MSKSEMI 美森科

ESD

3

TSS

MOV

GDT

PIFD

LM1117X-XXX(MS)

Product specification

General Description

LM1117X-XXX(MS) is a series of low dropout three-terminal regulators with a dropout of 1.3V at 1A load current.

LM1117X-XXX(MS) features a very low standby current 2mA compared to 5mA of competitor.

Other than a fixed version, Vout = 1.2V, 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, and 5V, LM1117X-XXX(MS) has an adjustable version, which can provide an output voltage from 1.25 to 12V with only two external resistors.

LM1117X-XXX(MS) offers thermal shut down function, to assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within 2%. Other output voltage accuracy can be customized on demand, such as 1%.

LM1117X-XXX(MS) is available in SOT-223, TO-252 and SOT89 power package.

Features

- Output current is 1A
- Range of operation input voltage: 15V
- Line regulation: 0.03%/V (typ.)
- Standby current: 2mA (typ.)
- Load regulation: 0.2%/A (typ.)
- Environment Temperature: -40 ℃~85 ℃

Applications

- Power Management for Computer Mother Board,
 Graphic Card
- LCD Monitor and LCD TV
- DVD Decode Board
- ADSL Modem
- Post Regulators for Switching Supplies

Encapsulation form and pin definition function

PACKAGE OUTLINE	Marking
SOT-223	
TO-252	1117C 1.2 MS** Note: 1.2 represents fixed voltage,
10-232	* * represents internal production order number
SOT-89	

Table1: ALM1117X-XXX(MS) series (SOT223 PKG)

PIN NO.	PIN NAME	FUNCTION
1	VSS/ADJ	VSS/ADJ pin
2	VOUT	Output voltage pin
3	VIN	Input voltage pin
4	VOUT	Output voltage pin

Table2: LM1117X-XXX(MS) series (TO252 PKG)

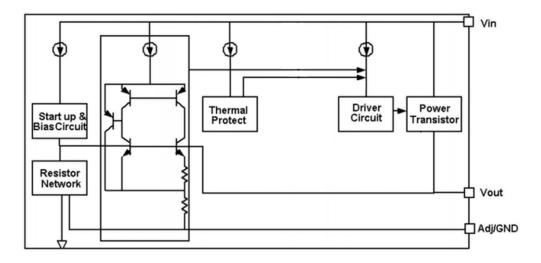

PIN NO.	PIN NAME	FUNCTION	2
1	VSS/ADJ	VSS/ADJ pin	
2	VOUT	Output voltage pin	Mark
3	VIN	Input voltage pin	1 3

Table3: LM1117CD-XXX(MS) series (SOT89 PKG)

PIN NO.	PIN NAME	FUNCTION	
1	VSS/ADJ	VSS/ADJ pin	Mark
2	VOUT	Output voltage pin	IVIZIK
3	VIN	Input voltage pin	1 2 3

Block Diagram

Selection Table

Part No.	Part No.	Output Voltage	Package
	XX=12	1.2V	
	XX=15	1.5V	
	XX=18	1.8V	SOT-223
	XXX=285	2.85V	TO-252
LM1117X-XXX(MS)	XX=25	2.5V	SOT-89
	XX=33	3.3V	
	XX=50	5.0V	
	XX=ADJ	ADJ	

Ordering Information

Part No.	Package Type	Packing type
LM1117F-XXX(MS)	SOT89	1000 Tape&Reel
LM1117S-XXX(MS)	SOT223	2500 Tape&Reel
LM1117RS-XXX(MS)	TO252	2500 Tape&Reel

Note: XXXstands for Output Voltage

Absolute Maximum Ratings

Max Input Voltage ·····	····· ·· 18V
Max Operating Junction Temperature(Tj) ······	····· ··150°C
Storage Temperature(Ts)·····	
Lead Temperature & Time······	260℃ 10S
Caution: Exceed these limits to damage to the device. Exposure to absolute maximum rating or	onditions may affect
device reliability.	

Electrical Characteristics

 $T_A {=}\, 25\, ^\circ\! \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vin	Input voltage			15	18	V
Vref	Reference	LM1117-Adj	1.225	1.25	1.275	V
	voltage	10mA≤lout≤1A , Vin=2.55V				
		LM1117-1.2V	1.176	1.2	1.224	V
		0≤lout≤1A , Vin=2.5V				
		LM1117-1.5V	1.47	1.5	1.53	V
		0≤lout≤1A , Vin=2.8V				
		LM1117-1.8V	1.764	1.8	1.836	V
Vout	Output voltage	0≤lout≤1A , Vin=3.1V				
		LM1117-2.5V	2.45	2.5	2.55	V
		0≤lout≤1A , Vin=3.8V				
		LM1117-2.85V	2.793	2.85	2.907	V
		0≤lout≤1A , Vin=4.15V				
		LM1117-3.3V	3.234	3.3	3.366	V
		0≤lout≤1A , Vin=4.6V				
		LM1117-5.0V	4.9	5	5.1	V
		0≤lout≤1A , Vin=6.3V				

	LM1117-1.2V	4	19	\/	
		lout=10mA, 2.5V≤Vin≤10V	4	19	mV
		LM1117-1.5V		00	,,
		lout=10mA, 2.8V≲Vin≤10V	5	26	mV
		LM1117-ADJ	_	0.4	
		lout=10mA, 2.55V≲Vin≤12V	5	24	mV
		LM1117-1.8V	_		
△Vout	△Vout Line	lout=10mA, 3.1V≤Vin≤12V	5	32	mV
	regulation	LM1117-2.5V			
		lout=10mA, 3.8V≤Vin≤12V	8	41	mV
		LM1117-2.85V		40	.,
		lout=10mA, 4.15V≲Vin≤12V	8	46	mV
		LM1117-3.3V		40	
		lout=10mA, 4.6V≤Vin≤12V	9	49	mV
		LM1117-5.0V	10	EG	\ /
		lout=10mA, 6.3V≲Vin≤12V	10	56	mV

		LM1117-1.2V	10	40	mV
		Vin =2.5V, 10mA≤lout≤1A LM1117-1.5V			
	Vin =2.8V, 10mA≤lout≤1A	10	40	mV	
		LM1117-ADJ			
		Vin =2.55V, 10mA≤lout≤1A	10	40	mV
		LM1117-1.8V	40	40	
△Vout	Load	Vin =3.1V, 10mA≤lout≤1A	10	40	mV
△Vout	regulation	LM1117-2.5V	10	40	m)/
		Vin =2.8V, 10mA≤lout≤1A	10		mV
		LM1117-2.85V	10	40	mV
		Vin =4.15V, 10mA≤lout≤1A	10	40	IIIV
		LM1117-3.3V	10	40	mV
		Vin =4.6V, 10mA≤lout≤1A	10	70	
		LM1117-5.0V	10	40	mV
		Vin =6.3V, 10mA≤lout≤1A			
Vdrop	Dropout voltage	lout =100mA	1.15	1.3	V
<u>'</u>	Voltage	lout=1A	1.3	1.5	V
Imin	Minimum load current	LM1117-ADJ	2	10	mA
		LM1117-1.2V,Vin=10V	2	5	mA
		LM1117-1.5V,Vin=10V	2	5	mA
	Quiescent	LM1117-1.8V,Vin=12V	2	5	mA
lq	Current	LM1117-2.5V,Vin=12V	2	5	mA
		LM1117-2.85V,Vin=12V	2	5	mA
		LM1117-3.3V,Vin=12V	2	5	mA
		LM1117-5.0V,Vin=12V	2	5	mA
Adjust pin current		LM1117-ADJ Vin=5V,10mA≤lout≤1A	55	120	uA
Ichange	ladj change	LM1117-ADJ Vin=5V,10mA≤lout≤1A	0.2	10	uA
		I I			
	Temperature	Vin=4.5V,lout=10mA	20		
△ Vout	coefficient	VOUT=3.3V20℃≪Ta≪120℃	30		mV

Note1: All test are conducted under ambient temperature 25°C and within a short period of time 20ms

SOT-223

TO-252

Thermal

resistance

 $\textbf{Note2:} \ Load \ current \ smaller \ than \ minimum \ load \ current \ of \ LM1117-ADJ \ will \ lead \ to \ unstable \ or \ oscillation \ output.$

 θ JC

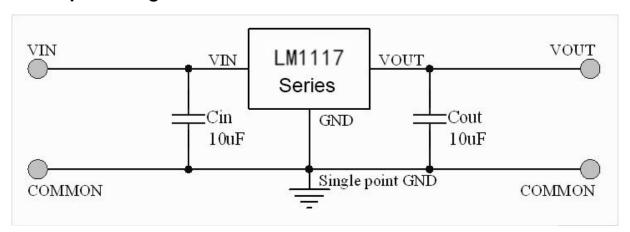
°C/W

20

10

Detailed Description

LM1117X-XXX(MS) is a series of low dropout voltage, three terminal regulators. Its application circuit is very simple: the fixed version only needs two capacitors and the adjustable version only needs two resistors and two capacitors to work. It is composed of some modules including start-up circuit, bias circuit, bandgap, thermal shutdown, power transistors and its driver circuit and so on.

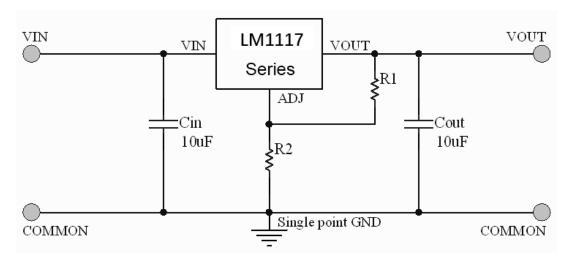

The thermal shut down modules can assure chip and its application system working safety when the temperature is larger than 170°C.

The bandgap module provides stable reference voltage, whose temperature coefficient is compensated by careful design considerations. The temperature coefficient is under 100 ppm/°C. And the accuracy of output voltage is guaranteed by trimming technique.

Typical Application

LM1117X-XXX(MS) has an adjustable version and six fixed versions (1.2V, 1.5V,1.8V, 2.5V, 2.85V, 3.3V and 5V)

Fixed Output Voltage Version



Application circuit of LM1117X-XXX(MS) fixed version

- (1) Recommend using 10uF tan capacitor as bypass capacitor (C1) for all application circuit.
- (2) Recommend using 10uF tan capacitor to assure circuit stability.

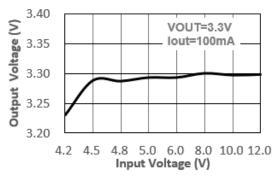
Adjustable Output Voltage Version

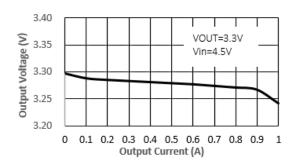
Application Circuit of LM1117-ADJ(MS)

The output voltage of adjustable version follows the equation: Vout= $1.25 \times (1+R2/R1)+IAdj \times R2$. We can ignore IAdj because IAdj (about 50uA) is much less than the current of R1 (about 2~10mA).

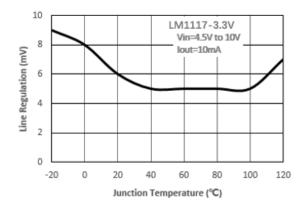
- 1) To meet the minimum load current (>10mA) requirement, R1 is recommended to be 125ohm or lower. As LM1117-ADJ(MS) can keep itself stable at load current about 2mA, R1 is not allowed to be higher than 625ohm.
- 2) Using a bypass capacitor (C_{ADJ}) between the ADJ pin and ground can improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. The impedance of C_{ADJ} should be less than R1 to prevent ripple from being amplified. As R1 is normally in the range of $100\Omega\sim500\Omega$, the value of C_{ADJ} should satisfy this equation: $1/(2 \pi \times f_{\text{ripple}} \times C_{ADJ}) < R1$.

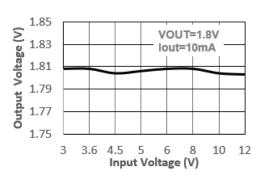
Thermal Considerations

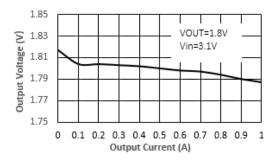

We have to take heat dissipation into great consideration when output current or differential voltage of input and output voltage is large. Because in such cases, the power dissipation consumed by LM1117-XXX(MS) is very large. LM1117-XXX (MS) series uses SOT-223 package type and its thermal resistance is about 20°C/W. And the copper area of application board can affect the total thermal resistance. If copper area is 5cm*5cm (two sides), the resistance is about 30°C/W. So the total thermal resistance is about 20°C/W + 30°C/W. We can decrease total thermal resistance by increasing copper area in application board. When there is no good heat dissipation copper are in PCB, the total thermal resistance will be as high as 120°C/W, then the power dissipation of LM1117 could allow on itself is less than 1W. And furthermore, LM1117-xxx(MS) will work at junction temperature higher than 125°C under such condition and no lifetime is guaranteed.

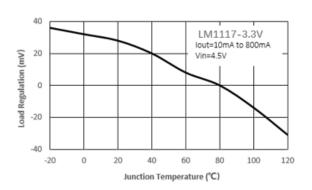

Typical Performance Characteristics

T_A=25℃, unless otherwise noted

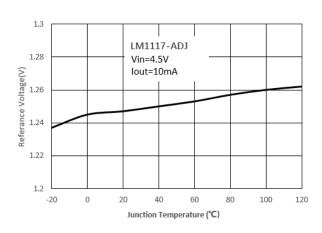

Output Voltage vs. Input Voltage (VOUT=3.3V)


Output Voltage vs. Output Current (VOUT=3.3V)

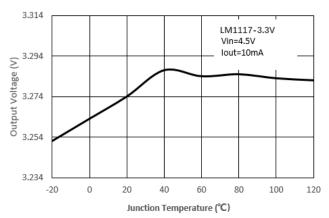

Line Regulation vs. Junction Temperature

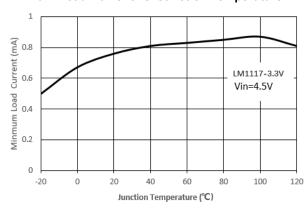

Output Voltage vs. Input Voltage (VOUT=1.8V)

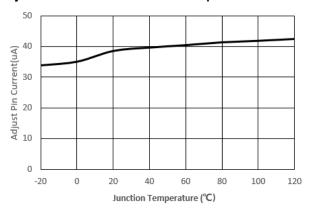
Output Voltage vs. Output Current (VOUT=1.8V)

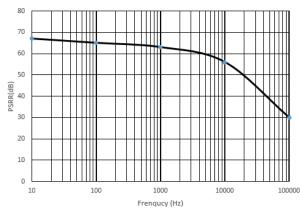


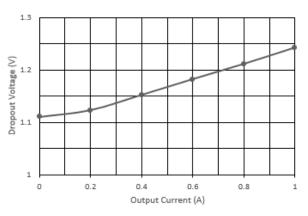
Load Regulation vs. Junction Temperature

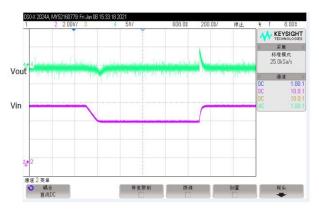


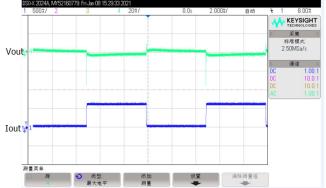

Reference Voltage vs. Junction Temperature


Output Voltage vs. Junction Temperature

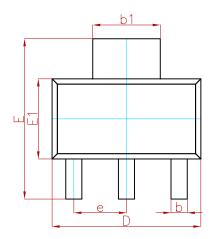

Minimum Load Current vs. Junction Temperature

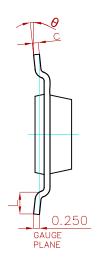

Adjust Pin Current vs. Junction Temperature

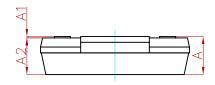

PSRR vs. Frequency


Dropout Voltage vs. Ouput Current

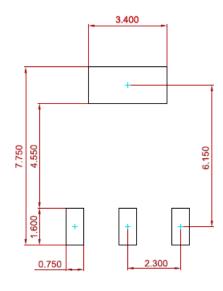
Line Transient Response




Load Transient Response

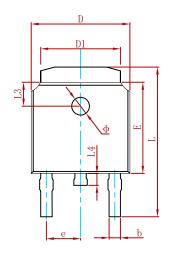


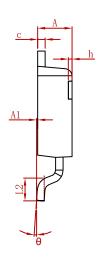
SOT-223 PACKAGE MECHANICAL DATA

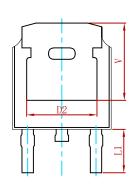


Symbol	Dimensions In Millimeters		Dimension	s In Inches
Syllibol	Min.	Max.	Min.	Max.
Α		1.800		0.071
A1	0.020	0.100	0.001	0.004
A2	1.500	1.700	0.059	0.067
b	0.660	0.840	0.026	0.033
b1	2.900	3.100	0.114	0.122
С	0.230	0.350	0.009	0.014
D	6.300	6.700	0.248	0.264
E	6.700	7.300	0.264	0.287
E1	3.300	3.700	0.130	0.146
е	2.300(BSC)	0.091(BSC)	
Ĺ	0.750		0.030	
θ	0°	10°	0°	10°

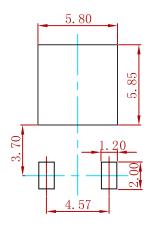
Suggested Pad Layout




Note:

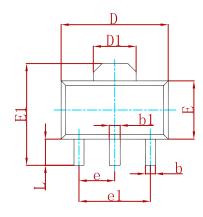

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:±0.050mm.
- 3. The pad layout is for reference purposes only.

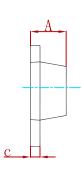
TO-252 PACKAGE MECHANICAL DATA



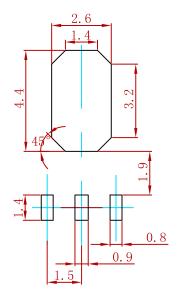
Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.635	0.770	0.025	0.030	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830 REF.		0.190	REF.	
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.712	10.312	0.382	0.406	
L1	2.900 REF.		0.114	REF.	
L2	1.400	1.700	0.055	0.067	
L3	1.600 REF.		0.063	REF.	
L4	0.600	1.000	0.024	0.039	
Ф	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.250	REF.	0.207 REF.		

Suggested Pad Layout




Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.


SOT-89 PACKAGE MECHANICAL DATA

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF.		0.061 REF.	
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP.		0.060 TYP.	
e1	3.000 TYP.		0.118 TYP.	
L	0.900	1.200	0.035	0.047

Suggested Pad Layout

Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:±0.05mm.
- 3. The pad layout is for reference purposes only.

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrLM and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.