P	EEHZA1J820V	500
	22	8.0	10.2	10.5	F	1550	45	0.08	EEHZA1K220P	EEHZA1K220V	500
80	33	10.0	10.2	10.5	G	1700	36	0.08	EEHZA1K330P	EEHZA1K330V	500
	47	10.0	10.2	10.5	G	1700	36	0.08	EEHZA1K470P	EEHZA1K470V	500

^{*1:} Ripple current (100 kHz / +105 ℃)

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{**:} Only D8 is marked with X

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 ℃)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

[◆] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

ZA series

Frequency correction factor for ripple current								
Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz	500 Hz ≦ f < 1 kHz			
C < 47 µF	Compostion	0.10	0.10	0.15	0.20			
47 μF ≦ C < 150 μF	Correction factor	0.15	0.20	0.25	0.30			
150 μF ≦ C	lactor	0.15	0.25	0.25	0.30			
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz			
C < 47 µF	Compostion	0.30	0.40	0.45	0.50			
47 μF ≦ C < 150 μF	Correction factor	0.40	0.45	0.55	0.60			
150 μF ≦ C	lactor	0.45	0.50	0.60	0.65			
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz			
C < 47 µF	Compostion	0.60	0.65	0.70	0.75			
47 μF ≦ C < 150 μF	Correction factor	0.70	0.75	0.80	0.80			
150 μF ≦ C	lactor	0.75	0.80	0.85	0.85			
Rated capacitance (C)	Frequency (f)	40 kHz ≤ f < 50 kHz	50 kHz ≤ f < 100 kHz	100 kHz ≤ f < 500 kHz	500 kHz ≦ f			
C < 47 µF	0 "	0.80	0.85	1.00	1.05			
47 μF ≦ C < 150 μF	Correction factor	0.85	0.90	1.00	1.00			
150 μF ≦ C	- Iactor	0.85	0.90	1.00	1.00			

Panasonic

INDUSTRY

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

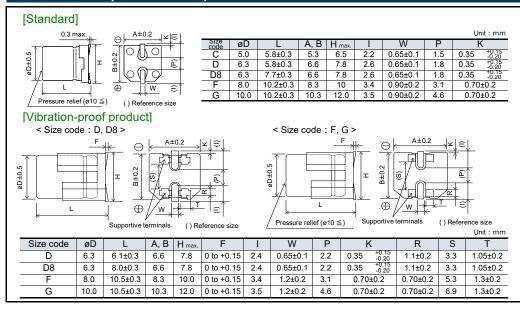
Surface Mount Type

ZC series

High temperature lead-free reflow

Hybrid

Features


- Endurance: 4000 h at 125 °C (High temperature / Long life)
- Low ESR and high ripple current (over 85% lower ESR than V-TP)
- High-withstand voltage (to 80 V)
- Characteristics dependencies in frequency and low temperature are as small as polymer type
- Vibration-proof product is available upon request (ø6.3, ø8, ø10)
- AEC-Q200 compliant
- RoHS compliant

Specifications									
Size code	С		D	D8	F	G			
Category temp. range				–55 °C to +125 °C		Į.			
Rated voltage range	25 V to 50 V		25 V t	o 63 V	25 V t	o 80 V			
Nominal cap.range	10 μF to 33 μF	10 L	ιF to 56 μF	22 μF to 100 μF	22 μF to 220 μF	33 μF to 330 μF			
Capacitance tolerance				±20 % (120 Hz / +20 ℃)					
Leakage current	$I \le 0.01 \text{ CV } (\mu A), 2$	minutes	after reaching r	ated voltage, 20 ℃ *CV	= (Capacitance in μF) x (Rated voltage in V)			
Dissipation factor (tan δ)				ee the attached characte					
Surge voltage (V)			Rated	voltage × 1.25 (15 ℃ to	35 ℃)				
				rrent without exceeding th	ne rated voltage.				
	Capacitance change		Within ±30% c	of the initial value					
Endurance 1	Dissipation factor (ta	ın δ)	≤ 200 % of the						
	ESR			≤ 200 % of the initial limit					
	Leakage current		Within the initial limit						
	+125 °C ± 2 °C, 3000 h, apply the rated ripple current without exceeding the rated voltage.								
	Capacitance change			of the initial value					
Endurance 2	Dissipation factor (tan δ)		≦ 200 % of the						
	ESR		≦ 300 % of the						
	Leakage current		Within the initi						
				th no voltage applied and					
Shelf life			shall meet the lii	mits specified in endurance	ce.				
	(With voltage treatment)								
	+85 °C ± 2 °C, 85 % to 9								
5	Capacitance change		Within ±30% of the initial value						
Damp heat (Load)	Dissipation factor (ta	ın ö)	≤ 200 % of the initial limit						
	ESR		≤ 200 % of the initial limit						
	Leakage current			Within the initial limit ing stabilized at +20 ℃, capacitors shall meet the					
		u inen be	eirig stabilized a	i +20 C, capacitors shall	meet the				
Resistance to	following limits.	~~	\\/ithin +100/ -	of the initial value					
soldering heat	Capacitance chang		Within the initi						
-	Dissipation factor (ta								
	Leakage current		Within the initi	ai iimii					

Marking

Example: 25 V 33 µF Marking color: BLACK Negative polarity marking (–) Capacitance (µF) Series identification Rated voltage code Lot number R. voltage code Unit: V E 25 V 35 H 50 J 63

Dimensions (not to scale)

♦ Part number system

e.g.: EEHZC1E220R

EEH Product

classification

	C
Series	Code
ZC	ZC

_ 1	E
Rated vol. (V)	C
25	
35	
50	
63	

1	E		2	20
ed vol. V)	Code*1	Capacitance (µF)	Code	Ca
25	1E	10	100	
35	1V	22	220	
50	1H	33	330	
63	1J	47	470	
30	1K	56	560	
		68	680	
		82	920	

Capacitance

(µF)

100

120

150

220

270

330

Code

101

121

151

221

271

331

X	
D8 size** øDxL(mm)	Code
6.3 x 7.7	Х

R	
Tape width (mm)	Code
12	R
16 to 24	Р
Vibration proof	V

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Characteristics list

Endurance 1 : 125 °C 4000 h Endurance 2 : 125 ℃ 3000 h

		Case size (mm)				Specification				Part r	Min.	
Rated voltage (V)	Capacitance (±20 %) (µF)	øD	- 1	_	Size code		current *1 rms)	ESR*2	tan δ ^{*3}	Standard product	Vibration-proof	q'ty (pcs)
			Standard	Vibration -proof		Endurance 1	Endurance 2	(mΩ)		product	product	Taping
	22	5.0	5.8	_	С	550	-	80	0.14	EEHZC1E220R	_	1000
	33	5.0	5.8	-	С	550	_	80	0.14	EEHZC1E330R	-	1000
	47	6.3	5.8	6.1	D	900	_	50	0.14	EEHZC1E470P	EEHZC1E470V	1000
	56	6.3	5.8	6.1	D	900	_	50	0.14	EEHZC1E560P	EEHZC1E560V	1000
25	68	6.3	7.7	8.0	D8	1400	_	30	0.14	EEHZC1E680XP	EEHZC1E680XV	900
	100	6.3	7.7	8.0	D8	1400	_	30	0.14	EEHZC1E101XP	EEHZC1E101XV	900
	150	8.0	10.2	10.5	F	1600	1900	27	0.14	EEHZC1E151P	EEHZC1E151V	500
	220	8.0	10.2	10.5	F	1600	1900	27	0.14	EEHZC1E221P	EEHZC1E221V	500
	330	10.0	10.2	10.5	G	2000	2900	20	0.14	EEHZC1E331P	EEHZC1E331V	500
	10	5.0	5.8	_	С	550	_	100	0.12	EEHZC1V100R	_	1000
	22	5.0	5.8	_	С	550	_	100	0.12	EEHZC1V220R	_	1000
	33	6.3	5.8	6.1	D	900	_	60	0.12	EEHZC1V330P	EEHZC1V330V	1000
	47	6.3	5.8	6.1	D	900	_	60	0.12	EEHZC1V470P	EEHZC1V470V	1000
35	68	6.3	7.7	8.0	D8	1400	_	35	0.12	EEHZC1V680XP	EEHZC1V680XV	900
	100	8.0	10.2	10.5	F	1600	1900	27	0.12	EEHZC1V101P	EEHZC1V101V	500
	150	8.0	10.2	10.5	F	1600	1900	27	0.12	EEHZC1V151P	EEHZC1V151V	500
	220	10.0	10.2	10.5	G	2000	2800	20	0.12	EEHZC1V221P	EEHZC1V221V	500
	270	10.0	10.2	10.5	G	2000	2800	20	0.12	EEHZC1V271P	EEHZC1V271V	500
	10	5.0	5.8	_	С	500	_	120	0.10	EEHZC1H100R	_	1000
	22	6.3	5.8	6.1	D	750	_	80	0.10	EEHZC1H220P	EEHZC1H220V	1000
	33	6.3	7.7	8.0	D8	1100	_	40	0.10	EEHZC1H330XP	EEHZC1H330XV	900
50	47	8.0	10.2	10.5	F	1250	_	30	0.10	EEHZC1H470P	EEHZC1H470V	500
	68	8.0	10.2	10.5	F	1250	_	30	0.10	EEHZC1H680P	EEHZC1H680V	500
	100	10.0	10.2	10.5	G	1600	_	28	0.10	EEHZC1H101P	EEHZC1H101V	500
	120	10.0	10.2	10.5	G	1600	_	28	0.10	EEHZC1H121P	EEHZC1H121V	500
	10	6.3	5.8	6.1	D	700	_	120	0.08	EEHZC1J100P	EEHZC1J100V	1000
	22	6.3	7.7	8.0	D8	900	_	80	0.08	EEHZC1J220XP	EEHZC1J220XV	900
	33	8.0	10.2	10.5	F	1100	_	40	0.08	EEHZC1J330P	EEHZC1J330V	500
63	47	8.0	10.2	10.5	F	1100	_	40	0.08	EEHZC1J470P	EEHZC1J470V	500
	56	10.0	10.2	10.5	G	1400	_	30	0.08	EEHZC1J560P	EEHZC1J560V	500
	68	10.0	10.2	10.5	G	1400	_	30	0.08	EEHZC1J680P	EEHZC1J680V	500
	82	10.0	10.2	10.5	G	1400	_	30	0.08	EEHZC1J820P	EEHZC1J820V	500
	22	8.0	10.2	10.5	F	1050	_	45	0.08	EEHZC1K220P	EEHZC1K220V	500
80	33	10.0	10.2	10.5	G	1360	_	36	0.08	EEHZC1K330P	EEHZC1K330V	500
	47	10.0	10.2	10.5	G	1360	_	36	0.08	EEHZC1K470P	EEHZC1K470V	500

^{*1:} Ripple current (100 kHz / +125 ℃)

^{**:} Only D8 is marked with X

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

[♦] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

Frequency correction factor for ripple current									
Rated capacitance (C)	Frequency (f)	100 Hz ≤ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz	500 Hz ≦ f < 1 kHz				
C < 47 µF	0	0.10	0.10	0.15	0.20				
47 μF ≦ C < 150 μF	Correction factor	0.15	0.20	0.25	0.30				
150 μF ≦ C	lactor	0.15	0.25	0.25	0.30				
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz				
1 ()	Frequency (i)			*****					
C < 47 μF	Correction	0.30	0.40	0.45	0.50				
47 μF ≦ C < 150 μF	factor	0.40	0.45	0.55	0.60				
150 μF ≦ C	lactor	0.45	0.50	0.60	0.65				
D () (0)	- (0)	10111 25 15111	45111 46 00111						
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≤ f < 30 kHz	30 kHz ≦ f < 40 kHz				
C < 47 µF	Correction	0.60	0.65	0.70	0.75				
47 μF ≦ C < 150 μF	factor	0.70	0.75	0.80	0.80				
150 µF ≦ C	lactor	0.75	0.80	0.85	0.85				
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f				
C < 47 µF	Correction	0.80	0.85	1.00	1.05				
47 μF ≦ C < 150 μF	Correction factor	0.85	0.90	1.00	1.00				
150 µF ≦ C	iacioi	0.85	0.90	1.00	1.00				

After endurance ESR (100 kHz, -40°C)									
Size code	С	D	D8	F	G				
ESR (Ω)	2	1.4	0.8	0.4	0.3				

Panasonic

INDUSTRY

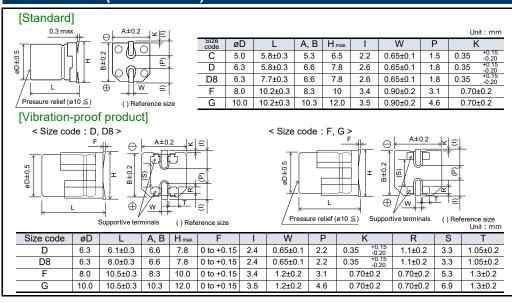
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZK series

High temperature lead-free reflow

Features


- High capacitance and High ripple current compared with ZC series
- Endurance : 4000 h at 125 °C (High temperature / Long life)
- Low ESR
- Characteristics dependencies in frequency and low temperature are as small as polymer type
- Vibration-proof product is available upon request (ø6.3, ø8, ø10)
- AEC-Q200 compliant
- RoHS compliant

Specifications													
Size code	С)	D8		F		G					
Category temp. range				–55 ℃ to +1	25 ℃								
Rated voltage range		25 V to 35 V											
Nominal cap.range	33 μF to 47 μF	56 µF to	ο 82 μF	100 µF to 1	50 μF 1	80 μF to 270 μF	330 µF	to 470 μF					
Capacitance tolerance				±20 % (120 Hz	/ +20 ℃)								
Leakage current	I ≤ 0.01 CV (μA), 2 mi	inutes afte					x (Rated volta	ge in V)					
Dissipation factor (tan δ)				ee the attached									
Surge voltage (V)				voltage × 1.25									
	+125 ℃ ± 2 ℃, 4000 h, a _l					e rated voltage.							
	Capacitance change			of the initial val	ue								
Endurance	Dissipation factor (tan	,		ne initial limit									
	ESR		≤ 200 % of the initial limit										
	Leakage current	W	Within the initial limit										
	ESR after endurance (Ω / 100 kHz)(-40 ℃)		Size code										
			С	D	D8	F	G						
			2.0	1.4	0.8	0.4	0.3						
	After storage for 1000 hours at +125 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being												
Shelf life	stabilized at +20 ℃, capa (With voltage treatment)			·		Э.							
	+85 ℃ ± 2 ℃, 85 % to 90 %RH, 2000 h, rated voltage applied												
	Capacitance change	e W	ithin ±30%	of the initial val	ue								
Damp heat (Load)	Dissipation factor (tan	δ) ≦	200 % of th	ne initial limit									
	ESR	≦	200 % of the initial limit										
	Leakage current	W	ithin the init	tial limit									
	After reflow soldering and	I then beir	ng stabilize	d at +20 °C, ca	pacitors shall	meet the							
Resistance to	following limits.												
soldering heat	Capacitance change	e Wi	ithin ±10%	of the initial val	ue								
soluering near	Dissipation factor (tan	δ) W	ithin the init	tial limit									
	Leakage current	W	ithin the init	tial limit									

Marking

Example: 25 V 47 µF Marking color: BLACK Negative polarity marking (-) Capacitance (µF) Series identification 47 EZK Rated voltage code Lot number R. voltage code Unit: V E 25 V 35

Dimensions (not to scale)

♦ Part number system

e.g.: EEHZK1E470R

EEH Product classification

ZK								
Series	Code							
ZK	ZK							

	1	E	
Rated (V		Cod	e*1
25	i	1E	Ξ
35	;	1\	/

4/1								
Capacitance (µF)	Code	Capacitance (µF)	Code					
33	330	150	151					
47	470	180	181					
56	560	270	271					
68	680	330	331					
82	820	470	471					
100	101							

	X	
D8 si øDxL(Code
6.3 x	7.7	Χ

R	
Tape width (mm)	Code
12	R
16 to 24	Р
Vibration proof	V

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Characteristics list

Endurance : 125 ℃ 4000 h

Rated voltage (V)	Capacitance (±20 %) (µF)	Case size (mm)				Specification			Part n	Min.packaging q'ty (pcs)	
		øD	Standard	Vibration -proof	Size code	Ripple current ^{*1} (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Standard product	Vibration-proof product	Taping
	47	5.0	5.8	_	С	850	80	0.14	EEHZK1E470R	_	1000
	68	6.3	5.8	6.1	D	1300	50	0.14	EEHZK1E680P	EEHZK1E680V	1000
	82	6.3	5.8	6.1	D	1300	50	0.14	EEHZK1E820P	EEHZK1E820V	1000
25	150	6.3	7.7	8.0	D8	1800	30	0.14	EEHZK1E151XP	EEHZK1E151XV	900
	270	8.0	10.2	10.5	F	2000	27	0.14	EEHZK1E271P	EEHZK1E271V	500
	470	10.0	10.2	10.5	G	2800	20	0.14	EEHZK1E471P	EEHZK1E471V	500
	33	5.0	5.8	_	С	750	100	0.12	EEHZK1V330R	_	1000
	56	6.3	5.8	6.1	D	1200	60	0.12	EEHZK1V560P	EEHZK1V560V	1000
35	100	6.3	7.7	8.0	D8	1700	35	0.12	EEHZK1V101XP	EEHZK1V101XV	900
	180	8.0	10.2	10.5	F	2000	27	0.12	EEHZK1V181P	EEHZK1V181V	500
	330	10.0	10.2	10.5	G	2800	20	0.12	EEHZK1V331P	EEHZK1V331V	500

^{*1:} Ripple current (100 kHz / +125 $^{\circ}$ C)

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz	500 Hz ≦ f < 1 kHz
C < 47 µF	Correction	0.15	0.20	0.25	0.35
47 μF ≦ C < 100 μF	- Correction factor	0.15	0.25	0.30	0.40
100 μF ≦ C	lactor	0.15	0.25	0.30	0.40
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz

Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	$3 \text{ kHz} \leq f < 5 \text{ kHz}$	5 kHz ≦ f < 10 kHz
C < 47 µF	O = = 4: =	0.45	0.55	0.60	0.65
47 μF ≤ C < 100 μF	Correction factor	0.50	0.60	0.65	0.70
100 μF ≦ C	lactor	0.50	0.60	0.65	0.70

Detect conscitues (C)	Γ (f)	40 111- < \$ 445 111-	45 111- < 5 + 00 111-	00 111- < \$ + 00 111-	00 111- < 5 + 40 111-
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≤ f < 20 kHz	20 kHz ≤ f < 30 kHz	30 kHz ≤ f < 40 kHz
C < 47 µF	0	0.70	0.75	0.75	0.75
47 μF ≦ C < 100 μF	Correction factor	0.75	0.75	0.80	0.80
100 uF ≦ C	iacioi	0.75	0.80	0.85	0.85

Rated capacitance (C)	Frequency (f)	40 kHz ≤ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≤ f < 500 kHz	500 kHz ≦ f
C < 47 µF	Correction	0.80	0.85	1.00	1.05
47 μF ≦ C < 100 μF	Correction –	0.85	0.90	1.00	1.00
100 μF ≦ C	laotoi	0.85	0.90	1.00	1.00

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

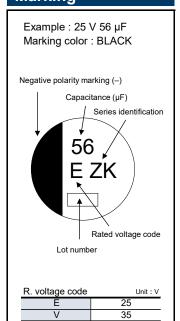
[♦] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

INDUSTRY

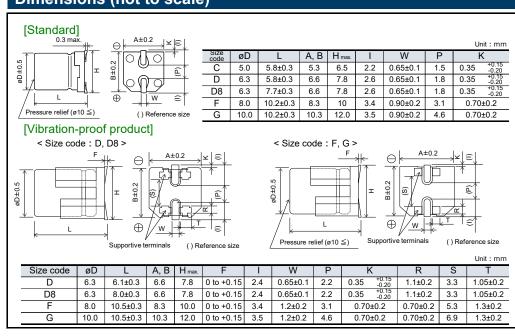
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZKU series


High temperature lead-free reflow

Features


- Endurance : 4000 h at 125 °C (High temperature / Long life)
- Large capacitance compared with ZK series
- Low ESR
- Characteristics dependencies in frequency and low temperature are as small as polymer type
- Vibration-proof product is available upon request. (ø6.3, ø8, ø10)
- AEC-Q200 compliant
- RoHS compliant

Specifications									
Size code	С		D	D8		F		G	
Category temp. range				–55 ℃ to +1	25 ℃				
Rated voltage range				25 V to 3	5 V				
Nominal cap.range	39 μF to 56 μF	68 µ	F to 100 μF	120 μF to 1	80 µF	220 μF to 330 μF	390 µF	to 560 μF	
Capacitance tolerance		±20 % (120 Hz / +20 ℃)							
Leakage current	$I \le 0.01 \text{ CV } (\mu A), 2$	$I \le 0.01 \text{ CV } (\mu A), 2 \text{ minutes after reaching rated voltage, } 20 ^{\circ}\!\text{C} ^{*}\!\text{CV} = (Capacitance in } \mu F) x (Rated voltage in V)$							
Dissipation factor (tan δ)		Please see the attached characteristics list							
Surge voltage (V)		Rated voltage × 1.25 (15 ℃ to 35 ℃)							
	+125 ℃ ± 2 ℃ 4000 h Capacitance chan		he rated ripple current without exceeding the rated voltage. Within ±30% of the initial value						
	Dissipation factor (tan δ)		≤ 200 % of the initial limit						
Endurance	ESR		≤ 200 % of the initial limit						
Lildulatice	Leakage current	t	Within the init	tial limit					
	ESR after enduran	ESR after endurance		Size code					
	(Ω / 100 kHz)(-40 °C)		С	D	D8	F	G		
			2.0	1.4	0.8	0.4	0.3		
	After storage for 1000 hours at +125 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being								
Shelf life	stabilized at +20 °C, capacitors shall meet the limits specified in endurance. (With voltage treatment)								
	+85 ℃ ± 2 ℃, 85 % to 90 %RH, 2000 h, rated voltage applied								
	Capacitance chan	ige	Within ±30% of the initial value						
Damp heat (Load)	Dissipation factor (ta	an δ)	≤ 200 % of th	ne initial limit					
	ESR		≤ 200 % of th	ne initial limit					
	Leakage current	t	Within the init	tial limit	· · · · · · · · · · · · · · · · · · ·				

Marking

Dimensions (not to scale)

♦ Part number system

e.g.: EEHZKE181XUP

EEH Product

classification

ZI	K
Series	Code
ZKU	ZK

E	
Rated vol. (V)	Code*1
25	1E
35	1V

18	81		
Capacitance (µF)	Code		
39	390		
56	560		
68	680		
100	101		
120	121		
180	181		
220	221		
330	331		
390	391		
560	561		

X	
D8 size** øDxL(mm)	Code
6.3 x 7.7	Х

U						
Dia øD	Code					
Minia- turized product	U					

Р	
Tape width (mm)	Code
12	R
16 to 24	Р
Vibration proof	٧

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Characteristics list

Endurance : 125 ℃ 4000 h

· ·		Case size (mm)		Э		Spe	Specification		Part number		Min.packaging q'ty (pcs)
	(±20 %)	~D	I	L Size		Ripple	ESR*2	. *2	Standard	Vibration-proof	
		(µF)	øD	Standard	Vibration -proof		$\begin{array}{c c} current^{*1} & ESR^{-} \\ (mA rms) & (m\Omega) \end{array} t$	tan δ ^{*3}	product produ	product	Taping
	56	5	5.8	-	С	850	80	0.14	EEHZK1E560UR	-	1000
	100	6.3	5.8	6.1	D	1300	50	0.14	EEHZK1E101UP	EEHZK1E101UV	1000
25	180	6.3	7.7	8.0	D8	1800	30	0.14	EEHZKE181XUP	EEHZKE181XUV	900
	330	8	10.2	10.5	F	2000	27	0.14	EEHZK1E331UP	EEHZK1E331UV	500
	560	10	10.2	10.5	G	2800	20	0.14	EEHZK1E561UP	EEHZK1E561UV	500
	39	5	5.8	-	С	750	100	0.12	EEHZK1V390UR	-	1000
	68	6.3	5.8	6.1	D	1200	60	0.12	EEHZK1V680UP	EEHZK1V680UV	1000
35	120	6.3	7.7	8.0	D8	1700	35	0.12	EEHZKV121XUP	EEHZKV121XUV	900
	220	8	10.2	10.5	F	2000	27	0.12	EEHZK1V221UP	EEHZK1V221UV	500
	390	10	10.2	10.5	G	2800	20	0.12	EEHZK1V391UP	EEHZK1V391UV	500

^{*1:} Ripple current (100 kHz / +125 ℃)

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency(f)	100 Hz ≦ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz			
C < 47 µF	Correction	0.15	0.20	0.25	0.35			
47 μF ≦ C < 100 μF	factor	0.15	0.25	0.30	0.40			
100 μF ≦ C	lactor	0.15	0.25	0.30	0.40			
Rated capacitance (C)	Frequency(f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz			
C < 47 µF	Correction	0.45	0.55	0.60	0.65			
47 μF ≦ C < 100 μF	factor	0.50	0.60	0.65	0.70			
100 μF ≦ C	lactor	0.50	0.60	0.65	0.70			
Rated capacitance (C)	Frequency(f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz			
C < 47 µF	Correction	0.70	0.75	0.75	0.75			
47 μF ≦ C < 100 μF	factor	0.75	0.75	0.80	0.80			
100 μF ≦ C	lactor	0.75	0.80	0.85	0.85			
Rated capacitance (C)	Frequency(f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f			
C < 47 µF	Correction	0.80	0.85	1.00	1.05			
47 μF ≦ C < 100 μF	factor	0.85	0.90	1.00	1.00			
100 μF ≦ C	iacioi	0.85	0.90	1.00	1.00			

^{**:} Only D8 is marked with X

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

[♦] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

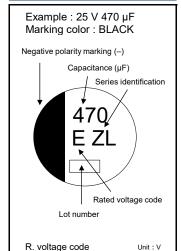
INDUSTRY

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

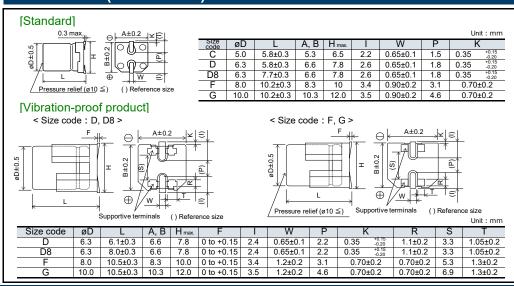
Surface Mount Type

ZL series

High temperature lead-free reflow


Features

- Endurance : 4000 h at 125 °C /135 °C
- Higher capacitance (max 150 % of ZKU series)
- AEC-Q200 compliant


- Smaller than ZC series with the same capacitance
- Low ESR (max 40 %, lower ESR than ZC or ZKU series)
- RoHS compliant

С		D	D8		F		G	
U			−55 °C to +1	135 °C		"		
			25 V to 3	5 V				
47 μF to 82 μF	47 μF to 82 μF 82 μF to 150 μF 150 μF to 220 μF 270 μF to 470 μF 470 μF to 680							
							-	
I ≤ 0.01 CV (μA), 2 m	inutes a	fter reaching ra	ated voltage, 20) °C *CV	= (Capacitance in μ	F) x (Rated vo	oltage in V)	
		Please se	e the attached	characte	ristics list		-	
		Rated	voltage × 1.25	(15 ℃ to	35 ℃)			
					g the rated voltage.			
				ue				
	an δ)							
Leakage current	t	Within the init	tial limit					
ESR after endurance								
, ,,					v			
				ue				
======================================								
Leakage current	t	Within the ini	tial limit	0.				
ESR after endurance								
(O / 100 kHz)(-40 °	C)		_					
`								
						ollized at +20 \	Έ,	
				ue				
	an o)							
			ne inilial limil					
	ŀ							
Leakage current		Within the init	tial limit	nacitors o	hall most the follow	ing limits		
Leakage current After reflow soldering a	nd then	Within the init	tial limit d at +20 °C, ca		hall meet the follow	ing limits.		
Leakage current	nd then ge	Within the init	tial limit d at +20 °C, ca of the initial val		hall meet the follow	ing limits.		
	47 μF to 82 μF I ≤ 0.01 CV (μA), 2 m +125 °C ± 2 °C 4000 h Capacitance chan Dissipation factor (ta ESR Leakage curren ESR after endurar (Ω / 100 kHz)(-40 °C +135 °C ± 2 °C 2000 h the rated voltage. Capacitance chan Dissipation factor (ta ESR Leakage curren ESR after endurar (Ω / 100 kHz)(-40 °C After storage for 1000 l capacitors shall meet to +85 °C ± 2 °C, 85 % to Capacitance chan Dissipation factor (ta	47 μF to 82 μF 82 μI I ≤ 0.01 CV (μA), 2 minutes a +125 °C ± 2 °C 4000 h, apply t Capacitance change Dissipation factor (tan δ) ESR Leakage current ESR after endurance (Ω / 100 kHz)(-40 °C) +135 °C ± 2 °C 2000 h (C,D,D8 the rated voltage. Capacitance change Dissipation factor (tan δ) ESR Leakage current ESR after endurance (Ω / 100 kHz)(-40 °C) After storage for 1000 hours at capacitors shall meet the limits +85 °C ± 2 °C, 85 % to 90 %RHCapacitance change Dissipation factor (tan δ)	47 μF to 82 μF 82 μF to 150 μF Please se Rated +125 °C ± 2 °C 4000 h, apply the rated ripple Capacitance change Within ±30% ESR ≤ 200 % of th ESR after endurance (Ω / 100 kHz)(-40 °C) Capacitance change Within ±30% ESR after endurance (Ω / 100 kHz)(-40 °C) Capacitance change Within ±30% ESR after endurance (Ω / 100 kHz)(-40 °C) Capacitance change Within ±30% Dissipation factor (tan δ) ≤ 200 % of th ESR ≤ 200 % of th ESR ≤ 200 % of th ESR ≤ 200 % of th Capacitance change Within ±30% After storage for 1000 hours at +135 °C ± 2 °C capacitors shall meet the limits specified in er +85 °C ± 2 °C, 85 % to 90 %RH, 2000 h, rated Capacitance change Within ±30% Dissipation factor (tan δ) ≤ 200 % of th Within ±30% Capacitance change Within ±30% Capacitance change Within ±30% ESR	$-55 ^{\circ} \text{C to} + 100 \text{CV } \text{ Ve} \text{A} \text{J} \text{F to} 82 \text{J} \text{F} \text{to} 150 \text{J} \text{F} \text{to} 25 \text{V to} 3 \text{J} \text{A} \text{T} \text{J} \text{F to} 82 \text{J} \text{F} \text{to} 150 \text{J} \text{F} \text{to} 2 \text{J} \text{L} \text{20} \text{W} (120 \text{Hz}) \text{J} \text{Hz} \text{J} \text{L} \text{20} \text{W} (120 \text{Hz}) \text{J} \text{Hz} \text{J} \text{L} \text{L} $	$-55 °C to +135 °C$ $25 V to 35 V$ $47 μF to 82 μF 82 μF to 150 μF 150 μF to 220 μF$ $\pm 20 % (120 Hz / +20 °C)$ $I ≤ 0.01 CV (μA), 2 minutes after reaching rated voltage, 20 °C *CV$ $Please see the attached character Rated voltage × 1.25 (15 °C to +125 °C ± 2 °C 4000 h, apply the rated ripple current without exceeding Capacitance change Within ±30% of the initial limit ESR $	$-55\ ^\circ \text{C to } + 135\ ^\circ \text{C}$ $25\ ^\vee \text{to } 35\ ^\vee \text{V}$ $47\ ^\vee \text{F to } 82\ ^\vee \text{F}$ $82\ ^\vee \text{F to } 150\ ^\vee \text{F}$ $150\ ^\vee \text{F to } 220\ ^\vee \text{F}$ $270\ ^\vee \text{F to } 470\ ^\vee \text{F}$ $\pm 20\ ^\vee \text{(} 120\ ^\vee \text{Hz}\ / + 20\ ^\vee \text{C})$ $I\le 0.01\ ^\vee \text{CV}\ (\mu\text{A}), 2\ ^\vee \text{minutes after reaching rated voltage, } 20\ ^\vee \text{C}\ ^\vee \text{CV} = \text{(Capacitance in } \mu\text{Please see the attached characteristics list}$ $Rated\ ^\vee \text{voltage} \times 1.25\ (15\ ^\vee \text{C to } 35\ ^\vee \text{C})$ $+125\ ^\vee \text{C} \pm 2\ ^\vee \text{C}\ ^\vee \text{4000}\ \text{h, apply the rated ripple current without exceeding the rated voltage.}$ $Capacitance\ \text{change} \qquad \text{Within } \pm 30\%\ \text{of the initial limit}$ $ESR \qquad \leq 200\ ^\vee \text{of the initial limit}$ $ESR \qquad \leq 200\ ^\vee \text{of the initial limit}$ $ESR\ \text{after endurance} \qquad \text{Within the initial limit}$ $(\Omega\ / \ 100\ ^\vee \text{kHz})(-40\ ^\vee \text{C}) \qquad 2.0 \qquad 1.4 \qquad 0.8 \qquad 0.4$ $+135\ ^\vee \text{C} \pm 2\ ^\vee \text{C}\ 2000\ \text{h}\ (\text{C,D,D8}\ \text{size}) \text{ or } 4000\ \text{h}\ (\text{F,G}\ \text{size}), apply the rated ripple current w the rated voltage.}$ $Capacitance\ \text{change} \qquad \text{Within } \pm 30\%\ \text{of the initial limit}$ $ESR \qquad \leq 200\ ^\vee \text{of the initial limit}$	$-55 ^{\circ}\text{C to } +135 ^{\circ}\text{C}$ $25 \text{V to } 35 \text{V}$ $47 \text{ µF to } 82 \text{ µF} \qquad 82 \text{ µF to } 150 \text{ µF} \qquad 150 \text{ µF to } 220 \text{ µF to } 270 \text{ µF to } 470 \text{ µF} \qquad 470 \text{ µF}$ $+20 ^{\circ}\text{(} 120 \text{ Hz} / +20 ^{\circ}\text{C}\text{)}$ $1 \leq 0.01 \text{ CV (µA), } 2 \text{ minutes after reaching rated voltage, } 20 ^{\circ}\text{C} ^{\circ}\text{CV} = \text{(Capacitance in µF)} \times \text{(Rated voltage } 20 ^{\circ}\text{C} ^{\circ}\text{CV} = \text{(Capacitance in µF)} \times \text{(Rated voltage } 20 ^{\circ}\text{C} ^{\circ}\text{CV} = \text{(Capacitance in µF)} \times \text{(Rated voltage } 20 ^{\circ}\text{C} ^{\circ}\text{CV} = \text{(Capacitance in µF)} \times \text{(Rated voltage } 20 ^{\circ}\text{C} ^{\circ}\text{CV} = \text{(Capacitance in µF)} \times \text{(Rated voltage } 20 ^{\circ}\text{C} ^{\circ}\text{CV} = \text{(Capacitance in µF)} \times \text{(Rated voltage } 20 ^{\circ}\text{C} ^{\circ}\text{CV} = \text{(Capacitance in µF)} \times \text{(Rated voltage } 20 ^{\circ}\text{C} \times 20 ^{\circ}\text{C} \times 200 ^{\circ}\text{C} \times 200$	

Marking

Dimensions (not to scale)

♦ Part number system

e.g.: EEHZL1E221XP

Product classification

Z	<u>L</u>					
Series	Code					
ZL	ZL					

1	E
Rated vo	I. Code*1
25	1E
35	1V

		<u>"1</u>	
Capacitance (µF)	Code	Capacitance (µF)	Code
47	470	270	271
82	820	470	471
150	151	680	681
220	221		

D8 size** øDxL(mm)	Code
6.3 x 7.7	Χ

P	
Tape width (mm)	Code
12	R
16 to 24	Р
Vibration proof	V

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted. **: Only D8 is marked with X

Characteristics list

Endurance 1: 125 °C 4000 h

Endurance 2: 135 °C 2000 h (C, D, D8 size) / 4000 h (F, G size)

Rated voltage (V)		Case size (mm)			Specification				Part number		Min. packaging	
	Capacitance (±20 %) (μF)		ı	L	Size		current *1	ESR*2	**	Standard	Vibration-proof	q'ty (pcs)
		øD	øD	Standard	Vibration -proof	couc	Endurance 1	Endurance 2	(mΩ)	tan δ ³	tan δ ^{*3} Standard product	product
						(+125℃)	(+135℃)					
	82	5.0	5.8	-	С	1000	600	58	0.14	EEHZL1E820R	-	1000
	150	6.3	5.8	6.1	D	1500	800	38	0.14	EEHZL1E151P	EEHZL1E151V	1000
25	220	6.3	7.7	8.0	D8	2000	1000	24	0.14	EEHZL1E221XP	EEHZL1E221XV	900
	470	8.0	10.2	10.5	F	3000	2000	18	0.14	EEHZL1E471P	EEHZL1E471V	500
	680	10.0	10.2	10.5	G	3400	2300	14	0.14	EEHZL1E681P	EEHZL1E681V	500
	47	5.0	5.8	-	С	900	550	60	0.12	EEHZL1V470R	-	1000
	82	6.3	5.8	6.1	D	1400	700	40	0.12	EEHZL1V820P	EEHZL1V820V	1000
35	150	6.3	7.7	8.0	D8	1900	900	26	0.12	EEHZL1V151XP	EEHZL1V151XV	900
	270	8.0	10.2	10.5	F	2900	1900	20	0.12	EEHZL1V271P	EEHZL1V271V	500
	470	10.0	10.2	10.5	G	3300	2200	16	0.12	EEHZL1V471P	EEHZL1V471V	500

^{*1:} Ripple current (100 kHz / +125 °C or +135 °C)

♦ The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency(f)	100 Hz ≤ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz
47 μF ≦ C < 150 μF	Correction	0.15	0.20	0.25	0.30
150 µF ≦ C	factor	0.15	0.25	0.25	0.30
Rated capacitance (C)	Frequency(f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz
$47~\mu\text{F} \leqq C < 150~\mu\text{F}$	Correction	0.40	0.45	0.55	0.60
150 μF ≦ C	factor	0.45	0.50	0.60	0.65
Rated capacitance (C)	Frequency(f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz
47 μF ≦ C < 150 μF	Correction	0.70	0.75	0.80	0.80
150 μF ≦ C	factor	0.75	0.80	0.85	0.85
Rated capacitance (C)	Frequency(f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ 1000 kHz
47 μF ≦ C < 150 μF	Correction	0.85	0.90	1.00	1.00
150 μF ≦ C	factor	0.85	0.90	1.00	1.00

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

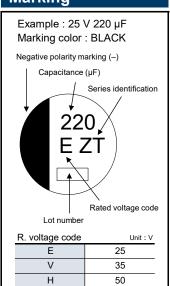
INDUSTRY

Hybrid

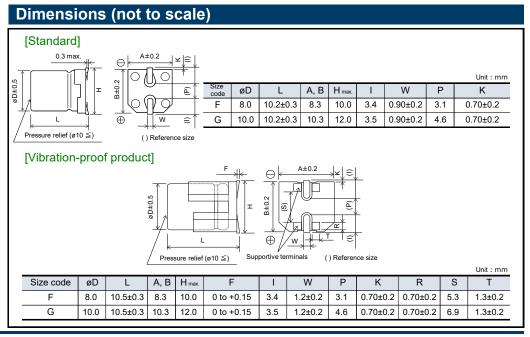
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZT series


High temperature lead-free reflow

Features


- Endurance: 4000 h at 125 °C
- Higher ripple current (75 % to 118 % higher than ZC series)
- Vibration-proof product is available upon request.
- AEC-Q200 compliant
- RoHS compliant

Specifications								
Size code	F		G					
Category temp. range		–55 ℃ to	+125 ℃					
Rated voltage range		25 V to	63 V					
Nominal cap.range	33 µF to 2	20 μF	56 μF to 330 μF					
Capacitance tolerance		±20 % (120 F						
Leakage current	I ≦ 0.01 CV (μA), 2 minutes	after reaching rated voltage,	20 ℃ *CV = (Capacitance in µF) x (Rated voltage in V)					
Dissipation factor (tan δ)		Please see the attache	ed characteristics list					
Surge voltage (V)		Rated voltage × 1.25	5 (15 ℃ to 35 ℃)					
		+125 °C ± 2 °C, 4000 h, apply the rated ripple current without exceeding the rated voltage						
	Capacitance change	Within ±30% of the initial value						
	Dissipation factor (tan δ)	≤ 200 % of the initial limit						
Endurance	E.S.R.	≤ 200 % of the initial limit						
Lituarance	Leakage current	Within the initial limit						
	ESR after endurance (Ω / 100 kHz)(-40 °C)	Size code						
		F G						
		0.4 0.3						
	After storage for 1000 hours at +125 $^{\circ}$ C \pm 2 $^{\circ}$ C with no voltage applied and then being							
Shelf life	stabilized at +20 ℃, capacitors	s shall meet the limits specific	ed in endurance.					
	(With voltage treatment)							
	85 ℃ ± 2 ℃, 85 % to 90 %RH,							
Damp heat	Capacitance change	Within ±30% of the initial v	alue					
(Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit						
(2000)	E.S.R.	≤ 200 % of the initial limit						
	Leakage current	Within the initial limit						
	After reflow soldering and then	being stabilized at +20 $^{\circ}$ C, c	apacitors shall meet the					
Resistance to	following limits.							
soldering heat	Capacitance change	Within ±10% of the initial v	alue					
	Dissipation factor (tan δ)	Within the initial limit						
	Leakage current	Within the initial limit						

Marking

63

♦ Part number system

e.g.: EEHZT1E221P

EEH

Product classification Series Code ZT ZT

1E

Rated vol. (V)	Code ^{*1}
25	1E
35	1V
50	1H
63	1J

221

Capacitance (µF)	Code	Capacitance (µF)	Code
33	330	120	121
47	470	150	151
56	560	220	221
68	680	270	271
82	820	330	331
100	101		•

Tape width (mm) Code

16 to 24 P

Vibration proof V

Characteristics list

Endurance : 125 ℃ 4000 h

	Capacitance (±20 %) (μF)	Case size (mm)				Specification			Part n	Min.packaging q'ty (pcs)	
Rated voltage (V)		øD	Standard	Vibration		Ripple current ^{*1} (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Standard Vibration-proof product product		Taping
	220	0.0	10.0	-proof	F	, ,	22	0.14	FELIZT4E224D	FFUZT4F004\/	F00
25	220 330	8.0 10.0	10.2	10.5 10.5	G	2900 3500	16	0.14	EEHZT1E221P EEHZT1E331P	EEHZT1E221V EEHZT1E331V	500 500
			-								
35	150	8.0	10.2	10.5	F	2900	22	0.12	EEHZT1V151P	EEHZT1V151V	500
	270	10.0	10.2	10.5	G	3500	16	0.12	EEHZT1V271P	EEHZT1V271V	500
	68	8.0	10.2	10.5	F	2700	25	0.10	EEHZT1H680P	EEHZT1H680V	500
50	100	10.0	10.2	10.5	G	2900	23	0.10	EEHZT1H101P	EEHZT1H101V	500
	120	10.0	10.2	10.5	G	2900	23	0.10	EEHZT1H121P	EEHZT1H121V	500
	33	8.0	10.2	10.5	F	2400	32	0.08	EEHZT1J330P	EEHZT1J330V	500
	47	8.0	10.2	10.5	F	2400	32	0.08	EEHZT1J470P	EEHZT1J470V	500
63	56	10.0	10.2	10.5	G	2800	25	0.08	EEHZT1J560P	EEHZT1J560V	500
	68	10.0	10.2	10.5	G	2800	25	0.08	EEHZT1J680P	EEHZT1J680V	500
	82	10.0	10.2	10.5	G	2800	25	0.08	EEHZT1J820P	EEHZT1J820V	500

^{*1:} Ripple current (100 kHz / +125 $^{\circ}$ C)

Frequency correction factor for ripple current

		- ''							
Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz				
C < 47 µF	Correction	0.10	0.10	0.15	0.20				
47 μF ≦ C < 150 μF	factor	0.15	0.20	0.25	0.30				
150 µF ≦ C	lactor	0.15	0.25	0.25	0.30				
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≤ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz				
C < 47 µF	Correction	0.30	0.40	0.45	0.50				
47 μF ≦ C < 150 μF	factor	0.40	0.45	0.55	0.60				
150 µF ≦ C	lacioi	0.45	0.50	0.60	0.65				
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≤ f < 40 kHz				
C < 47 µF	Correction	0.60	0.65	0.70	0.75				
47 μF ≦ C < 150 μF	factor	0.70	0.75	0.80	0.80				
150 μF ≦ C	lacioi	0.75	0.80	0.85	0.85				
Rated capacitance (C)	Frequency (f)	40 kHz ≤ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f				
C < 47 µF	Correction	0.80	0.85	1.00	1.05				
47 μF ≦ C < 150 μF	Correction factor	0.85	0.90	1.00	1.00				
150 μF ≦ C	iacioi	0.85	0.90	1.00	1.00				

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

[♦] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

INDUSTRY

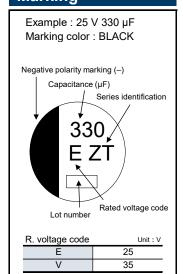
Hybrid

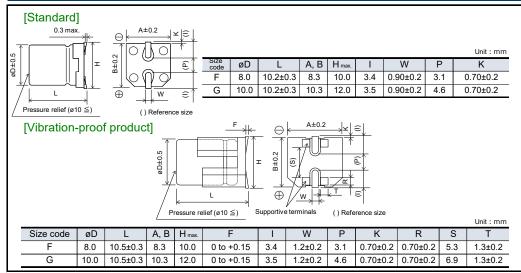
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZTU series

High temperature lead-free reflow

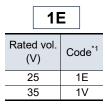

Features


- Endurance: 4000 h at 125 °C / 135 °C
- Higher ripple current (max 180 % of ZC series)
- Larger capacitance (max 170 % of ZT series)
- AEC-Q200 compliant
- RoHS compliant

Specifications									
Size code	F		G						
Category temp. range		−55 °C to	0 +135 °C						
Rated voltage range		25 V t	o 35 V						
Nominal cap.range	220 µF to 3	330 µF	390 μF to 560 μF						
Capacitance tolerance		±20 % (120	Hz / +20 ℃)						
Leakage current	I ≤ 0.01 CV (μA), 2 minutes		, 20 ℃ *CV = (Capacitance in μF) x (Rated voltage in V)						
Dissipation factor (tan δ)			ned characteristics list						
Surge voltage (V)		Rated voltage × 1.:	25 (15 ℃ to 35 ℃)						
		he rated ripple current with	out exceeding the rated voltage						
	Capacitance change	Within ±30% of the initial							
	Dissipation factor (tan δ)	≤ 200 % of the initial limit							
Endurance 1	E.S.R.	≤ 200 % of the initial limit	t						
Endurance 1	Leakage current	Within the initial limit							
	ESR after endurance	Size code							
	(Ω / 100 kHz)(-40 °C)	F G							
	, , ,	0.4 0.3							
	+135 °C ± 2 °C, 4000 h, apply the rated ripple current without exceeding the rated voltage.								
	Capacitance change Within ±30% of the initial value								
	Dissipation factor (tan δ) ≤ 200 % of the initial limit								
Endurance 2	E.S.R. ≤ 200 % of the initial limit								
Endarance 2	Leakage current Within the initial limit								
	ESR after endurance	Size code							
	(Ω / 100 kHz)(-40 °C)	F G							
		0.4 0.3							
a	After storage for 1000 hours at +135 °C ± 2 °C with no voltage applied and then being								
Shelf life	stabilized at +20 °C, capacitors shall meet the limits specified in endurance.								
	(With voltage treatment)								
	85 °C ± 2 °C, 85 % to 90 %RH, 2000 h, rated voltage applied								
Damp heat	Capacitance change	Within ±30% of the initial value							
(Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit ≤ 200 % of the initial limit							
(====)	E.S.R.	<u> </u>							
	Leakage current	Within the initial limit	27 1 11 4 4						
	After reflow soldering and then	being stabilized at +20 °C,	capacitors shall meet the						
Resistance to	following limits.	Mithin 1400/ of the initial	vialus.						
soldering heat	Capacitance change	Within ±10% of the initial	value						
9	Dissipation factor (tan δ)	Within the initial limit							
	Leakage current Within the initial limit								

Marking

Dimensions (not to scale)


♦ Part number system

e.g.: EEHZT1E331UP

EEH

Product classification

331								
acitance µF)	Code							
220	221							
330	331							
390	391							
560	561							

U								
Dia øD	Code							
Minia- turized product	U							

Р								
Code								
Р								
V								

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Characteristics list

Endurance 1 : 125 °C 4000 h Endurance 2 : 135 °C 4000 h

	Capacitance (±20 %) (µF)	Case size (mm)				Specification				Part n	Min. packaging	
Rated voltage (V)		øD	L				current *1 ESR*		R^{*2} tan δ^{*3}	Standard	Vibration-proof	q'ty (pcs)
			Standard	dard Vibration -proof		Endurance 1 (+125°C)	Endurance 2 (+135℃)	(mΩ)		product	product	Taping
25	330	8.0	10.2	10.5	F	2900	1800	22	0.14	EEHZT1E331UP	EEHZT1E331UV	500
25	560	10.0	10.2	10.5	G	3500	2200	16	0.14	EEHZT1E561UP	EEHZT1E561UV	500
35	220	8.0	10.2	10.5	F	2900	1800	22	0.12	EEHZT1V221UP	EEHZT1V221UV	500
	390	10.0	10.2	10.5	G	3500	2200	16	0.12	EEHZT1V391UP	EEHZT1V391UV	500

^{*1:} Ripple current (100 kHz / +125 $^{\circ}$ C or +135 $^{\circ}$ C)

- ♦ Please refer to the page of "Reflow profile" and "The taping dimensions".
- ◆ The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

Frequency correction factor for ripple current

rrequeries correc	tion factor for ripp	ne carrent								
Data da ana aitana a (O)	Frequency (f)									
Rated capacitance (C)	100 Hz ≦ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz						
150 µF ≦ C	0.15	0.25	0.25	0.30						
		•	•							
Rated capacitance (C)	Frequency (f)									
Rateu capacitance (C)	$1 \text{ kHz} \leq f < 2 \text{ kHz}$	$2 \text{ kHz} \le f < 3 \text{ kHz}$	$3 \text{ kHz} \le f < 5 \text{ kHz}$	$5 \text{ kHz} \le f < 10 \text{ kHz}$						
150 µF ≦ C	0.45	0.50	0.60	0.65						
Rated capacitance (C)	Frequency (f)									
Nated Capacitatice (C)	10 kHz \leq f < 15 kHz	$15 \text{ kHz} \le f < 20 \text{ kHz}$	$20 \text{ kHz} \le f < 30 \text{ kHz}$	$30 \text{ kHz} \le f < 40 \text{ kHz}$						
150 µF ≦ C	0.75	0.80	0.85	0.85						
Rated capacitance (C)	Frequency (f)									
Nateu capacitance (C)	$40 \text{ kHz} \le f < 50 \text{ kHz}$	$50 \text{ kHz} \le f < 100 \text{ kHz}$	100 kHz \leq f < 500 kHz	500 kHz ≦ f < 1000 kHz						
150 µF ≦ C	0.85	0.90	1.00	1.00						

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

INDUSTRY

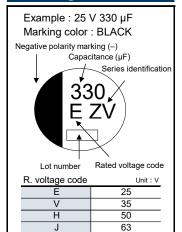
Hybrid

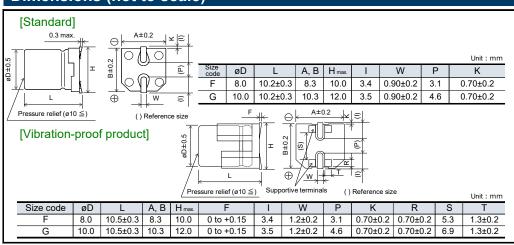
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZV series

High temperature lead-free reflow




Features

- Endurance: 4000 h at 125 °C / 135 °C
- Low ESR (up to 39 %, Lower ESR than Current ZT series)
- Higher ripple current (max 150 % of ZT series)
- ◆ AEC-Q200 compliant
- RoHS compliant

Specifications								
Size code	F		G					
Category temp. range		−55 °C to	5 +135 °C					
Rated voltage range		25 V 1	to 63 V					
Nominal cap.range	33 µF to 2	20 μF	56 μF to 330 μF					
Capacitance tolerance		±20 % (120	Hz / +20 ℃)					
Leakage current	I ≦ 0.01 CV (μA), 2 minutes	after reaching rated voltage	e, 20 ℃ *CV = (Capacitance in μF) x (Rated voltage in V)					
Dissipation factor (tan δ)		Please see the attacl	ned characteristics list					
Surge voltage (V)		Rated voltage × 1.	25 (15 ℃ to 35 ℃)					
			out exceeding the rated voltage					
	Capacitance change	Within ±30% of the initial	value					
	Dissipation factor (tan δ)	≤ 200 % of the initial limi	t					
Endurance 1	E.S.R.	≤ 200 % of the initial limi	t					
Lildurance i	Leakage current	Within the initial limit						
	ESR after endurance	Size code						
	(Ω / 100 kHz)(-40 °C)	F G						
	1 ' ' '	0.4 0.3						
		+135 °C ± 2 °C, 4000 h, apply the rated ripple current without exceeding the rated voltage						
	Capacitance change Within ±30% of the initial value							
	Dissipation factor (tan δ)	, =====						
Endurance 2	E.S.R.	≦ 200 % of the initial limit						
Endurance 2	Leakage current	Within the initial limit						
	ESR after endurance	Size code						
	(Ω / 100 kHz)(-40 ℃)	F G						
	'` '` '	0.4 0.3						
	After storage for 1000 hours at +135 °C ± 2 °C with no voltage applied and then being							
Shelf life	stabilized at +20 ℃, capacitors shall meet the limits specified in endurance.							
	(With voltage treatment)							
	85 ℃ ± 2 ℃, 85 % to 90 %RH,							
Damp heat	Capacitance change	Within ±30% of the initial						
(Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limi	-					
(====,	E.S.R.	≤ 200 % of the initial limit						
	Leakage current	Within the initial limit						
Resistance to	After reflow soldering and then following limits.	being stabilized at +20 °C,	capacitors shall meet the					
	Capacitance change	Within ±10% of the initial	value					
soldering heat	Dissipation factor (tan δ)	Within the initial limit						
	Leakage current	Within the initial limit						

Marking

♦ Part number system

e.g.: EEHZV1E221P

EEH

Product

classification

ΖV Series Code ZV ZV

(V) 25 35

1E Rated vol. Code*1 1E 1V 50 1H 63 1J

	22	21	
Capacitance (µF)	Code	Capacitance (µF)	Code
33	330	120	121
47	470	150	151
56	560	220	221
68	680	270	271
82	820	330	331
100	101		

Ρ Tape width Code (mm) 16 to 24 Р Vibration proof

Characteristics list

Endurance 1 : 125 ℃ 4000 h Endurance 2: 135 °C 4000 h

			Case size	9			Specif	ification		Part number		Min. packaging
Rated voltage (V)	Capacitance (±20 %) (µF)	øD	ı	_	Size code		current *1 rms)	*2		Standard	Vibration-proof	q'ty (pcs)
` ,	(/	55	Standard	Vibration -proof		Endurance 1	Endurance 2	(mΩ)	ESR^2 $(m\Omega)$ $\tan \delta^{*3}$	product	product	Taping
						(+125℃)	(+135℃)					
25	220	8.0	10.2	10.5	F	3900	2900	16	0.14	EEHZV1E221P	EEHZV1E221V	500
25	330	10.0	10.2	10.5	G	4600	3400	12	0.14	EEHZV1E331P	EEHZV1E331V	500
35	150	8.0	10.2	10.5	F	3900	2900	16	0.12	EEHZV1V151P	EEHZV1V151V	500
33	270	10.0	10.2	10.5	G	4600	3400	12	0.12	EEHZV1V271P	EEHZV1V271V	500
	68	8.0	10.2	10.5	F	3600	2500	19	0.10	EEHZV1H680P	EEHZV1H680V	500
50	100	10.0	10.2	10.5	G	4300	3200	14	0.10	EEHZV1H101P	EEHZV1H101V	500
	120	10.0	10.2	10.5	G	4300	3200	14	0.10	EEHZV1H121P	EEHZV1H121V	500
	33	8.0	10.2	10.5	F	3300	2300	22	0.08	EEHZV1J330P	EEHZV1J330V	500
	47	8.0	10.2	10.5	F	3300	2300	22	0.08	EEHZV1J470P	EEHZV1J470V	500
63	56	10.0	10.2	10.5	G	4000	3000	16	0.08	EEHZV1J560P	EEHZV1J560V	500
	68	10.0	10.2	10.5	G	4000	3000	16	0.08	EEHZV1J680P	EEHZV1J680V	500
	82	10.0	10.2	10.5	G	4000	3000	16	0.08	EEHZV1J820P	EEHZV1J820V	500

^{*1:} Ripple current (100 kHz / +125 °C or +135 °C)

[◆] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

Frequency corr	ection fac	tor for ripple cu	rrent		
Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≤ f < 500 Hz	500 Hz ≦ f < 1 kHz
C < 47 µF	0	0.10	0.10	0.15	0.20
47 μF ≦ C < 150 μF	Correction -	0.15	0.20	0.25	0.30
150 μF ≦ C	lactor	0.15	0.25	0.25	0.30
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz
C < 47 µF	Campatian	0.30	0.40	0.45	0.50
47 μF ≦ C < 150 μF	Correction -	0.40	0.45	0.55	0.60
150 μF ≦ C	lactor	0.45	0.50	0.60	0.65
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≤ f < 30 kHz	30 kHz ≤ f < 40 kHz
C < 47 µF	Camaatian	0.60	0.65	0.70	0.75
47 μF ≦ C < 150 μF	Correction -	0.70	0.75	0.80	0.80
150 µF ≦ C	lactor	0.75	0.80	0.85	0.85
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≤ f < 500 kHz	500 kHz ≦ f < 1000 kHz
C < 47 µF	0	0.80	0.85	1.00	1.05
47 μF ≦ C < 150 μF	Correction -	0.85	0.90	1.00	1.00
150 μF ≦ C	lactor	0.85	0.90	1.00	1.00

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[◆] Please refer to the page of "Reflow profile" and "The taping dimensions".

Panasonic

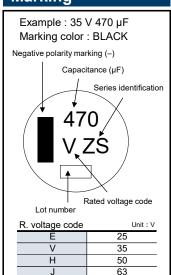
INDUSTRY

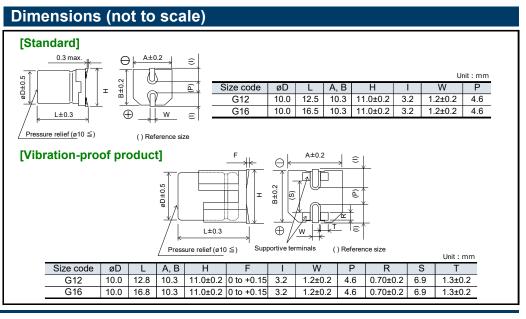
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZS series

High temperature lead-free reflow


Hybrid


Features

- Endurance: 4000 h at 135 °C
- High ripple current and High capacitance
- High-withstand voltage (to 63 V)
- Vibration-proof product is available upon request.
- AEC-Q200 compliant
- RoHS compliant

Specifications						
Size code	G12		G16			
Category temp. range		–55 ℃ to -	+135 ℃			
Rated voltage range		25 V to	63 V			
Nominal cap.range	100 µF to 4	170 μF	150 μF to 560 μF			
Capacitance tolerance		±20 % (120 H	lz / +20 ℃)			
Leakage current	I ≤ 0.01 CV (μA), 2 minutes		20 ℃ *CV = (Capacitance in µF) x (Rated voltage in V)			
Dissipation factor (tan δ)		Please see the attache				
Surge voltage (V)		Rated voltage × 1.25				
	+125 ℃ ± 2 ℃, 4000 h, apply t					
	Capacitance change	Within ±30% of the initial v	alue			
Endurance 1	Dissipation factor (tan δ)	≤ 200 % of the initial limit				
	E.S.R.	≤ 200 % of the initial limit				
	Leakage current	Within the initial limit				
	+135 $^{\circ}$ C ± 2 $^{\circ}$ C, 4000 h, apply the rated ripple current without exceeding the rated voltage.					
	Capacitance change	5				
Endurance 2	Dissipation factor (tan δ)	≤ 200 % of the initial limit				
	E.S.R.	≤ 200 % of the initial limit				
	Leakage current	Within the initial limit				
		+135 ℃ ± 2 ℃ with no voltage applied and then being				
Shelf life	stabilized at +20℃, capacitors shall meet the limits specified in endurance.					
	(With voltage treatment)					
	+85 °C ± 2 °C, 85 % to 90 %RF					
Damp heat	Capacitance change	Within ±30% of the initial v	alue			
(Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit				
(2000)	E.S.R.	≤ 200 % of the initial limit				
	Leakage current	Within the initial limit				
	After reflow soldering and then	being stabilized at +20℃, ca	apacitors shall meet the			
Resistance to	following limits.	1.00/ 511				
soldering heat	Capacitance change	Within ±10% of the initial v	alue			
22.2292	Dissipation factor (tan δ)	Within the initial limit				
	Leakage current	Within the initial limit				

Marking

ZS

♦ Part number system

e.g.: EEHZS1E471P

EEH

Product classification

Series Code

ZS ZS

1E

Rated vol. (V)	Code*1
25	1E
35	1V
50	1H
63	1J

471

	(µF)	Code
101	330	331
151	470	471
221	560	561
	151	101 330 151 470

Р

Tape width (mm)	Code
16 to 24	Р
Vibration proof	V

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Characteristics list

Endurance 1 : 125 ℃ 4000 h Endurance 2 : 135 ℃ 4000 h

			Case size	Э			Specif	fication		Part number		Min. packaging
Rated voltage	Capacitance (±20 %)		I	_	Size code	Ripple current *1 (mA rms)		ESR*2*3		Standard	Vibration-proof	q'ty (pcs)
(V)	(μF)	øD	Standard	Vibration -proof	0040	Endurance 1 (+125℃)	Endurance 2 (+135°C)	(mΩ)	tan δ ^{*3}	product	product	Taping
0.5	470	10.0	12.5	12.8	G12	3500	2500	14	0.14	EEHZS1E471P	EEHZS1E471V	400
25	560	10.0	16.5	16.8	G16	4000	2900	11	0.14	EEHZS1E561P	EEHZS1E561V	250
35	330	10.0	12.5	12.8	G12	3500	2500	14	0.12	EEHZS1V331P	EEHZS1V331V	400
33	470	10.0	16.5	16.8	G16	4000	2900	11	0.12	EEHZS1V471P	EEHZS1V471V	250
50	150	10.0	12.5	12.8	G12	3200	2250	17	0.10	EEHZS1H151P	EEHZS1H151V	400
50	220	10.0	16.5	16.8	G16	3700	2600	13	0.10	EEHZS1H221P	EEHZS1H221V	250
63	100	10.0	12.5	12.8	G12	3000	2100	19	0.08	EEHZS1J101P	EEHZS1J101V	400
03	150	10.0	16.5	16.8	G16	3500	2400	15	0.08	EEHZS1J151P	EEHZS1J151V	250

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz
100 μF ≤ C < 150 μF	Correction	0.15	0.20	0.25	0.30
150 µF ≦ C	factor	0.15	0.25	0.25	0.30
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz
100 μF ≦ C < 150 μF	Correction	0.40	0.45	0.55	0.60
150 µF ≦ C	factor	0.45	0.50	0.60	0.65
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz
100 μF ≦ C < 150 μF	Correction	0.70	0.75	0.80	0.80
150 µF ≦ C	factor	0.75	0.80	0.85	0.85
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f
100 μF ≦ C < 150 μF	Correction	0.85	0.90	1.00	1.00
150 μF ≦ C	factor	0.85	0.90	1.00	1.00

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

[♦] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

Panasonic

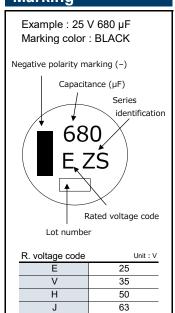
INDUSTRY

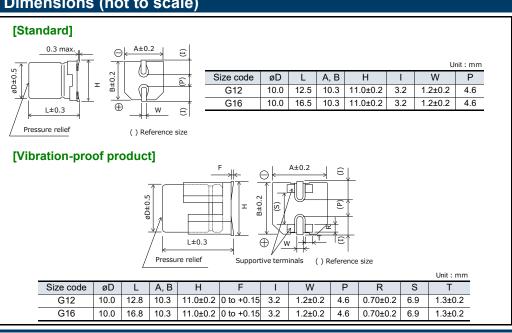
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZSU series

High temperature lead-free reflow


Hybrid


Features

- Endurance: 4000 h at 125 °C
- Large capacitance compared with ZS series
- Vibration-proof product is available upon request.
- AEC-Q200 compliant
- RoHS compliant

Specifications							
Size code	G12			G16			
Category temp. range		-55	5 ℃ to +125 ℃				
Rated voltage range		:	25 V to 63 V				
Nominal cap.range	120 μF to 6	80 μF		180 μF to 1000 μF			
Capacitance tolerance		±20 %	(120 Hz / +20 ℃)				
Leakage current	I ≤ 0.01 CV (μA), 2 minutes			(Capacitance in µF) x (Rated voltage in V)			
Dissipation factor (tan δ)		Please see the	attached characteri	stics list			
Surge voltage (V)			e × 1.25 (15 ℃ to 3				
	+125 ℃ ± 2 ℃, 4000 h, apply t			the rated voltage.			
	Capacitance change	Within ±30% of the	initial value				
	Dissipation factor (tan δ)		≦ 200 % of the initial limit				
Endurance	E.S.R.	≦ 200 % of the initial limit					
Endurance	Leakage current	Within the initial limit					
	ESR after endurance	Size code					
	(Ω / 100 kHz)(-40 °C)	G12	G16				
	, , , , , , , , , , , , , , , , , , , ,	0.3	0.3				
	After storage for 1000 hours at						
Shelf life	stabilized at +20℃, capacitors	shall meet the limits	specified in endurar	ice.			
	(With voltage treatment)						
	+85 ℃ ± 2 ℃, 85 % to 90 %RF						
Damp heat	Capacitance change	Within ±30% of the					
(Load)	Dissipation factor (tan δ)	≤ 200 % of the initia					
,	E.S.R.	≤ 200 % of the initia					
	Leakage current	Within the initial limit					
	After reflow soldering and then	being stabilized at +2	20°C, capacitors sha	all meet the			
Resistance to	following limits.	Within ±10% of the	initial calca				
soldering heat	Capacitance change						
· ·	Dissipation factor (tan δ)	Within the initial lim					
	Leakage current	Within the initial lim	IT				

Marking

♦ Part number system

e.g.: EEHZS1E681UP

EEH Product

classification

Z	S
Series	Code
ZS	ZS
·	

1E	
Rated vol. (V)	Code*1
25	1E
35	1V
50	1H
63	1J

681										
Capacitance (µF)	Code	Capacitance (µF)	Code							
120	121	470	471							
180	181	680	681							
270	271	1000	102							

	U	
Dia ø[_	Code
Min turiz prod	ed	U
turiz	ed	U

P	
Tape width (mm)	Code
16 to 24	Р
Vibration proof	V

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Characteristics list

Endurance : 125 ℃ 4000 h

Rated voltage (V)		Case size (mm)			Specification			Part n	Min.packaging q'ty (pcs)		
	Capacitance (±20 %) (µF)	øD	Standard	Vibration -proof	Size code	Ripple current ^{*1} (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Standard product	Vibration-proof product	Taping
	680	10.0	12.5	12.8	G12	3500	14	0.14	EEHZS1E681UP	EEHZS1E681UV	400
25	1000	10.0	16.5	16.8	G16	4000	11	0.14	EEHZS1E102UP	EEHZS1E102UV	250
35	470	10.0	12.5	12.8	G12	3500	14	0.12	EEHZS1V471UP	EEHZS1V471UV	400
33	680	10.0	16.5	16.8	G16	4000	11	0.12	EEHZS1V681UP	EEHZS1V681UV	250
50	180	10.0	12.5	12.8	G12	3200	17	0.10	EEHZS1H181UP	EEHZS1H181UV	400
30	270	10.0	16.5	16.8	G16	3700	13	0.10	EEHZS1H271UP	EEHZS1H271UV	250
63	120	10.0	12.5	12.8	G12	3000	19	0.08	EEHZS1J121UP	EEHZS1J121UV	400
	180	10.0	16.5	16.8	G16	3500	15	0.08	EEHZS1J181UP	EEHZS1J181UV	250

^{*1:} Ripple current (100 kHz / +125 $^{\circ}$ C)

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 120 Hz	120 Hz ≦ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≦ f < 500 Hz
120 μF ≦ C	Correction factor	0.15	0.20	0.25	0.30
Rated capacitance (C)	Frequency (f)	500 Hz ≦ f < 1 kHz	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz
120 μF ≦ C	Correction factor	0.40	0.50	0.60	0.65
Rated capacitance (C)	Frequency (f)	5 kHz ≦ f < 10 kHz	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz
120 μF ≦ C	Correction factor	0.70	0.75	0.80	0.85
Rated capacitance (C)	Frequency (f)	30 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f < 1000 kHz
120 µF ≦ C	Correction factor	0.85	0.90	1.00	1.00

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

[♦] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

Panasonic

INDUSTRY

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZU series

High temperature lead-free reflow

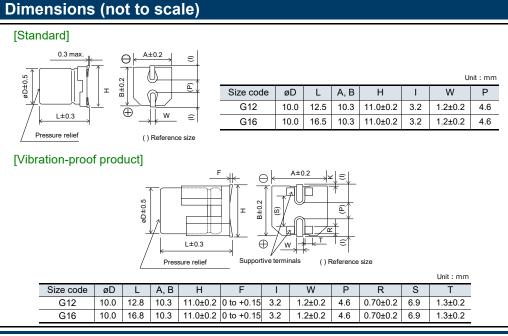
Hybrid

Features

- Endurance: 4000 h at 135 °C
- High ripple current compared with ZS series
- Vibration-proof product is available upon request.
- AEC-Q200 compliant
- RoHS compliant

Specifications							
Size code	G12		G16				
Category temp. range		–55 ℃ to	o +135 ℃				
Rated voltage range		25 V t	to 63 V				
Nominal cap.range	100 µF to 4	470 μF	150 μF to 560 μF				
Capacitance tolerance			Hz / +20 ℃)				
Leakage current	I ≤ 0.01 CV (μA), 2 minutes		e, 20 ℃ *CV = (Capacitance in μF) x (Rated voltage in V)				
Dissipation factor (tan δ)		Please see the attacl	ned characteristics list				
Surge voltage (V)			25 (15 ℃ to 35 ℃)				
			out exceeding the rated voltage				
	Capacitance change	Within ±30% of the initial					
Endurance 1	Dissipation factor (tan δ)	≤ 200 % of the initial limi					
	E.S.R.	≤ 200 % of the initial limit					
	Leakage current						
	+135 ℃ ± 2 ℃, 4000 h, apply the rated ripple current without exceeding the rated voltage						
	Capacitance change Within ±30% of the initial value						
Endurance 2	Dissipation factor (tan δ)						
	E.S.R.	≤ 200 % of the initial limit					
	Leakage current	Within the initial limit					
	After storage for 1000 hours at +135 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being						
Shelf life	stabilized at +20 ℃, capacitors shall meet the limits specified in endurance 2.						
	(With voltage treatment)	0000	P. J				
	85 °C ± 2 °C, 85 % to 90 %RH,	Within ±30% of the initial					
Damp heat	Capacitance change						
(Load)	Dissipation factor (tan δ) E.S.R.	≤ 200 % of the initial limit					
,	=:=:::::	≤ 200 % of the initial limit	T .				
	Leakage current	Within the initial limit	and the state of t				
	After reflow soldering and then	being stabilized at +20 C,	capacitors snail meet the				
Resistance to	following limits.	Within ±10% of the initial	velue				
soldering heat	Capacitance change	Within ±10% of the initial Within the initial	value				
ŭ	Dissipation factor (tan δ)						
	Leakage current	Within the initial limit					

Marking


Example: 25 V 470 µF Marking color : BLACK Negative polarity marking (-) Capacitance (µF) Series identification 470 Rated voltage code Lot number R. voltage code

V

Н

25 35

63

♦ Part number system

e.g.: EEHZU1E471P

EEH

Product

ZU Series Code classification ZU ZU

	1E	
	d vol. V)	Code*1
2	25	1E
3	55	1V
5	0	1H
6	3	1J

471									
Capacitance (µF)	Code	Capacitance (µF)	Code						
100	101	330	331						
150	151	470	471						
220	221	560	561						

Code
Р
V

В

Characteristics list

Endurance 1 : 125 ℃ 4000 h Endurance 2 : 135 ℃ 4000 h

		Case size (mm)				Specification			Part n	Min. packaging		
Rated voltage	Capacitance (±20 %)		I	L			Ripple current *1 (mA rms)			Standard	Vibration-proof	q'ty (pcs)
(V)	(µF)	øD		Vibration	code	`	,	ESR ^{*2} (mΩ)	tan δ ^{*3}	product	product	
			Standard	-proof		Endurance 1	Endurance 2	,		p	'	Taping
						(+125℃)	(+135℃)					
25	470	10.0	12.5	12.8	G12	5000	3500	10	0.14	EEHZU1E471P	EEHZU1E471V	400
25	560	10.0	16.5	16.8	G16	5800	4000	8	0.14	EEHZU1E561P	EEHZU1E561V	250
35	330	10.0	12.5	12.8	G12	4800	3300	11	0.12	EEHZU1V331P	EEHZU1V331V	400
33	470	10.0	16.5	16.8	G16	5500	3800	9	0.12	EEHZU1V471P	EEHZU1V471V	250
50	150	10.0	12.5	12.8	G12	4600	3200	12	0.10	EEHZU1H151P	EEHZU1H151V	400
50	220	10.0	16.5	16.8	G16	5200	3600	10	0.10	EEHZU1H221P	EEHZU1H221V	250
63	100	10.0	12.5	12.8	G12	4600	3200	12	0.08	EEHZU1J101P	EEHZU1J101V	400
	150	10.0	16.5	16.8	G16	5200	3600	10	0.08	EEHZU1J151P	EEHZU1J151V	250

^{*1:} Ripple current (100 kHz / +125 °C or + 135 °C)

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz	500 Hz ≦ f < 1 kHz
100 μF \leq C < 150 μF	Correction	0.15	0.20	0.25	0.30
150 µF ≦ C	factor	0.15	0.25	0.25	0.30
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz
100 μF ≦ C < 150 μF	Correction	0.40	0.45	0.55	0.60
150 µF ≦ C	factor	0.45	0.50	0.60	0.65
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz
100 μF ≦ C < 150 μF	Correction	0.70	0.75	0.80	0.80
150 µF ≦ C	factor	0.75	0.80	0.85	0.85
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f
100 μF ≦ C < 150 μF	Correction	0.85	0.90	1.00	1.00
150 μF ≦ C	factor	0.85	0.90	1.00	1.00

After endurance ESR (100 kHz, -40°C)

Size code	G12	G16
ESR (Ω)	0.3	0.3

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

[♦] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

INDUSTRY

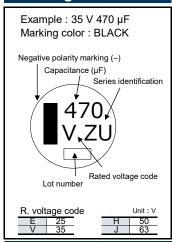
Hybrid

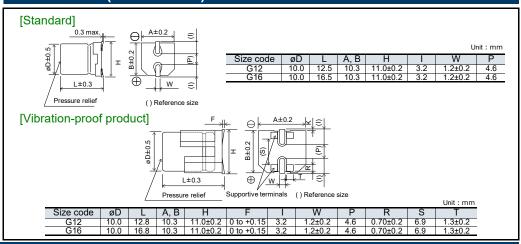
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZUU series

High temperature lead-free reflow




Features

- Endurance: 4000 h at 125 °C / 135 °C
- Higher ripple current (max 160 % of ZS series)
- Larger capacitance (max 180 % of ZU series)
- AEC-Q200 compliant
- RoHS compliant

Specifications								
Size code	G12		G16					
Category temp. range		−55 °C to) +135 °C					
Rated voltage range			o 63 V					
Nominal cap.range	120 μF to 6	80 μF	180 μF to 1000 μF					
Capacitance tolerance		±20 % (120	Hz / +20 ℃)					
Leakage current	I ≤ 0.01 CV (μA), 2 minutes		, 20 °C *CV = (Capacitance in μF) x (Rated voltage in V)					
Dissipation factor (tan δ)		Please see the attach	ned characteristics list					
Surge voltage (V)		Rated voltage × 1.:						
			out exceeding the rated voltage					
	Capacitance change	Within ±30% of the initial						
	Dissipation factor (tan δ)	≤ 200 % of the initial limit						
Endurance 1	E.S.R.	≤ 200 % of the initial limit	t					
Endurance	Leakage current	Within the initial limit						
	ESR after endurance	Size code						
	(Ω / 100 kHz)(-40 °C)	G12 G16						
	, , ,	0.3 0.3						
	+135 $^{\circ}$ C ± 2 $^{\circ}$ C, 4000 h, apply the rated ripple current without exceeding the rated voltage.							
	Capacitance change Within ±30% of the initial value							
	Dissipation factor (tan δ) $\leq 200 \%$ of the initial limit							
Endurance 2	E.S.R.	≤ 200 % of the initial limit	t					
	Leakage current	Within the initial limit						
	ESR after endurance	Size code G12 G16						
	(Ω / 100 kHz)(-40 °C)	G12 G16 0.3 0.3						
	After storage for 1000 hours at		tage applied and then being					
Shelf life								
Shell lile	stabilized at +20 °C, capacitors shall meet the limits specified in endurance.							
		(With voltage treatment) 85 ℃ ± 2 ℃, 85 % to 90 %RH, 2000 h, rated voltage applied						
	Capacitance change	Within ±30% of the initial	value					
Damp heat	Dissipation factor (tan δ)	≤ 200 % of the initial limit						
(Load)	E.S.R.	≤ 200 % of the initial limit	=					
	Leakage current	Within the initial limit	·					
	After reflow soldering and then		capacitors shall meet the					
Desistance to	following limits.	5	,					
Resistance to	Capacitance change	Within ±10% of the initial	value					
soldering heat	Dissipation factor (tan δ)	Within the initial limit						
	Leakage current	Within the initial limit						

Marking

ZU

♦ Part number system

e.g.: EEHZU1E681UP

EEH

Product Series Code classification ZU ZU

1E

Rated vol. (V)	Code ^{*1}
25	1E
35	1V
50	1H
63	1J

681

00	•
Capacitance (µF)	Code
120	121
180	181
270	271
470	471
680	681
1000	102

U Dia Code øD Miniaturized U

product

Tape width Code (mm) 16 to 24 Р Vibration proof

Characteristics list

Endurance 1: 125 °C 4000 h Endurance 2: 135 °C 4000 h

		Case size (mm)				Specification				Part n	Min. packaging	
Rated voltage	Capacitance (±20 %)	øD	ı		Size		Ripple current *1 (mA rms)		_*3	Standard	Vibration-proof	q'ty (pcs)
(*)	(V) (µF)		Standard	Vibration -proof		Endurance 1 (+125℃)	Endurance 2 (+135℃)	(mΩ)	tan δ ^{*3}	product	product	Taping
25	680	10.0	12.5	12.8	G12	5300	3700	10	0.14	EEHZU1E681UP	EEHZU1E681UV	400
25	1000	10.0	16.5	16.8	G16	6100	4300	8	0.14	EEHZU1E102UP	EEHZU1E102UV	250
35	470	10.0	12.5	12.8	G12	5000	3500	11	0.12	EEHZU1V471UP	EEHZU1V471UV	400
33	680	10.0	16.5	16.8	G16	5800	4100	9	0.12	EEHZU1V681UP	EEHZU1V681UV	250
50	180	10.0	12.5	12.8	G12	4800	3400	12	0.10	EEHZU1H181UP	EEHZU1H181UV	400
50	270	10.0	16.5	16.8	G16	5500	3800	10	0.10	EEHZU1H271UP	EEHZU1H271UV	250
63	120	10.0	12.5	12.8	G12	4800	3400	12	0.08	EEHZU1J121UP	EEHZU1J121UV	400
- 03	180	10.0	16.5	16.8	G16	5500	3800	10	0.08	EEHZU1J181UP	EEHZU1J181UV	250

^{*1:} Ripple current (100 kHz / +125 $^{\circ}$ C or +135 $^{\circ}$ C)

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz	
120 μF ≦ C < 150 μF	Correction	0.15	0.20	0.25	0.30	
150 µF ≦ C	factor	0.15	0.25	0.25	0.30	
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz	
120 μF ≦ C < 150 μF	Correction	0.40	0.45	0.55	0.60	
150 µF ≦ C	factor	0.45	0.50	0.60	0.65	
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz	
120 μF ≦ C < 150 μF	Correction	0.70	0.75	0.80	0.80	
150 µF ≦ C	factor	0.75	0.80	0.85	0.85	
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f < 1000 kHz	
120 μF ≦ C < 150 μF	Correction	0.85	0.90	1.00	1.00	
150 µF ≦ C	factor	0.85	0.90	1.00	1.00	

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

[◆] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

Panasonic

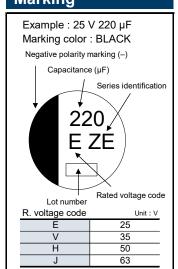
INDUSTRY

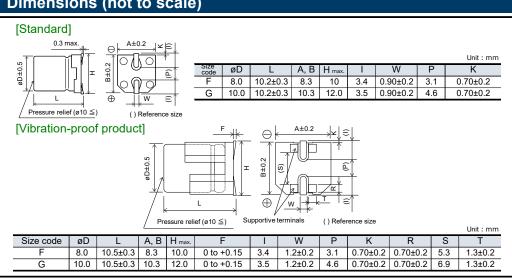
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZE series

High temperature lead-free reflow


Hybrid


Features

- Endurance: 2000 h at 145 °C (High temperature / Long life)
- Low ESR and high ripple current
- High-withstand voltage (to 63 V)
- Characteristics dependencies in frequency and low temperature are as small as polymer type
- Vibration-proof product is available upon request
- AEC-Q200 compliant
- RoHS compliant

Specifications								
Size code	F	G						
Category temp. range		–55 ℃ to +145 ℃						
Rated voltage range		25 V to 63 V						
Nominal cap.range	33 µF to 2	220 μF 56 μF to 330 μF						
Capacitance tolerance	±20 % (120 Hz / +20 ℃)							
Leakage current	I ≤ 0.01 CV (μA), 2 minutes	s after reaching rated voltage, 20 ℃ *CV = (Capacitance in µF) x (Rated voltage in V)						
Dissipation factor (tan δ)		Please see the attached characteristics list						
Surge voltage (V)		Rated voltage × 1.25 (15 ℃ to 35 ℃)						
	+145 ℃ ± 2 ℃, 2000 h, apply	+145 °C ± 2 °C, 2000 h, apply the rated ripple current without exceeding the rated voltage						
	Capacitance change	Within ±30% of the initial value						
Endurance 1	Dissipation factor (tan δ)	≤ 200 % of the initial limit						
	E.S.R.	≤ 200 % of the initial limit						
	Leakage current	Within the initial limit						
	+135 ℃ ± 2 ℃, 4000 h, apply the rated ripple current without exceeding the rated voltage							
	Capacitance change	ye Within ±30% of the initial value						
Endurance 2	Dissipation factor (tan δ)	≤ 200 % of the initial limit						
	E.S.R.	≤ 200 % of the initial limit						
	Leakage current	Within the initial limit						
	After storage for 1000 hours a	t +145 ℃ ± 2 ℃ with no voltage applied and then being						
Shelf life	stabilized at +20 ℃, capacitors shall meet the limits specified in endurance 1.							
	(With voltage treatment)							
	85 ℃ ± 2 ℃, 85 % to 90 %RH	l, 2000 h, rated voltage applied						
Damp heat	Capacitance change	Within ±30% of the initial value						
(Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit						
(Loau)	E.S.R.	≤ 200 % of the initial limit						
	Leakage current	Within the initial limit						
		n being stabilized at +20 ℃, capacitors shall meet the						
Resistance to	following limits.							
soldering heat	Capacitance change	Within ±10% of the initial value						
Solucing near	Dissipation factor (tan δ)	Within the initial limit						
	Leakage current	Within the initial limit						

Marking

♦ Part number system

e.g.: EEHZE1E221P

EEH

Product classification

1	E
Rated vol. (V)	Code*
25	1E
35	1V
50	1H
63	11

_			22	21	
С	apacitance (µF)	C	ode	Capac (µ	
	33	``	330	15	50
	56	;	560	22	20
	68	(380	27	70
	82		320	33	30
	100		101		

Р	
Tape width (mm)	Code
16 to 24	Р
Vibration proof	V

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Code

151

221

271

331

Characteristics list

Endurance 1 : 145 ℃ 2000 h Endurance 2 : 135 ℃ 4000 h

		Case size (mm)				Specification				Part n	Min. packaging	
Rated voltage	Capacitance (±20 %)		I	L			Ripple current *1 (mA rms)			Standard	Vibration-proof	q'ty (pcs)
(V)	(µF)	øD	Standard	Vibration	code	Endurance 1	Endurance 2	ESR ^{*2} (mΩ)	tan δ ^{*3}	product	product	Taping
			Standard	-proof		(+145°C)	(+135°C)					Гаріпу
25	220	8.0	10.2	10.5	F	700	1600	27	0.14	EEHZE1E221P	EEHZE1E221V	500
23	330	10.0	10.2	10.5	G	900	2000	20	0.14	EEHZE1E331P	EEHZE1E331V	500
35	150	8.0	10.2	10.5	F	700	1600	27	0.12	EEHZE1V151P	EEHZE1V151V	500
33	270	10.0	10.2	10.5	G	900	2000	20	0.12	EEHZE1V271P	EEHZE1V271V	500
50	68	8.0	10.2	10.5	F	600	1250	30	0.10	EEHZE1H680P	EEHZE1H680V	500
50	100	10.0	10.2	10.5	G	800	1600	28	0.10	EEHZE1H101P	EEHZE1H101V	500
	33	8.0	10.2	10.5	F	600	1100	40	0.08	EEHZE1J330P	EEHZE1J330V	500
63	56	10.0	10.2	10.5	G	800	1400	30	0.08	EEHZE1J560P	EEHZE1J560V	500
	82	10.0	10.2	10.5	G	800	1400	30	0.08	EEHZE1J820P	EEHZE1J820V	500

^{*1:} Ripple current (100 kHz / +145 °C or + 135°C)

[♦] The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

Frequency correction factor for ripple current										
Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz					
C < 47 µF	Correction	0.10	0.10	0.15	0.20					
47 μF ≦ C < 150 μF	factor	0.15	0.20	0.25	0.30					
150 μF ≦ C	iacioi	0.15	0.25	0.25	0.30					

Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz
C < 47 µF	Correction	0.30	0.40	0.45	0.50
47 μF ≦ C < 150 μF	factor	0.40	0.45	0.55	0.60
150 μF ≦ C	iacioi	0.45	0.50	0.60	0.65

Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≤ f < 30 kHz	30 kHz ≦ f < 40 kHz
C < 47 µF	Correction	0.60	0.65	0.70	0.75
47 μF ≦ C < 150 μF		0.70	0.75	0.80	0.80
150 µF ≦ C	factor	0.75	0.80	0.85	0.85

Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f
C < 47 µF	Correction	0.80	0.85	1.00	1.05
47 μF ≦ C < 150 μF	factor	0.85	0.90	1.00	1.00
150 μF ≦ C	lacioi	0.85	0.90	1.00	1.00

After endurance ESR (100 kHz, -40°C)

Size code	F	G
ESR (Ω)	0.4	0.3

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Reflow profile" and "The taping dimensions".

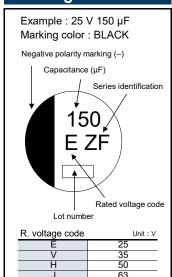
INDUSTRY

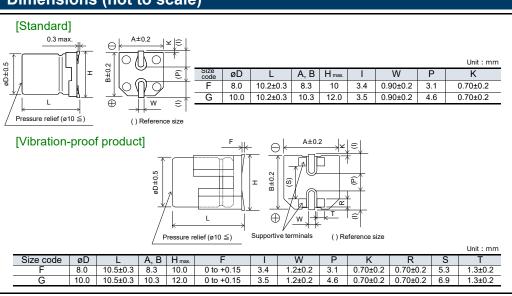
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Surface Mount Type

ZF series

High temperature lead-free reflow


Hybrid


Features

- Endurance : 1000 h at 150 °C (High temperature)
- Low ESR and high ripple current
- High-withstand voltage (to 63 V)
- Vibration-proof product is available upon request
- AEC-Q200 compliant
- RoHS compliant

Specifications					
Size code	F	G			
Category temp. range		–55 ℃ to +150 ℃			
Rated voltage range		25 V to 63 V			
Nominal cap.range	33 µF to 1	150 μF 56 μF to 270 μF			
Capacitance tolerance		±20 % (120 Hz / +20℃)			
Leakage current	I ≤ 0.01 CV (μA), 2 minutes	s after reaching rated voltage, 20 ℃ *CV = (Capacitance in µF) x (Rated voltage in V)			
Dissipation factor (tan δ)		Please see the attached characteristics list			
Surge voltage (V)		Rated voltage × 1.25 (15 ℃ to 35 ℃)			
		the rated ripple current without exceeding the rated voltage.			
	Capacitance change	Within ±30% of the initial value			
	Dissipation factor (tan δ)	≤ 200 % of the initial limit			
Endurance	ESR ≤ 200 % of the initial limit				
	Leakage current	Within the initial limit			
	ESR after endurance	Size code			
	(Ω / 100 kHz)(-40 °C)	F G			
	, , , , , , , , , , , , , , , , , , , ,	0.4 0.3			
	After storage for 1000 hours at +150 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being				
Shelf life		rs shall meet the limits specified in endurance.			
	(With voltage treatment)				
		H, 2000 h, rated voltage applied			
5 1 (4 1)	Capacitance change	Within ±30% of the initial value			
Damp heat (Load)	Dissipation factor (tan δ) FSR	≤ 200 % of the initial limit			
		≦ 200 % of the initial limit			
	Leakage current	Within the initial limit			
		n being stabilized at +20 ℃, capacitors shall meet the			
Resistance to	following limits.	Within ±10% of the initial value			
soldering heat	Capacitance change				
· ·	Dissipation factor (tan δ)	Within the initial limit			
	Leakage current	Within the initial limit			

Marking

♦ Part number system

e.g.: EEHZF1E151P

EEH

Product classification

1	E
Rated vol. (V)	Code*1
25	1E
35	1V
50	1H
63	1J

	1	51	
Capacitance (µF)	Code	Capacitance (µF)	Со
33	330	150	15

270

560

101

56

100

P	
Tape width (mm)	Code
16 to 24	Р
Vibration proof	V
proof	•

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Characteristics list

Endurance : 150 ℃ 1000 h

			Case size	Э	Specification			n	Part n	Min.packaging q'ty (pcs)	
Rated voltage	Capacitance (±20 %)		I	L	Size	Ripple	ESR*2	*2	Standard	Vibration-proof	
(V)	(μF)	øD	Standard	Vibration -proof		current (mA rms) ESR^2 (m Ω) $tan \delta^{*3}$	product	product	Taping		
25	150	8.0	10.2	10.5	F	800	27	0.14	EEHZF1E151P	EEHZF1E151V	500
25	270	10.0	10.2	10.5	G	1000	20	0.14	EEHZF1E271P	EEHZF1E271V	500
35	100	8.0	10.2	10.5	F	770	30	0.12	EEHZF1V101P	EEHZF1V101V	500
33	150	10.0	10.2	10.5	G	950	23	0.12	EEHZF1V151P	EEHZF1V151V	500
50	56	8.0	10.2	10.5	F	700	35	0.10	EEHZF1H560P	EEHZF1H560V	500
50	100	10.0	10.2	10.5	G	900	28	0.10	EEHZF1H101P	EEHZF1H101V	500
63	33	8.0	10.2	10.5	F	650	40	0.08	EEHZF1J330P	EEHZF1J330V	500
03	56	10.0	10.2	10.5	G	840	30	0.08	EEHZF1J560P	EEHZF1J560V	500

^{*1:} Ripple current (100 kHz / +150 ℃)

*2: ESR (100 kHz / +20 ℃)

*3: tan δ (120 Hz / +20 ℃)

- ♦ Please refer to the page of "Reflow profile" and "The taping dimensions".
- ◆ The dimensions of the vibration-proof products, please refer to the page of the mounting specification.

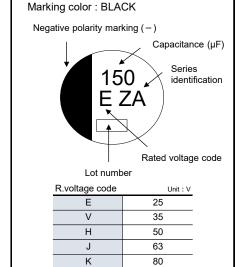
	4 = 1	- 4	, .	4
Frequency				

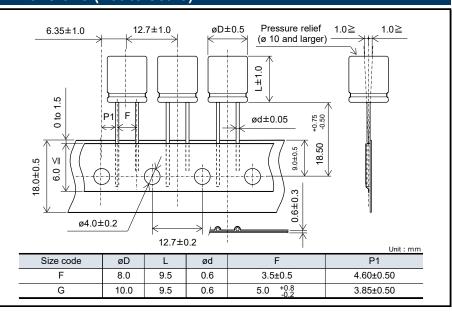
Frequency correction factor for rippie current					
Rated capacitance (C)	Frequency (f)	100 Hz ≤ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz	500 Hz ≤ f < 1 kHz
C < 47 μF		0.10	0.10	0.15	0.20
47 μF ≦ C < 150 μF	Correction factor	0.15	0.20	0.25	0.30
150 µF ≦ C	lactor	0.15	0.25	0.25	0.30
	1				
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≤ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz
C < 47 µF		0.30	0.40	0.45	0.50
47 μF ≦ C < 150 μF	Correction factor	0.40	0.45	0.55	0.60
150 µF ≦ C	lactor	0.45	0.50	0.60	0.65
			1	1	1
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz
C < 47 µF		0.60	0.65	0.70	0.75
47 μF ≦ C < 150 μF	Correction factor	0.70	0.75	0.80	0.80
150 µF ≦ C	140101	0.75	0.80	0.85	0.85
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f
C < 47 μF		0.80	0.85	1.00	1.05
47 μF ≦ C < 150 μF	Correction factor	0.85	0.90	1.00	1.00
150 μF ≦ C	140101	0.85	0.90	1.00	1.00

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Radial Lead Type

ZA-A series


Features


- Endurance : 10000 h at 105 °C (105 °C standard product)
- Taping products for automatic insertion
- AEC-Q200 compliant
- RoHS compliant

Specifications					
Size code	F	G			
Category temp. range		–55 ℃ to +105 ℃			
Rated voltage range		25 V to 80 V			
Nominal cap.range	22 µF to 2	20 μF 33 μF to 330 μF			
Capacitance tolerance		±20 % (120 Hz / +20℃)			
Leakage current	I ≤ 0.01 CV (μA), 2 minutes	s after reaching rated voltage, 20 $^{\circ}$ C * CV = (Capacitance in μ F) x (Rated voltage in V)			
Dissipation factor (tan δ)		Please see the attached characteristics list			
Surge voltage (V)		Rated voltage × 1.25 (15 ℃ to 35 ℃)			
		the rated ripple current without exceeding the rated voltage.			
	Capacitance change	Within ±30% of the initial value			
	Dissipation factor (tan δ)	≤ 200 % of the initial limit			
Endurance	ESR ≤ 200 % of the initial limit				
Lituatance	Leakage current	Within the initial limit			
	ESR after endurance	Size code			
	(Ω / 100 kHz)(-40 °C)	F G			
		0.4 0.3			
	After storage for 1000 hours at +105 ℃ ± 2 ℃ with no voltage applied and then being				
Shelf life		s shall meet the limits specified in endurance.			
	(With voltage treatment)				
		⊣, 2000 h, rated voltage applied			
	Capacitance change	Within ±30% of the initial value			
Damp heat (Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit			
	ESR	≤ 200 % of the initial limit			
	Leakage current	Within the initial limit			
		eing stabilized at +20 ℃, capacitors shall meet the			
Resistance to	following limits.	Transit transi			
soldering heat	Capacitance change	Within ±10% of the initial value			
	Dissipation factor (tan δ)	Within the initial limit			
	Leakage current	Within the initial limit			

Marking

Example: 25 V 150 µF

♦ Part number system

e.g.: EEHAZA1E151B

EEHA

Product classification

ZA					
Series	Code				
ZA	ZA				

1E

Rated vol. (V)	Code ^{*1}
25	1E
35	1V
50	1H
63	1J
80	1K

151

Capacitance (µF)	Code	Capacitance (µF)	Code
22	220	82	820
33	330	100	101
47	470	150	151
56	560	220	221
68	680	330	331

В Lead Code space (mm) 3.5, 5.0 В

Characteristics list

Endurance : 105 ℃ 10000 h

			Case size	9		SI	pecification			Min.packaging q'ty (pcs)
Rated voltage (V)	Capacitance (±20 %) (μF)	øD	L	ød	Size code	Ripple current *1 (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Part number	Taping
	150	8.0	9.5	0.6	F	2300	27	0.14	EEHAZA1E151B	1000
25	220	8.0	9.5	0.6	F	2300	27	0.14	EEHAZA1E221B	1000
	330	10.0	9.5	0.6	G	2500	20	0.14	EEHAZA1E331B	500
	100	8.0	9.5	0.6	F	2300	27	0.12	EEHAZA1V101B	1000
35	150	8.0	9.5	0.6	F	2300	27	0.12	EEHAZA1V151B	1000
33	220	10.0	9.5	0.6	G	2500	20	0.12	EEHAZA1V221B	500
	270	10.0	9.5	0.6	G	2500	20	0.12	EEHAZA1V271B	500
	47	8.0	9.5	0.6	F	1800	30	0.10	EEHAZA1H470B	1000
50	68	8.0	9.5	0.6	F	1800	30	0.10	EEHAZA1H680B	1000
	100	10.0	9.5	0.6	G	2000	28	0.10	EEHAZA1H101B	500
	33	8.0	9.5	0.6	F	1700	40	0.08	EEHAZA1J330B	1000
	47	8.0	9.5	0.6	F	1700	40	0.08	EEHAZA1J470B	1000
63	56	10.0	9.5	0.6	G	1800	30	0.08	EEHAZA1J560B	500
	68	10.0	9.5	0.6	G	1800	30	0.08	EEHAZA1J680B	500
	82	10.0	9.5	0.6	G	1800	30	0.08	EEHAZA1J820B	500
	22	8.0	9.5	0.6	F	1550	45	0.08	EEHAZA1K220B	1000
80	33	10.0	9.5	0.6	G	1700	36	0.08	EEHAZA1K330B	500
	47	10.0	9.5	0.6	G	1700	36	0.08	EEHAZA1K470B	500

^{*1:} Ripple current (100 kHz / +105 °C)

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz	500 Hz ≤ f < 1 kHz
C < 47 µF	Correction	0.10	0.10	0.15	0.20
47 μF ≦ C < 150 μF	factor	0.15	0.20	0.25	0.30
150 μF ≦ C	lacioi	0.15	0.25	0.25	0.30
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	$3 \text{ kHz} \leq f < 5 \text{ kHz}$	5 kHz ≦ f < 10 kHz
C < 47 µF	Correction	0.30	0.40	0.45	0.50
47 μF ≦ C < 150 μF	factor	0.40	0.45	0.55	0.60
150 μF ≦ C	lacioi	0.45	0.50	0.60	0.65
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≤ f < 30 kHz	30 kHz ≦ f < 40 kHz
C < 47 µF	Correction	0.60	0.65	0.70	0.75
47 μF ≦ C < 150 μF	factor	0.70	0.75	0.80	0.80
150 μF ≦ C	lactor	0.75	0.80	0.85	0.85
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≤ f < 1000 kHz
C < 47 µF	Correction	0.80	0.85	1.00	1.05
47 μF ≦ C < 150 μF	factor	0.85	0.90	1.00	1.00
150 μF ≦ C	iacioi	0.85	0.90	1.00	1.00

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{*2:} ESR (100 kHz / +20 ℃)

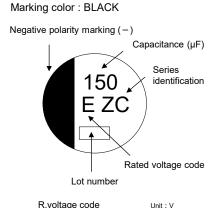
^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Flow soldering profile" and "The taping dimensions".

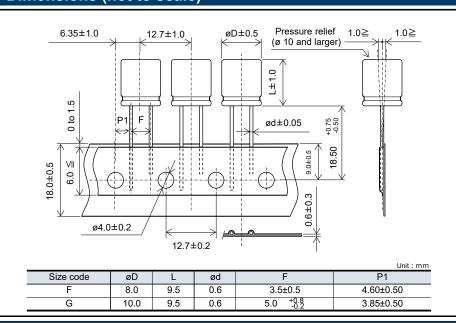
Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Radial Lead Type

ZC-A series



Features


- Endurance : 4000 h at 125 °C (125 °C standard product)
- Taping products for automatic insertion
- AEC-Q200 compliant
- RoHS compliant

Specifications						
Specifications	_					
Size code	F		G			
Category temp. range		–55 ℃ to				
Rated voltage range		25 V to				
Nominal cap.range	22 µF to 2		33 μF to 330 μF			
Capacitance tolerance		±20 % (120	Hz / +20℃)			
Leakage current	I ≦ 0.01 CV (μA), 2 minutes	s after reaching rated voltage,	, 20 °C *CV = (Capacitance in μ F) x (Rated voltage in V)			
Dissipation factor (tan δ)		Please see the attach	ed characteristics list			
Surge voltage (V)		Rated voltage × 1.2	25 (15 ℃ to 35 ℃)			
	+125 °C ± 2 °C, 4000 h, apply	the rated ripple current with	out exceeding the rated voltage.			
	Capacitance change	Within ±30% of the initial				
Endurance 1	Dissipation factor (tan δ)	≤ 200 % of the initial limit				
	ESR	≤ 200 % of the initial limit				
	Leakage current	Within the initial limit				
	+125 ℃ ± 2 ℃, 3000 h, apply the rated ripple current without exceeding the rated voltage.					
	Capacitance change Within ±30% of the initial value					
Endurance 2	Dissipation factor (tan δ)	≤ 200 % of the initial limit				
	ESR	≤ 300 % of the initial limit				
	Leakage current	Within the initial limit				
	After storage for 1000 hours a	t +125 ℃ ± 2 ℃ with no volt	age applied and then being			
Shelf life		tabilized at +20 ℃, capacitors shall meet the limits specified in endurance 1.				
	(With voltage treatment)					
	+85 °C ± 2 °C, 85 % to 90 %R	H, 2000 h, rated voltage app	blied			
	Capacitance change	Within ±30% of the initial	value			
Damp heat (Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit	nit			
	ESR	≤ 200 % of the initial limit				
	Leakage current	Within the initial limit				
	After flow soldering and then being stabilized at +20 °C, capacitors shall meet the					
Desistance to	following limits.	ğ ,	•			
Resistance to	Capacitance change	Within ±10% of the initial	value			
soldering heat	Dissipation factor (tan δ)	Within the initial limit				
	Leakage current	Within the initial limit				

Marking Example : 25 V 150 μF

R.voltage code	Unit: V
E	25
V	35
Н	50
J	63
K	80

ZC

♦ Part number system

e.g.: EEHAZC1E151B

EEHA

Product classification Series

ZC eries Code

ZC

Rated vol. (V) Code*1

25 1E

35 1V

50 1H

63 1J

1K

80

151 Capacitance Capacitance Code Code (µF) (µF) 100 22 220 101 33 330 120 121 47 470 150 151 56 560 220 221 270 68 680 271 820 330 331 82

Lead space (mm)
3.5, 5.0 B

Characteristics list

Endurance 1 : 125 $^{\circ}$ C 4000 h Endurance 2 : 125 $^{\circ}$ C 3000 h

		(Case size	Э			Specification				Min.packaging q'ty (pcs)
Rated voltage (V)	Capacitance (±20 %) (µF)	20 %)	øD L	L ød	Size code		current *1 rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Part number	Taping
						Endurance 1	Endurance 2	(11122)			
	150	8.0	9.5	0.6	F	1600	1900	27	0.14	EEHAZC1E151B	1000
25	220	8.0	9.5	0.6	F	1600	1900	27	0.14	EEHAZC1E221B	1000
	330	10.0	9.5	0.6	G	2000	2900	20	0.14	EEHAZC1E331B	500
	100	8.0	9.5	0.6	F	1600	1900	27	0.12	EEHAZC1V101B	1000
35	150	8.0	9.5	0.6	F	1600	1900	27	0.12	EEHAZC1V151B	1000
33	220	10.0	9.5	0.6	G	2000	2800	20	0.12	EEHAZC1V221B	500
	270	10.0	9.5	0.6	G	2000	2800	20	0.12	EEHAZC1V271B	500
	47	8.0	9.5	0.6	F	1250	-	30	0.10	EEHAZC1H470B	1000
50	68	8.0	9.5	0.6	F	1250	-	30	0.10	EEHAZC1H680B	1000
50	100	10.0	9.5	0.6	G	1600	-	28	0.10	EEHAZC1H101B	500
	120	10.0	9.5	0.6	G	1600	-	28	0.10	EEHAZC1H121B	500
	33	8.0	9.5	0.6	F	1100	-	40	0.08	EEHAZC1J330B	1000
	47	8.0	9.5	0.6	F	1100	-	40	0.08	EEHAZC1J470B	1000
63	56	10.0	9.5	0.6	G	1400	-	30	0.08	EEHAZC1J560B	500
	68	10.0	9.5	0.6	G	1400	-	30	0.08	EEHAZC1J680B	500
	82	10.0	9.5	0.6	G	1400	-	30	0.08	EEHAZC1J820B	500
	22	8.0	9.5	0.6	F	1050	-	45	0.08	EEHAZC1K220B	1000
80	33	10.0	9.5	0.6	G	1360	-	36	0.08	EEHAZC1K330B	500
	47	10.0	9.5	0.6	G	1360	-	36	0.08	EEHAZC1K470B	500

^{*1:} Ripple current (100 kHz / +125 $^{\circ}$ C)

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

[◆] Please refer to the page of "Flow soldering profile" and "The taping dimensions".

Frequency corr	ection fac	tor for ripple cu	rrent		
Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz	500 Hz ≦ f < 1 kHz
C < 47 µF		0.10	0.10	0.15	0.20
47 μF ≦ C < 150 μF	Correction factor	0.15	0.20	0.25	0.30
150 µF ≦ C	lactor	0.15	0.25	0.25	0.30
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz
C < 47 µF		0.30	0.40	0.45	0.50
47 μF ≦ C < 150 μF	Correction factor	0.40	0.45	0.55	0.60
150 μF ≦ C	lactor	0.45	0.50	0.60	0.65
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz
C < 47 μF	0	0.60	0.65	0.70	0.75
47 μF ≦ C < 150 μF	Correction factor	0.70	0.75	0.80	0.80
150 μF ≦ C	lactor	0.75	0.80	0.85	0.85
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≤ f < 100 kHz	100 kHz ≤ f < 500 kHz	500 kHz ≤ f < 1000 kHz
C < 47 µF		0.80	0.85	1.00	1.05
47 μF ≦ C < 150 μF	Correction factor	0.85	0.90	1.00	1.00
150 µF ≦ C	1800	0.85	0.90	1.00	1.00

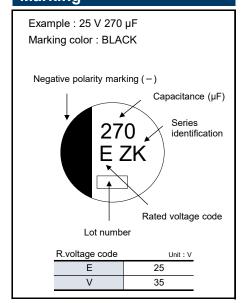
After endurance ESR (100 kHz, -40 ℃)

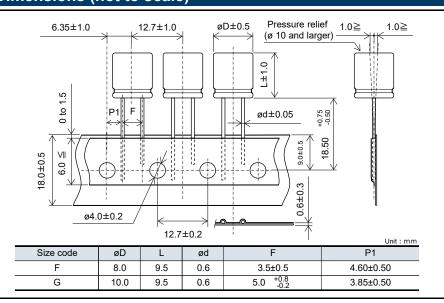
Size code	F (ø8 x L9.5)	G (ø10 x L9.5)
ESR (Ω)	0.4	0.3

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Radial Lead Type

ZK-A series




Features

- ullet Endurance : 4000 h at 125 $^{\circ}$ C (Large capacitance / High ripple current)
- Taping products for automatic insertion
- AEC-Q200 compliant
- RoHS compliant

• Norio compilant					
Specifications					
Size code	F	G			
Category temp. range		–55 ℃ to +125 ℃			
Rated voltage range		25 V to 35 V			
Nominal cap.range	180 µF to 2	270 μF 330 μF to 470 μF			
Capacitance tolerance		±20 % (120 Hz / +20℃)			
Leakage current	I ≦ 0.01 CV (μA), 2 minutes	after reaching rated voltage, 20 $^{\circ}$ C * CV = (Capacitance in μ F) x (Rated voltage in V)			
Dissipation factor (tan δ)		Please see the attached characteristics list			
Surge voltage (V)		Rated voltage × 1.25 (15 ℃ to 35 ℃)			
	+125 ℃ ± 2 ℃, 4000 h, apply t	the rated ripple current without exceeding the rated voltage.			
Endurance -	Capacitance change	Within ±30% of the initial value			
	Dissipation factor (tan δ)	≤ 200 % of the initial limit			
	ESR	≤ 200 % of the initial limit			
	Leakage current	Within the initial limit			
	ESR after endurance	Size code			
	(Ω / 100 kHz)(-40 °C)	F G			
	, , , ,	0.4 0.3			
		: +125 $℃$ ± 2 $ℂ$ with no voltage applied and then being			
Shelf life	· · · · · · · · · · · · · · · · · · ·	s shall meet the limits specified in endurance.			
	(With voltage treatment)				
	-	I, 2000 h, rated voltage applied			
	Capacitance change	Within ±30% of the initial value			
Damp heat (Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit			
	ESR	≤ 200 % of the initial limit			
	Leakage current	Within the initial limit			
		eing stabilized at +20 $^{\circ}$ C, capacitors shall meet the			
Resistance to	following limits.				
soldering heat	Capacitance change	Within ±10% of the initial value			
9	Dissipation factor (tan δ)	Within the initial limit			
	Leakage current	Within the initial limit			

Marking

ZK

♦ Part number system

e.g.: EEHAZK1E271B

EEHA

Product Series Code classification ZK ZK

1E

Rated vol	Code*1
25	1E
35	1V

271

Capacitance (µF)	Code	Capacitance (µF)	Code					
180	181	330	331					
270	271	470	471					

В Lead Code space (mm) 3.5, 5.0 В

Characteristics list

Endurance : 125 ℃ 4000 h

			Case size	Э		SI	pecification			Min.packaging q'ty (pcs)
Rated voltage (V)	Capacitance (±20 %) (µF)	øD	L	ød	Size code	Ripple current ^{*1} (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Part number	Taping
25	270	8.0	9.5	0.6	F	2000	27	0.14	EEHAZK1E271B	1000
23	470	10.0	9.5	0.6	G	2800	20	0.14	EEHAZK1E471B	500
35	180	8.0	9.5	0.6	F	2000	27	0.12	EEHAZK1V181B	1000
	330	10.0	9.5	0.6	G	2800	20	0.12	EEHAZK1V331B	500

^{*1:} Ripple current (100 kHz / +125 ℃)

[♦] Please refer to the page of "Flow soldering profile" and "The taping dimensions".

Ereguene	. correction	factor fo		le current
Frequency	y correction t	ractor ic	or ripp	ie current

,				
Frequency (f)	100 Hz ≦ f < 120 Hz	120 Hz ≦ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz
Correction factor	0.15	0.20	0.25	0.30
Frequency (f)	500 Hz ≦ f < 1 kHz	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz
Correction factor	0.40	0.50	0.60	0.65
Frequency (f)	5 kHz ≦ f < 10 kHz	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz
Correction factor	0.70	0.75	0.80	0.85
Frequency (f)	30 kHz ≦ f < 40 kHz	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 1000 kHz
Correction factor	0.85	0.85	0.90	1.00

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{*2:} ESR (100 kHz / +20 ℃)

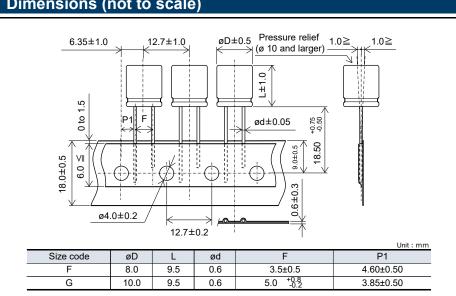
^{*3:} tan δ (120 Hz / +20 °C)

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Radial Lead Type

ZKU-A series

Features


- Endurance : 4000 h at 125 °C (Large capacitance / High ripple current)
- Taping products for automatic insertion
- AEC-Q200 compliant
- RoHS compliant

Specifications Size code	F		G				
Category temp. range							
Rated voltage range		25 V to					
Nominal cap.range	220 µF to 3		390 μF to 560 μF				
Capacitance tolerance	220 με το 3	±20 % (120 ł					
	1 < 0.04 (0)//((0)) (0.00)						
Leakage current	$I \ge 0.01 \text{ CV } (\mu A), 2 \text{ minutes}$	Please see the attache	20 °C *CV = (Capacitance in µF) x (Rated voltage in V)				
Dissipation factor (tan δ)							
Surge voltage (V)	Rated voltage × 1.25 (15 °C to 35 °C) +125 °C ± 2 °C, 4000 h, apply the rated ripple current without exceeding the rated voltage.						
	Capacitance change	Within ±30% of the initial value					
	Dissipation factor (tan δ)	≤ 200 % of the initial limit					
Endurance	ESR	≤ 200 % of the initial limit					
	Leakage current	Within the initial limit					
	ESR after endurance	Size code					
	(Ω / 100 kHz)(-40 °C)	F G					
	, , ,	0.4 0.3					
	After storage for 1000 hours at +125 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being						
Shelf life	stabilized at +20 ℃, capacitors shall meet the limits specified in endurance.						
	(With voltage treatment)						
	+85 ℃ ± 2 ℃, 85 % to 90 %RF	, , , , , , , , , , , , , , , , , , , ,					
	Capacitance change	Within ±30% of the initial v	alue				
Damp heat (Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit					
	ESR	≤ 200 % of the initial limit					
	Leakage current	Within the initial limit					
	After flow soldering and then b	eing stabilized at +20 ℃, ca	pacitors shall meet the				
Resistance to	following limits.						
	Capacitance change	Within ±10% of the initial v	alue				
soldering heat	Dissipation factor (tan δ)	Within the initial limit					
	Leakage current						

Example : 25 V 330 μF Marking color: BLACK Negative polarity marking (-) Capacitance (µF) Series 330 identification E ZK Rated voltage code Lot number

Marking

R.voltage code Unit: V Ε 25 35

♦ Part number system

e.g.: EEHAZKE331UB

EEHA

ZK Product Series Code classification ZKU ZK

Code*1
1E
1V

331							
Code							
221							
331							
391							
561							

U						
Dia øD	Code					
Minia- turization product	U					

В	
Lead	
space	Code
(mm)	
3.5, 5.0	В

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Characteristics list

Endurance : 125 ℃ 4000 h

			Case size	е		Sı	pecification			Min.packaging q'ty (pcs)
Rated voltage (V)	Capacitance (±20 %) (µF)	øD	L	ød	Size code	Ripple current ^{*1} (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Part number	Taping
25	330	8.0	9.5	0.6	F	2000	27	0.14	EEHAZKE331UB	1000
25	560	10.0	9.5	0.6	G	2800	20	0.14	EEHAZKE561UB	500
35	220	8.0	9.5	0.6	F	2000	27	0.12	EEHAZKV221UB	1000
	390	10.0	9.5	0.6	G	2800	20	0.12	EEHAZKV391UB	500

^{*1:} Ripple current (100 kHz / +125 ℃)

[♦] Please refer to the page of "Flow soldering profile" and "The taping dimensions".

Frequency corre	ction fact	tor for rip _l	ole current
-----------------	------------	--------------------------	-------------

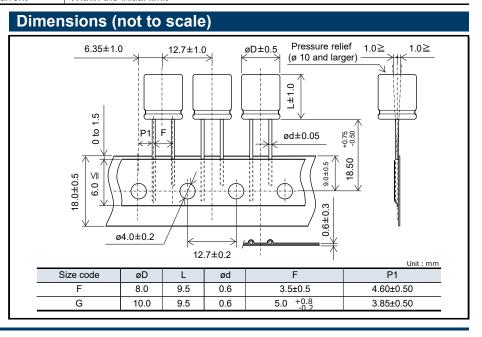
Frequency (f)	100 Hz ≦ f < 120 Hz	120 Hz ≦ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≦ f < 500 Hz
Correction factor	0.15	0.20	0.25	0.30
Frequency (f)	500 Hz ≦ f < 1 kHz	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz
Correction factor	0.40	0.50	0.60	0.65
Frequency (f)	5 kHz ≦ f < 10 kHz	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz
Correction factor	0.70	0.75	0.80	0.85
Frequency (f)	30 kHz ≦ f < 40 kHz	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 1000 kHz
Correction factor	0.85	0.85	0.90	1.00

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Radial Lead Type


ZT-A series

Features

- Endurance : 4000 h at 125 °C (High ripple current)
- Taping products for automatic insertion
- AEC-Q200 compliant
- RoHS compliant

Specifications					
Size code	F		G		
Category temp. range		–55 ℃ to	+125 ℃		
Rated voltage range		25 V to	63 V		
Nominal cap.range	33 μF to 2	20 μF	56 μF to 330 μF		
Capacitance tolerance		±20 % (120 H	łz / +20℃)		
Leakage current	I ≤ 0.01 CV (μA) 2 minutes	after reaching rated voltage, 2	20 °C *CV = (Capacitance in μF) x (Rated voltage in V)		
Dissipation factor (tan δ)		Please see the attache	d characteristics list		
Surge voltage (V)		Rated voltage × 1.2	5 (15 ℃ to 35 ℃)		
	+125 ℃ ± 2 ℃, 4000 h, apply t	the rated ripple current withou	ut exceeding the rated voltage.		
	Capacitance change	Within ±30% of the initial value			
	Dissipation factor (tan δ)	≤ 200 % of the initial limit			
Endurance	ESR	≦ 200 % of the initial limit			
Endurance	Leakage current	Within the initial limit			
	ESR after endurance	Size code			
	(Ω / 100 kHz)(-40 °C)	F G			
		0.4 0.3			
	After storage for 1000 hours at	± +125 ℃ ± 2 ℃ with no volta	ge applied and then being		
Shelf life	stabilized at +20 ℃, capacitor	s shall meet the limits specif	ied in endurance.		
	(With voltage treatment)				
	+85 °C ± 2 °C, 85 % to 90 %RF	H, 2000 h, rated voltage appl	ied		
	Capacitance change	Within ±30% of the initial v	alue		
Damp heat (Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit			
	ESR	≤ 200 % of the initial limit			
	Leakage current	Within the initial limit			
	After flow soldering and then b	eing stabilized at +20 ℃, cap	pacitors shall meet the		
Resistance to	following limits.				
soldering heat	Capacitance change	Within ±10% of the initial v	alue		
solueiling neat	Dissipation factor (tan δ)	Within the initial limit			
	Leakage current	Within the initial limit			

Marking Example: 25 V 220 µF Marking color: BLACK Negative polarity marking (-) Capacitance (µF) Series 220 identification E ZT Rated voltage code Lot number R.voltage code Unit : V 25 Ε 35 Н 50 63

♦ Part number system

e.g.: EEHAZT1E221B

EEHA

Product classification Series Code ZT ZT

1E

Rated vol. (V)	Code ^{*1}
25	1E
35	1V
50	1H
63	1J

221

Capacitance (µF)	Code	Capacitance (µF)	Code
33	330	120	121
47	470	150	151
56	560	220	221
68	680	270	271
82	820	330	331
100	101		

В	
Lead	
space	Code
(mm)	
3.5, 5.0	В
	В

Characteristics list

Endurance : 125 ℃ 4000 h

		Case size (mm)			Specification				Min.packaging q'ty (pcs)	
Rated voltage (V)	Capacitance (±20 %) (µF)	øD	L	ød	Size code	Ripple current ^{*1} (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Part number	Taping
25	220	8.0	9.5	0.6	F	2900	22	0.14	EEHAZT1E221B	1000
25	330	10.0	9.5	0.6	G	3500	16	0.14	EEHAZT1E331B	500
35	150	8.0	9.5	0.6	F	2900	22	0.12	EEHAZT1V151B	1000
33	270	10.0	9.5	0.6	G	3500	16	0.12	EEHAZT1V271B	500
	68	8.0	9.5	0.6	F	2700	25	0.10	EEHAZT1H680B	1000
50	100	10.0	9.5	0.6	G	2900	23	0.10	EEHAZT1H101B	500
	120	10.0	9.5	0.6	G	2900	23	0.10	EEHAZT1H121B	500
	33	8.0	9.5	0.6	F	2400	32	0.08	EEHAZT1J330B	1000
	47	8.0	9.5	0.6	F	2400	32	0.08	EEHAZT1J470B	1000
63	56	10.0	9.5	0.6	G	2800	25	0.08	EEHAZT1J560B	500
	68	10.0	9.5	0.6	G	2800	25	0.08	EEHAZT1J680B	500
	82	10.0	9.5	0.6	G	2800	25	0.08	EEHAZT1J820B	500

^{*1:} Ripple current (100 kHz / +125 $^{\circ}$ C)

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz
C < 47 µF	Correction	0.10	0.10	0.15	0.20
47 μF ≦ C < 150 μF	Correction factor	0.15	0.20	0.25	0.30
150 µF ≦ C	iacioi	0.15	0.25	0.25	0.30

Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≤ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz
C < 47 µF	Correction	0.30	0.40	0.45	0.50
47 μF ≦ C < 150 μF	Correction	0.40	0.45	0.55	0.60
150 µF ≤ C	lactor	0.45	0.50	0.60	0.65

Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≤ f < 40 kHz
C < 47 µF	Correction	0.60	0.65	0.70	0.75
47 μF ≦ C < 150 μF	Correction - factor -	0.70	0.75	0.80	0.80
150 μF ≦ C		0.75	0.80	0.85	0.85

Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≤ f < 100 kHz	100 kHz ≤ f < 500 kHz	500 kHz ≤ f < 1000 kHz
C < 47 µF	Correction	0.80	0.85	1.00	1.05
47 μF ≦ C < 150 μF	Correction - factor -	0.85	0.90	1.00	1.00
150 μF ≦ C		0.85	0.90	1.00	1.00

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

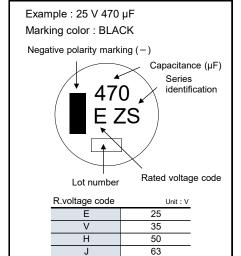
^{*2:} ESR (100 kHz / +20 ℃)

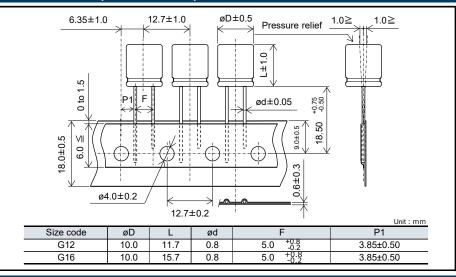
^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Flow soldering profile" and "The taping dimensions".

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Radial Lead Type


ZS-A series


Features

- Endurance : 4000 h at 135 °C (Large capacitance / High ripple current / Low ESR)
- Taping products for automatic insertion
- AEC-Q200 compliant
- RoHS compliant

Specifications					
Size code	G12)	G16		
Category temp. range		–55 ℃ to	+135 ℃		
Rated voltage range		25 V to	o 63 V		
Nominal cap.range	100 µF to	470 μF	150 μF to 560 μF		
Capacitance tolerance		±20 % (120	Hz / +20℃)		
Leakage current	I ≤ 0.01 CV (μA) 2 minutes	after reaching rated voltage,	20 °C *CV = (Capacitance in μF) x (Rated voltage in V)		
Dissipation factor (tan δ)		Please see the attach	ed characteristics list		
Surge voltage (V)		Rated voltage × 1.2	25 (15 ℃ to 35 ℃)		
	+125 °C ± 2 °C, 4000 h, apply	the rated ripple current with	out exceeding the rated voltage.		
	Capacitance change	Within ±30% of the initial	value		
Endurance 1	Dissipation factor (tan δ)	≤ 200 % of the initial limit	t .		
	ESR	≤ 200 % of the initial limit			
	Leakage current	Within the initial limit			
	+135 °C ± 2 °C, 4000 h, apply	the rated ripple current with	out exceeding the rated voltage.		
	Capacitance change Within ±30% of the initial value				
Endurance 2	Dissipation factor (tan δ)	≤ 200 % of the initial limit			
	ESR	≤ 200 % of the initial limit			
	Leakage current	Within the initial limit			
	After storage for 1000 hours at	t +135 ℃ ± 2 ℃ with no volt	age applied and then being		
Shelf life	stabilized at +20 ℃, capacitor	rs shall meet the limits spec	ified in endurance.		
	(With voltage treatment)	(With voltage treatment)			
	+85 °C ± 2 °C, 85 % to 90 %RI	H, 2000 h, rated voltage app	plied		
	Capacitance change	Within ±30% of the initial	value		
Damp heat (Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit	t .		
	ESR	≤ 200 % of the initial limit			
	Leakage current	Within the initial limit			
	After flow soldering and then b	eing stabilized at +20 ℃, ca	apacitors shall meet the		
Resistance to	following limits.				
	Capacitance change	Within ±10% of the initial	value		
soldering heat	Dissipation factor (tan δ)	Within the initial limit			
	Leakage current	Within the initial limit			

Marking

♦ Part number system

e.g.: EEHAZS1E471B

EEHA Product

classification

ZS

Series Code ZS ZS

1E

Rated vol. (V)	Code ^{*1}
25	1E
35	1V
50	1H
63	1J

471

Capacitance (µF)	Code	Capacitance (µF)	Code			
100	101	330	331			
150	151	470	471			
220	221	560	561			

	В	
Lead	t	
spac	е	Code
(mm	1)	
3.5, 5	.0	В

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

Characteristics list

Endurance 1 : 125 ℃ 4000 h Endurance 2 : 135 °C 4000 h

		Case size Specification				Min.packaging q'ty (pcs)					
Rated Capacitance voltage (±20 %) (µF)		øD	L	ød	Size code	Ripple current ^{*1} (mA rms)		ESR*2	tan δ ^{*3}	Part number	Taping
						Endurance 1	Endurance 2	(mΩ)			
						(+125℃)	(+135℃)				
25	470	10.0	11.7	8.0	G12	3500	2500	14	0.14	EEHAZS1E471B	500
23	560	10.0	15.7	8.0	G16	4000	2900	11	0.14	EEHAZS1E561B	500
35	330	10.0	11.7	8.0	G12	3500	2500	14	0.12	EEHAZS1V331B	500
33	470	10.0	15.7	8.0	G16	4000	2900	11	0.12	EEHAZS1V471B	500
50	150	10.0	11.7	8.0	G12	3200	2250	17	0.10	EEHAZS1H151B	500
50	220	10.0	15.7	8.0	G16	3700	2600	13	0.10	EEHAZS1H221B	500
63	100	10.0	11.7	8.0	G12	3000	2100	19	0.08	EEHAZS1J101B	500
	150	10.0	15.7	8.0	G16	3500	2400	15	0.08	EEHAZS1J151B	500

^{*1:} Ripple current (100 kHz / +125 $^{\circ}$ C or +135 $^{\circ}$ C)

[♦] Please refer to the page of "Flow soldering profile" and "The taping dimensions".

Frequency correct	tion fact	tor for r	ıppl	le current
-------------------	-----------	-----------	------	------------

Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz
100 μF ≦ C < 150 μF	Correction	0.15	0.20	0.25	0.30
150 μF ≦ C	factor	0.15	0.25	0.25	0.30
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz
100 μF ≦ C < 150 μF	Correction	0.40	0.45	0.55	0.60
150 μF ≦ C	factor	0.45	0.50	0.60	0.65
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz
100 μF ≦ C < 150 μF	Correction	0.70	0.75	0.80	0.80
150 μF ≦ C	factor	0.75	0.80	0.85	0.85
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f < 1000 kHz
100 μF ≦ C < 150 μF	Correction	0.85	0.90	1.00	1.00
150 µF ≦ C	factor	0.85	0.90	1.00	1.00

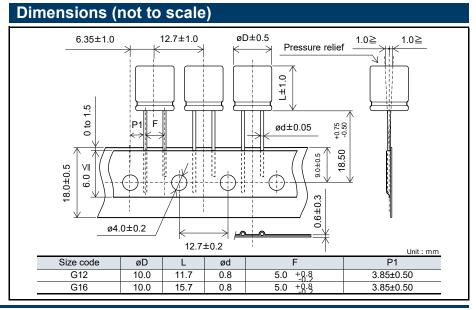
^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Radial Lead Type

ZSU-A series



Features

- Endurance : 4000 h at 125 °C
- Large capacitance compared with ZS series
- Taping products for automatic insertion
- AEC-Q200 compliant
- RoHS compliant

Specifications							
<u> </u>							
Size code	G12	G	16				
Category temp. range		–55 ℃ to +125 ℃					
Rated voltage range	25 V to 63 V						
Nominal cap.range	120 µF to 6	80 μF 180 μF to	1000 μF				
Capacitance tolerance		±20 % (120 Hz / +20℃)					
Leakage current	I ≦ 0.01 CV (μA), 2 minutes	after reaching rated voltage, 20 ℃ *CV = (Capacitance in	uF) x (Rated voltage in V)				
Dissipation factor (tan δ)		Please see the attached characteristics list					
Surge voltage (V)		Rated voltage × 1.25 (15 ℃ to 35 ℃)					
	+125 ℃ ± 2 ℃, 4000 h, apply t	ne rated ripple current without exceeding the rated voltage	je.				
	Capacitance change Within ±30% of the initial value						
Endurance	Dissipation factor (tan δ)	≤ 200 % of the initial limit					
	ESR	≤ 200 % of the initial limit					
	Leakage current	Within the initial limit					
	ESR after endurance	Size code					
		G12 G16					
	(Ω / 100 kHz)(-40 °C)	0.3 0.3					
	After storage for 1000 hours at	After storage for 1000 hours at +125 $^{\circ}$ C \pm 2 $^{\circ}$ C with no voltage applied and then being					
Shelf life	stabilized at +20 ℃, capacitors	shall meet the limits specified in endurance.					
	(With voltage treatment)						
	+85 °C ± 2 °C, 85 % to 90 %RF	, 2000 h, rated voltage applied					
	Capacitance change	Within ±30% of the initial value					
Damp heat (Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit					
	ESR	≤ 200 % of the initial limit					
	Leakage current	Within the initial limit					
	After flow soldering and then be	eing stabilized at +20 ℃, capacitors shall meet the					
Resistance to	following limits.						
	Capacitance change	Within ±10% of the initial value					
soldering heat	Dissipation factor (tan δ)	Within the initial limit					
	Leakage current	Within the initial limit					

Marking Example: 25 V 680 µF Marking color: BLACK Negative polarity marking (-) Capacitance (µF) Series identification 680 E ZS Rated voltage code Lot number R.voltage code 25 Ε ۱/ 35 50 63

♦ Part number system

e.g.: EEHAZSE681UB

EEHA

Product classification

ZS Series Code ZSU ZS

Ε Rated vol. Code*1 (V) 25 1E 35 1V 50 1H 63 1J

U					
Dia øD	Code				
Minia- turization product	U				

В Lead space Code (mm) 3.5, 5.0 В

Characteristics list

Endurance : 125 °C 4000 h

		(Case size (mm))		S	pecification			Min.packaging q'ty (pcs)
Rated voltage (V)	Capacitance (±20 %) (μF)	øD	L	ød	Size code	Ripple current ^{*1} (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Part number	Taping
25	680	10.0	11.7	8.0	G12	3500	14	0.14	EEHAZSE681UB	500
23	1000	10.0	15.7	8.0	G16	4000	11	0.14	EEHAZSE102UB	500
35	470	10.0	11.7	8.0	G12	3500	14	0.12	EEHAZSV471UB	500
33	680	10.0	15.7	8.0	G16	4000	11	0.12	EEHAZSV681UB	500
50	180	10.0	11.7	8.0	G12	3200	17	0.10	EEHAZSH181UB	500
50	270	10.0	15.7	8.0	G16	3700	13	0.10	EEHAZSH271UB	500
63	120	10.0	11.7	8.0	G12	3000	19	0.08	EEHAZSJ121UB	500
	180	10.0	15.7	8.0	G16	3500	15	0.08	EEHAZSJ181UB	500

^{*1:} Ripple current (100 kHz / +125 °C)

[♦] Please refer to the page of "Flow soldering profile" and "The taping dimensions".

Frequency corr	ection fac	tor for ripple cu	rrent		
Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 120 Hz	120 Hz ≤ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz
120 μF ≦ C	Correction factor	0.15	0.20	0.25	0.30
Rated capacitance (C)	Frequency (f)	500 Hz ≦ f < 1 kHz	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz
120 μF ≦ C	Correction factor	0.40	0.50	0.60	0.65
Rated capacitance (C)	Frequency (f)	5 kHz ≦ f < 10 kHz	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz
120 μF ≦ C	Correction factor	0.70	0.75	0.80	0.85
Rated capacitance (C)	Frequency (f)	30 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f < 1000 kHz
120 μF ≦ C	Correction factor	0.85	0.90	1.00	1.00

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

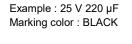
Panasonic

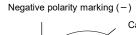
INDUSTRY

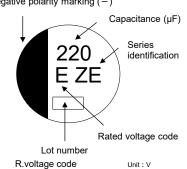
Hybrid

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

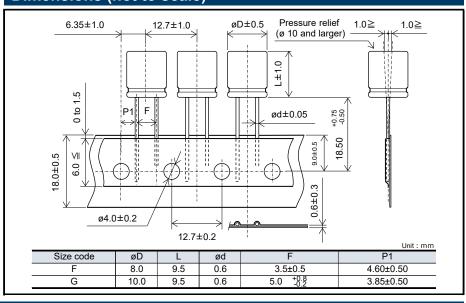
Radial Lead Type


ZE-A series


Features


- Endurance : 2000 h at 145 °C (High temperature / Long life)
- Taping products for automatic insertion
- AEC-Q200 compliant
- RoHS compliant

• Norio compilant							
Specifications							
Size code	F	G					
Category temp. range		–55 ℃ to +145 ℃					
Rated voltage range		25 V to 63 V					
Nominal cap.range	33 µF to 2	220 μF 56 μF to 330 μF					
Capacitance tolerance		±20 % (120 Hz / +20℃)					
Leakage current	I ≤ 0.01 CV (μA), 2 minutes	s after reaching rated voltage, 20 ℃ *CV = (Capacitance in µF) x (Rated voltage in V)					
Dissipation factor (tan δ)		Please see the attached characteristics list					
Surge voltage (V)		Rated voltage × 1.25 (15 ℃ to 35 ℃)					
	+145 ℃ ± 2 ℃, 2000 h, apply the rated ripple current without exceeding the rated voltage.						
	Capacitance change	Within ±30% of the initial value					
Endurance 1	Dissipation factor (tan δ)	≤ 200 % of the initial limit					
	ESR	≤ 200 % of the initial limit					
	Leakage current	Within the initial limit					
	+135 ℃ ± 2 ℃, 4000 h, apply the rated ripple current without exceeding the rated voltage.						
	Capacitance change	Within ±30% of the initial value					
Endurance 2	Dissipation factor (tan δ)	≤ 200 % of the initial limit					
	ESR	≤ 300 % of the initial limit					
	Leakage current	Within the initial limit					
	After storage for 1000 hours at +145 ℃ ± 2 ℃ with no voltage applied and then being						
Shelf life	stabilized at +20 ℃, capacitors shall meet the limits specified in endurance 1.						
	(With voltage treatment)						
	+85 °C ± 2 °C, 85 % to 90 %R	H, 2000 h, rated voltage applied					
	Capacitance change	Within ±30% of the initial value					
Damp heat (Load)	Dissipation factor (tan δ)	≤ 200 % of the initial limit					
	ESR	≤ 200 % of the initial limit					
	Leakage current	Within the initial limit					
		peing stabilized at +20 ℃, capacitors shall meet the					
Resistance to	following limits.						
soldering heat	Capacitance change	Within ±10% of the initial value					
30idening near	Dissipation factor (tan δ)	Within the initial limit					
	Leakage current	Within the initial limit					


Marking

Unit : V 25 ۱/ 35 50 Н 63

♦ Part number system

e.g.: EEHAZE1E221B

EEHA

Product classification

ZE						
Series	Code					
ZE	ZE					

1E

Rated vol. (V)	Code ^{*1}				
25	1E				
35	1V				
50	1H				
63	1J				

221

Capacitance (µF)	Code	Capacitance (µF)	Code
33	330	150	151
56	560	220	221
68	680	270	271
82	820	330	331
100	101		
		=	

В Lead Code space (mm) 3.5, 5.0 В

Characteristics list

Endurance 1 : 145 ℃ 2000 h Endurance 2 : 135 ℃ 4000 h

Rated voltage (V)	Capacitance (±20 %) (µF)	Case size (mm)				Specification					Min.packaging q'ty (pcs)
		øD	L	ød	Size code	Ripple current *1 (mA rms)		ESR ^{*2} (mΩ)	tan δ ^{*3}	Part number	Taping
						Endurance 1 (+145 ℃)	Endurance 2 (+135 ℃)	(11122)			
25	220	8.0	9.5	0.6	F	700	1600	27	0.14	EEHAZE1E221B	1000
25	330	10.0	9.5	0.6	G	900	2000	20	0.14	EEHAZE1E331B	500
35	150	8.0	9.5	0.6	F	700	1600	27	0.12	EEHAZE1V151B	1000
ან	270	10.0	9.5	0.6	G	900	2000	20	0.12	EEHAZE1V271B	500
50	68	8.0	9.5	0.6	F	600	1250	30	0.10	EEHAZE1H680B	1000
30	100	10.0	9.5	0.6	G	800	1600	28	0.10	EEHAZE1H101B	500
63	33	8.0	9.5	0.6	F	600	1100	40	0.08	EEHAZE1J330B	1000
	56	10.0	9.5	0.6	G	800	1400	30	0.08	EEHAZE1J560B	500
	82	10.0	9.5	0.6	G	800	1400	30	0.08	EEHAZE1J820B	500

^{*1:} Ripple current (100 kHz / +145 $^{\circ}$ C or +135 $^{\circ}$ C)

Frequency correction factor for ripple current

Rated capacitance (C)	Frequency (f)	100 Hz ≦ f < 200 Hz	200 Hz ≦ f < 300 Hz	300 Hz ≦ f < 500 Hz	500 Hz ≦ f < 1 kHz
C < 47 µF	Carraction	0.10	0.10	0.15	0.20
47 μF ≦ C < 150 μF	Correction factor	0.15	0.20	0.25	0.30
150 μF ≦ C	lactor	0.15	0.25	0.25	0.30
Rated capacitance (C)	Frequency (f)	1 kHz ≦ f < 2 kHz	2 kHz ≦ f < 3 kHz	$3 \text{ kHz} \leq f < 5 \text{ kHz}$	5 kHz ≦ f < 10 kHz
C < 47 µF	Correction	0.30	0.40	0.45	0.50
47 μF ≦ C < 150 μF		0.40	0.45	0.55	0.60
150 μF ≦ C	factor	0.45	0.50	0.60	0.65
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz
C < 47 µF	Correction	0.60	0.65	0.70	0.75
47 μF ≦ C < 150 μF	factor	0.70	0.75	0.80	0.80
150 µF ≦ C	lacioi	0.75	0.80	0.85	0.85
Rated capacitance (C)	Frequency (f)	40 kHz ≦ f < 50 kHz	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≤ f < 1000 kHz
C < 47 µF	Correction -	0.80	0.85	1.00	1.05
47 μF ≦ C < 150 μF		0.85	0.90	1.00	1.00
150 μF ≦ C	iacioi	0.85	0.90	1.00	1.00

After endurance ESR (100 kHz, -40 ℃)

Size code	F (ø8 x L9.5)	G (ø10 x L9.5)
ESR (Ω)	0.4	0.3

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

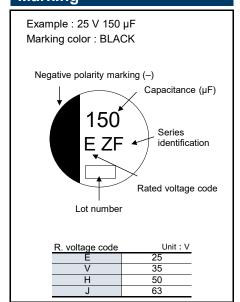
^{*2:} ESR (100 kHz / +20 ℃)

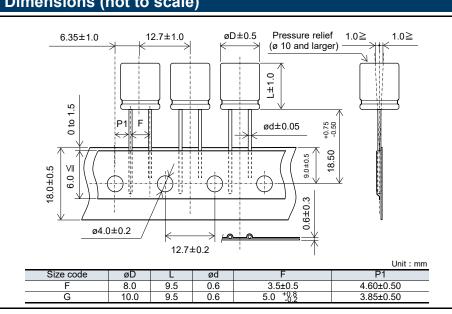
^{*3:} tan δ (120 Hz / +20 °C)

[♦] Please refer to the page of "Flow soldering profile" and "The taping dimensions".

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

Radial Lead Type


ZF-A series


Features

- Endurance : 1000 h at 150 °C (High temperature)
- High temperature compared with ZC series
- High-withstand voltage (to 63 V)
- Characteristics dependencies in frequency and low temperature are as small as polymer type
- Compatible with taping products for automatic insertion
- AEC-Q200 compliant
- RoHS compliant

Specifications								
Size code	F			G				
Category temp. range			5 ℃ to +150 ℃					
Rated voltage range			25 V to 63 V					
Nominal cap.range	33 µF to 1			56 μF to 270 μF				
Capacitance tolerance			5 (120 Hz / +20℃)					
Leakage current	I ≤ 0.01 CV (μA), 2 minutes			(Capacitance in µF) x (Rated voltage in V)				
Dissipation factor (tan δ)		Please see the	attached characteri	stics list				
Surge voltage (V)			e × 1.25 (15 ℃ to 3					
	+150 ℃ ± 2 ℃, 1000 h, apply t			the rated voltage.				
	Capacitance change Within ±30% of the initial value							
	Dissipation factor (tan δ)	≤ 200 % of the initial limit						
Endurance	ESR	≤ 200 % of the initial limit						
Endurance	Leakage current Within the initial limit							
	ESR after endurance	Size code						
	(Ω / 100 kHz)(-40 °C)	F	G					
	, , , , ,	0.4	0.3					
aa	After storage for 1000 hours at +150 ℃ ± 2 ℃ with no voltage applied and then being							
Shelf life	stabilized at +20 °C, capacitors shall meet the limits specified in endurance.							
	(With voltage treatment)							
	+85 °C ± 2 °C, 85 % to 90 %RH, 2000 h, rated voltage applied							
5	Capacitance change	Within ±30% of the						
Damp heat (Load)	Dissipation factor (tan δ)	≤ 200 % of the initi						
	ESR	≤ 200 % of the initi						
	Leakage current Within the initial limit							
	After flow soldering and then being stabilized at +20 °C, capacitors shall meet the							
Resistance to	following limits.	M/H-1 400/ - £ H	to tall a location					
soldering heat	Capacitance change	Within ±10% of the						
ű	Dissipation factor (tan δ)	Within the initial lim						
	Leakage current	Within the initial lim	ıt					

Marking

♦ Part number system

e.g.: EEHAZF1E151B

EEHA

Product Series Code classification ZF ZF

1E

Rated vol. (V)	Code ^{*1}
25	1E
35	1V
50	1H
63	1J

151

Capacitance (µF)	Code	Capacitance (µF)	Code						
33	330	150	151						
56	560	270	271						
100	101								

В Lead Code space (mm) 3.5, 5.0 В

Characteristics list

Endurance : 150 ℃ 1000 h

		Case size (mm)				Specification				Min.packaging q'ty (pcs)
Rated voltage (V)	Capacitance (±20 %) (μF)	øD	L	ød	Size code	Ripple current *1 (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Part number	Taping
	150	8.0	9.5	0.6	F	800	27	0.14	EEHAZF1E151B	1000
25	270	10.0	9.5	0.6	G	1000	20	20 0.14 EEHAZF1E271B 30 0.12 EEHAZF1V101B	EEHAZF1E271B	500
35	100	8.0	9.5	0.6	F	770	30	0.12	EEHAZF1V101B	1000
33	150	10.0	9.5	0.6	G	950	23	0.12	EEHAZF1V151B	500
50	56	8.0	9.5	0.6	F	700	35	0.10	EEHAZF1H560B	1000
50	100	10.0	9.5	0.6	G	900	28	0.10	EEHAZF1H101B	500
63	33	8.0	9.5	0.6	F	650	40	0.08	EEHAZF1J330B	1000
	56	10.0	9.5	0.6	G	840	30	0.08	EEHAZF1J560B	500

^{*1:} Ripple current (100 kHz / +150 ℃)

[♦] Please refer to the page of "Flow soldering profile" and "The taping dimensions".

Frequency correction factor for ripple current
--

Frequency correction factor for ripple current								
Rated capacitance (C)	Frequency (f)	100 Hz ≤ f < 200 Hz	200 Hz ≤ f < 300 Hz	300 Hz ≤ f < 500 Hz	500 Hz ≦ f < 1 kHz			
C < 47 μF		0.10	0.10	0.15	0.20			
	Correction factor	0.15	0.20	0.25	0.30			
150 µF ≦ C	lactor	0.15	0.25	0.25	0.30			
Rated capacitance (C)	Frequency (f)	$1 \text{ kHz} \le f < 2 \text{ kHz}$	2 kHz ≦ f < 3 kHz	3 kHz ≦ f < 5 kHz	5 kHz ≦ f < 10 kHz			
C < 47 μF	0 "	0.30	0.40	0.45	0.50			
47 μF ≦ C < 150 μF	Correction factor	0.40	0.45	0.55	0.60			
150 µF ≦ C	lactor	0.45	0.50	0.60	0.65			
Rated capacitance (C)	Frequency (f)	10 kHz ≦ f < 15 kHz	15 kHz ≦ f < 20 kHz	20 kHz ≦ f < 30 kHz	30 kHz ≦ f < 40 kHz			
C < 47 μF	Commontion	0.60	0.65	0.70	0.75			
47 μF ≦ C < 150 μF	Correction factor	0.70	0.75	0.80	0.80			
150 µF ≦ C	lactor	0.75	0.80	0.85	0.85			
Rated capacitance (C)	Frequency (f)	$40 \text{ kHz} \le \text{f} < 50 \text{ kHz}$	50 kHz ≦ f < 100 kHz	100 kHz ≦ f < 500 kHz	500 kHz ≦ f			
C < 47 µF	Commontina	0.80	0.85	1.00	1.05			
47 μF ≦ C < 150 μF	Correction factor	0.85	0.90	1.00	1.00			
150 μF ≦ C	lactor	0.85	0.90	1.00	1.00			

^{*:} If the total figures number of the part number exceeds 12 figures, "1" is omitted.

^{*2:} ESR (100 kHz / +20 ℃)

^{*3:} tan δ (120 Hz / +20 °C)

Safty Precautions

When using our products, no matter what sort of equipment they might be used for, be sure to confirm the applications and environmental conditions with our specifications in advance.

Panasonic Industry Co., Ltd. Device Solutions Business Division

1006 Kadoma, Kadoma City, Osaka 571-8506 Japan