

1、MT41K256M16HA-CN

(1) Description

DDR3L SDRAM (1.35V) is a low voltage version of the DDR3 (1.5V) SDRAM. When running in 1.5V compatible mode. DDR3 SDRAM uses a double data rate architecture to achieve high-speed operation. The double data rate architecture is an 8n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write operation for the DDR3 SDRAM effectively consists of a single 8n-bit-wide, four-clock cycle data transfer at the internal DRAM core and eight corresponding n-bit-wide, one half-clock-cycle data transfers at the I/O pins.

(2) Features

- VDD = VDDQ = 1.35v (1.283-1.45v)
- VDD = VDDQ = 1.5V±0.075V
 - Supports DDR3L devices to be backward compatible in 1.5V applications
- Differential bidirectional data strobe
- 8 internal banks
- 8n-bit prefetch architecture
- Differential clock inputs(CK, CK#)
- ODT function
- For data, strobe and mask signals
- Programmable CAS (READ) latency(CL)
- Programmable posted CAS additive latency (AL)
- Programmable CAS (WRITE) latency(CWL)
- Fixed burst length (BL) of8 and burst chop (BC) of 4(via the

mode register set [MRS])

- Selectable BC4 or BL8 on-the-fly (OTF)
- Self refresh mode
- T_C of 105°C
 - 64ms, 8192-cycle refresh up to 85°C
 - 32ms, 8192-cycle refresh at >85°C to 95°C
 - 16ms, 8192-cycle refresh at >95°C to 105°C
- Self refresh temperature (SRT)
- Automatic self refresh (ASR)
- Write leveling
- Multipurpose register
- Output driver calibration

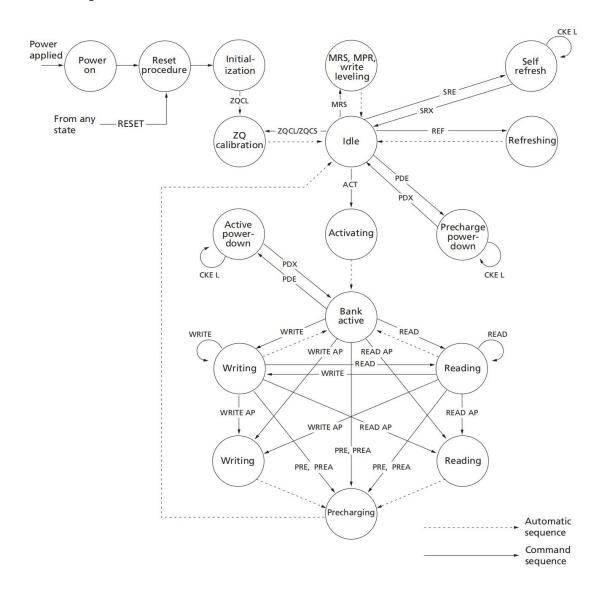
(3) Options and Marking

Opt	Marking	
Configuration	256 Meg x 16	256M16
	96-ball (9mm x 14mm) Type E	НА
FBGA package (Pb-free) – x16	96-ball (7.5mm x 13.5mm) Type N	LY
	96-ball (8mm x 14mm) Type P	TW
	938ps @ CL = 14 (DDR3-2133)	-093
Timing-cycle time	1.07ns @ CL = 13 (DDR3-1866)	-107
	1.25ns @ CL = 11 (DDR3-1600)	-125
	Commercial(0°C≤T _C ≤ +95°C)	None
Operating temperature	perature Industrial (-40°C≤T _C ≤ +95°C)	
	Automotive (-40°C≤T _C ≤ +105°C)	AT

www.chipnobo.com 2/16

(4) Key Timing Parameters

Speed Grade	Data Rate (MT/s)	Target ^t RCD- ^t RP-CL	^t RCD (ns)	^t RP (ns)	CL (ns)
-093 ^{1,2}	2133	14-14-14	13.09	13.09	13.09
-107 ¹	1866	13-13-13	13.91	13.91	13.91
-125	1600	11-11-11	13.75	13.75	13.75


Notes: 1 Backward compatible to 1600,CL = 11(-125)

2 Backward compatible to 1866,CL = 13(-107)

(5) Addressing

Parameter	256 Meg x 16
Configuration	32 Meg x 16 x 8 banks
Refresh count	8K
Row address	32K (A[14:0])
Bank address	8 (BA[2:0])
Column address	1K (A[9:0])
Page size	2KB

(6) State Diagram

ACT=ACTIVATE

E PREA= PRECHARGE ALL

WRITE=WR, WRS4, WRS8

SRX=Self refresh exit

MPR=Multipurpose register

READ AP =RDAP,RDAPS4, RDAPS8

READ= RD, RDS4, RDS8

WRITE AP = WRAP, WRAPS4, WRAPS8

MRS=Mode register set

REF= REFRESH

ZQCL = ZQ LONG CALIBRATION

PDE=Power-down entry
PDX=Power-down exit

RESET=START RESET PROCEDURE

ZQCS = ZQ SHORT CALIBRATION

PRE=PRECHARGE SRE=Self refresh entry

(7) Functional Description

DDR3 SDRAM uses a double data rate architecture to achieve high-speed operation. The double data rate architecture is an 8n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write operation for the DDR3 SDRAM effectively consists of a single 8n-bit-wide, four-clock cycle data transfer at the internal DRAM core and eight corresponding n-bit-wide, one half-clock-cycle data transfers at the I/O pins.

The data used for writing is centre aligned. The read data is transmitted by the DDR3 SDRAM and edgealigned to the data strobes.

The DDR3 SDRAM operates from a differential clock (CK and CK#). The crossing of CK going HIGH and CK# going LOW is referred to as the positive edge of CK. Control, command, and address signals are registered at every positive edge of CK, Input data is registered on the first rising edge of DQS after the WRITE preamble, and output data is referenced on the first rising edge of DQS after the READ preamble.

Read and write accesses to the DDR3 SDRAM are burst-oriented. Accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVATE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVATE command are used to select the bank and row to be accessed. The address bits registered coincident with the READ or WRITE commands are used to select the bank and the starting column location for the burst access.

The device uses a READ and WRITE BL8 and BC4. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access.

As with standard DDR SDRAM, the pipelined, multibank architecture of DDR3 SDRAM allows for concurrent operation, thereby providing high bandwidth by hiding row precharge and activation time.

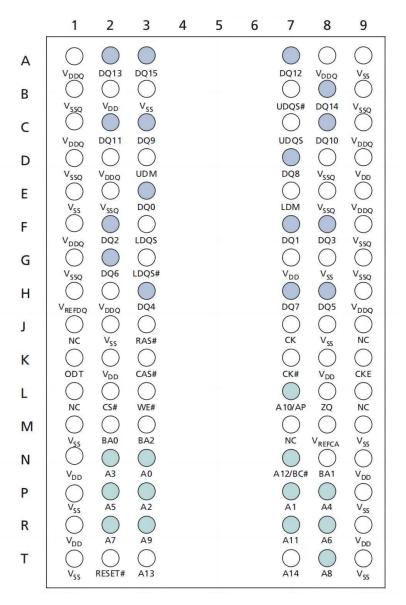
A self refresh mode is provided, along with a power-saving, power-down mode.

Industrial Temperature

The industrial temperature (IT) device requires that the case temperature not exceed -40°C or 95°C. JEDEC specifications require the refresh rate to double when Tc exceeds 85°C; this also requires use of the high-temperature self refresh option. Additionally, ODT resistance and the input/output impedance must be derated when Tc is < 0°C or >95°C.

Automotive Temperature

The Automotive temperature (AT) device requires that the case temperature not exceed - 40° C or 105° C. Micron specification requires the refresh rate to 4X when Tc exceeds 95° C; this also requires use of the high-temperature self refresh option. Additionally, ODT resistance and the input/output impedance must be derated when Tc is < 0° C or > 95° C.


General Notes

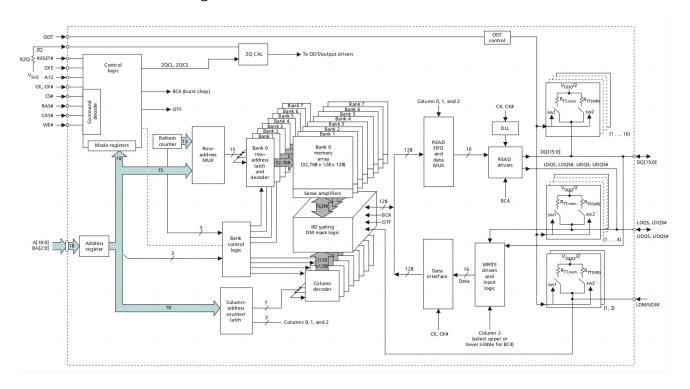
- The functionality and the timing specifications discussed in this data sheet are for the DLL enable mode of operation (normal operation).
- Throughout this data sheet, various figures and text refer to DQs as "DQ". DQ is to be interpreted as any and all DQ collectively, unless specifically stated otherwise.
- The terms "DQS" and "CK" found throughout this data sheet are to be interpreted as DQS, DQS# and CK, CK# respectively, unless specifically stated otherwise.
- Complete functionality may be described throughout the document; any page or diagram may have been simplified to convey a topic and may not be inclusive of all requirements.
- Any functionality not specifically stated is considered undefined, illegal, and not supported, and can result in unknown operation.
- Row addressing is denoted as A[n:0]. For example 1Gb:n=12(x16); 1Gb:n=13(x4,x8); 2Gb:n=13(x16) and 2Gb:n=14(x4,x8); 4Gb:n=14(x16); and 4Gb:n=15(x4,x8).
- Dynamic ODT has a special use case: when DDR3 devices are architected for use in a single rank memory array, the ODT ball can be wired HIGH rather than routed. Refer to the Dyamic ODT Special Use Case section.
- Ax16 device's DQ bus is comprised of two bytes. If only one of the bytes needs to be used, use the lower byte for data transfers and terminate the upper byte as noted:
 - Connect UDQS to ground via $1k\Omega^*$ resistor.
 - Connect UDQS# to VDD via $1k\Omega^*$ resistor.
 - Connect UDM to VDD via $1k\Omega^*$ resistor.
 - Connect DQ[15:8] individually to either Vss, VDD, or VREF via $1k\Omega$ resistors,* or float DQ[15:8].
 - *If ODT is used, $1k\Omega$ resistor should be changed to 4x that of the selected ODT.

2. Pinout and Description

The lead-in end arrangement shall be as specified in the diagram below.

Pin Arrangement Diagram (Top View)

Pin Descriptions


Symbol	Туре	Description
A[14:13], A12/BC#, A11, A10/AP, A[9:0]	Input	Address inputs: Provide the row address for ACTIVATE commands, and the column address and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs also provide the op-code during a LOAD MODE command. Address inputs are referenced to V _{REFCA} . A12/BC#: When enabled in the mode register (MR), A12 is sampled during READ and WRITE commands to determine whether burst chop (on-the-fly) will be performed (HIGH = BL8 or no burst chop, LOW = BC4). See Table 70 (page 117).
BA[2:0]	Input	Bank address inputs: BA[2:0] define the bank to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is loaded during the LOAD MODE command. BA[2:0] are referenced to V_{REFCA} .
CK, CK#	Input	Clock: CK and CK# are differential clock inputs. All control and address input signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. Output data strobe (DQS, DQS#) is referenced to the crossings of CK and CK#.
CKE	Input	Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks on the DRAM. The specific circuitry that is enabled/disabled is dependent upon the DDR3 SDRAM configuration and operating mode. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is synchronous for power-down entry and exit and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE, RESET#, and ODT) are disabled during POWER-DOWN. Input buffers (excluding CKE and RESET#) are disabled during SELF REFRESH. CKE is referenced to V _{REFCA} .
CS#	Input	Chip select: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS# is registered HIGH. CS# provides for external rank selection on systems with multiple ranks. CS# is considered part of the command code. CS# is referenced to V_{REFCA} .
LDM	Input	Input data mask: LDM is a lower-byte, input mask signal for write data. Lower-byte input data is masked when LDM is sampled HIGH along with the input data during a write access. Although the LDM ball is input-only, the LDM loading is designed to match that of the DQ and DQS balls. LDM is referenced to V _{REFDQ} .
ODT	Input	On-die termination: ODT enables (registered HIGH) and disables (registered LOW) termination resistance internal to the DDR3 SDRAM. When enabled in normal operation, ODT is only applied to each of the following balls: DQ[15:0], LDQS, LDQS#, UDQS, UDQS#, LDM, and UDM for the x16; DQ0[7:0], DQS, DQS#, DM/TDQS, and NF/TDQS# (when TDQS is enabled) for the x8; DQ[3:0], DQS, DQS#, and DM for the x4. The ODT input is ignored if disabled via the LOAD MODE command. ODT is referenced to V _{REFCA} .
RAS#, CAS#, WE#	Input	Command inputs: RAS#, CAS#, and WE# (along with CS#) define the command being entered and are referenced to V_{REFCA} .
RESET#	Input	Reset: RESET# is an active LOW CMOS input referenced to V_{SS} . The RESET# input receiver is a CMOS input defined as a rail-to-rail signal with DC HIGH $\geq 0.8 \times V_{DD}$ and DC LOW $\leq 0.2 \times V_{DDQ}$. RESET# assertion and desertion are asynchronous.

Pin Descriptions (Continued)

Symbol	Туре	Description
UDM	Input	Input data mask: UDM is an upper-byte, input mask signal for write data. Upper-byte input data is masked when UDM is sampled HIGH along with that input data during a WRITE access. Although the UDM ball is input-only, the UDM loading is designed to match that of the DQ and DQS balls. UDM is referenced to V _{REFDQ} .
DQ[7:0]	I/O	Data input/output: Lower byte of bidirectional data bus for the x16 configuration. DQ[7:0] are referenced to V _{REFDQ} .
DQ[15:8]	I/O	Data input/output: Upper byte of bidirectional data bus for the x16 configuration. DQ[15:8] are referenced to V_{REFDQ} .
LDQS, LDQS#	I/O	Lower byte data strobe: Output with read data. Edge-aligned with read data. Input with write data. Center-aligned to write data.
UDQS, UDQS#	I/O	Upper byte data strobe: Output with read data. Edge-aligned with read data. Input with write data. DQS is center-aligned to write data.
V_{DD}	Supply	Power supply: 1.5V ±0.075V.
V_{DDQ}	Supply	DQ power supply: 1.5V ± 0.075 V. Isolated on the device for improved noise immunity.
V _{REFCA}	Supply	Reference voltage for control, command, and address: V _{REFCA} must be maintained at all times (including self refresh) for proper device operation.
V_{REFDQ}	Supply	Reference voltage for data: V_{REFDQ} must be maintained at all times (excluding self refresh) for proper device operation.
V _{SS}	Supply	Ground.
V _{SSQ}	Supply	DQ ground: Isolated on the device for improved noise immunity.
ZQ	Reference	External reference ball for output drive calibration: This ball is tied to an external 240Ω resistor (RZQ), which is tied to V_{SSQ} .
NC	_	No connect: These balls should be left unconnected (the ball has no connection to the DRAM or to other balls).

3、Functional Block Diagrams

4、Electrical Specifications

Absolute Maximum Ratings								
Symbol	Parameter	Min	Max	Unit	Notes			
VDD	VDD supply voltage relative to VSS	-0.4	1.975	V	1			
VDDQ	VDD supply voltage relative to VSSQ	-0.4	1.975	V				
VIN, VOUT	Voltage on any pin relative to VSS	-0.4	1.975	V				
тс	Operating case temperature - Commercial	0	95					
	Operating case temperature - Industrial	-40	95	°C	2.2			
	Operating case temperature - Automotive	-40	105		2,3			
	Operating case temperature - Military	-55	125					
TSTG	Storage temperature	-55	150	°C				

Notes: 1. VDD and VDDQ must be within 300mV of each other at all times, and VREF must not be greater than $0.6 \times \text{VDDQ}$. When VDD和 VDDQ < 500 mV, VREF can be $\leq 300 \text{mV}$.

- 2. MAX operating case temperature. TC is measured in the center of the package.
- 3. Device functionality is not guaranteed if DRAM device exceeds the maximum TC during operation.

	Recommended Parameters							
Symbol	Parameter	Min	Тур	Max	Unit			
VDD	Supply voltage	1.28	1.35	1.45	V			
VDDQ	I/O Supply voltage	1.28	1.35	1.45	V			
Backwar	d compatible to VDD=VDDQ=1.5V±0.075V							

5. Electrical Characteristics

5.1 Input/Output Capacitance

DDR3L Input/output capacitance

		DDR	3L-16	DDR3	L-186	DDR:	3L-21		
Capacitance Parameters	Sym	0	00	6		33		Unit	Note
Parameters		Min	Max	Min	Max	Min	Max		
CK and CK#	C_{CK}	0.8	1.4	0.8	1.3	0.8	1.3	pF	
ΔC:CK to	C _{DCK}	0.0	0.15	0.0	0.15	0.0	0.15	pF	
Single-end I/O: DQ, DM	C_{IO}	1.4	2.2	1.4	2.1	1.4	2.1	pF	2
Differential I/O:DQS,D QS#,TDQS, TDQS#	C _{IO}	1.4	2.2	1.4	2.1	1.4	2.1	pF	3
ΔC: DQS to DQS#,TDQ S, TDQS#	$C_{ m DDQS}$	0.0	0.15	0.0	0.15	0.0	0.15	pF	3
ΔC: DQ to DQS	C_{DIO}	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF	4
Inputs(CTR L,CMD,AD DR)	Cı	0.7 5	1.2	0.75	1.2	0.75	1.2	pF	5
ΔC: CTRL to CK	C _{DI_CTRL}	-0.4	0.2	-0.4	0.2	-0.4	0.2	pF	6
ΔC: CMD_ADD R to CK	C _{DI_CMD}	-0.4	0.4	-0.4	0.4	-0.4	0.4	pF	7
ZQ pin capacitance	CzQ	-	3.0	-	3.0	-	3.0	pF	
Reset pin capacitance	C_{RE}	-	3.0	-	3.0	-	3.0	pF	

Notes: 1. $V_{DD} = 1.35V$ (1.283-1.45V), $V_{DDQ} = V_{DD}$, $V_{REF} = V_{SS}$, f = 100 MHz, $T_C = 25$ °C. $V_{OUT(DC)} = 0.5 \times V_{DDQ}$, $V_{OUT} = 0.1V$ (peak-to-peak.).

- 2. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading.
- 3. Includes TDQS, TDQS#. CDDQS is for DQS vs. DQS# and TDQS vs. TDQS# separately.
- 4. $C_{DIO} = C_{IO(DQ)} 0.5 \times (C_{IO(DQS)} + C_{IO(DQS\#)})_{\circ}$
- 5. Excludes CK, CK#; CTRL = ODT, CS#, and CKE; CMD = RAS#, CAS#, and WE#; A=[n: 0], BA=[2:0].
- 6. $C_{DI_CTRL} = C_{I(CTRL)} 0.5 \times (C_{CK (CK)} + C_{CK (CK \#)})_{\circ}$
- 7. $C_{DI_CMD_ADDR} = C_{I (CMD_ADDR)} 0.5 \times (C_{CK (CK)} + C_{CK (CK \#)})_{\circ}$

11/16

5.2 IDD Specifications and conditions

Within the following IDD measurement tables, the following definitions and conditions are used, unless stated otherwise:

- LOW: $V_{IN} \le V_{IL(AC)max}$; HIGH: $V_{IN} \ge V_{IH(AC)min}$.
- Midlevel: Inputs are VREF=VDD/2.
- R_{ON} set to RZQ/7 (34 Ω).
- $R_{TT,nom}$ set to RZQ/6 (40 Ω).
- RTT(WR) set to RZQ/2 (120 Ω).
- Qoff is enabled in MRl.
- ODT is enabled in MRI (RTT,nom) and MR2 (RTT(WR)).
- TDQS is disabled in MRl.
- External DQ/DQS/DM load resistor is 25Ω to VDDQ/2.
- Burst lengths are BL8 fixed.
- AL = 0 (except in I_{DD7}).
- IDD specifications are tested after the device is properly initialized.
- Input slew rate is specified by AC parametric test conditions.
- Optional ASR is disabled.
- Read burst type uses nibble sequential (MR0[3] = 0).
- Loop patterns must be executed at least once before current measurements begin.

Timing Parameters Used for IDD Measurements - Clock Units

		DDR3	L-1600	DDR3L-1866	DDR3L-2133	
I _{DD} Parameter		-125E	-125E -125 -107 -093		-093	Unit
		10-10-10	11-11-11	13-13-13	14-14-14	
t CK(M	IIN)I _{DD}	1	.25	1.07	0.938	ns
CL I _{DD})	10	11	13	14	CK
t RCD(N	MIN)I _{DD}	10	11	13	14	CK
t RC(M	IN)I _{DD}	38	39	45	50	CK
t RAS(N	IN)I _{DD}	28	28	32	36	CK
t RP(M	IN)I _{dd}	10	11	13	14	CK
^t AFT	×16	32	32	33	38	CK
t RRD	×16	6	6	6	7	СК
	1Gb	88	88	103	118	CK
t DEC	2Gb	128	128	150	172	CK
^t RFC	4Gb	208	208	243	279	CK
	8Gb	280	280	328	375	CK

5.3 Operating IDD Specifications

IDD Maximum Limits for 1.35/1.5V Operation

Spe	Speed Bin			DDD01 1066	DDDat 0100		N	
Parameter	Symbol	Wi dth	DDR3L-1600	DDR3L-1866	DDR3L-2133	Units	Notes	
Operating current 0:One bank ACTIVATE-to-PRECHARGE	I_{DD0}	×16	110	130	150	mA	1,2	
Operating current 1:One bank ACTIVATE-to-READ-to- PRECHARGE	I_{DD1}	×16	120	135	155	mA	1,2	
Precharge power-down current: Slow exit	I_{DD2P0}	×16	22	22	22	mA	1,2	
Precharge power-down current: Fast exit	I_{DD2P1}	×16	45	47	49	mA	1,2	
Precharge quiet standby current	I_{DD2Q}	×16	60	65	70	mA	1,2	
Precharge standby current	I_{DD2N}	×16	63	68	73	mA	1,2	
Precharge standby ODT current	I_{DD2NT}	×16	85	92	98	mA	1,2	
Active power-down current	I_{DD3P}	×16	70	80	85	mA	1,2	
Active standby current	I_{DD3N}	×16	90	100	105	mA	1,2	
Burst read operating current	I_{DD4R}	×16	190	220	240	mA	1,2	
Burst write operating current	$I_{\rm DD4W}$	×16	210	250	280	mA	1,2	
Burst refresh current	I_{DD5B}	×16	235	242	250	mA	1,2	
Room temperature self refresh	I_{DD6}	×16	25	25	25	mA	1,2,3	
Extended temperature self refresh	$I_{\mathrm{DD}6ET}$	×16	28	28	28	mA	2,4	
All banks interleaved read current	I_{DD7}	×16	240	270	290	mA	1,2	
Reset current	I_{DD8}	×16	23	23	24	mA	1,2	

Notes: 1. $Tc = 85^{\circ}C$; SRT and ASR are disabled.

2. Enabling ASR could increase lddx by up to an additional 2mA.

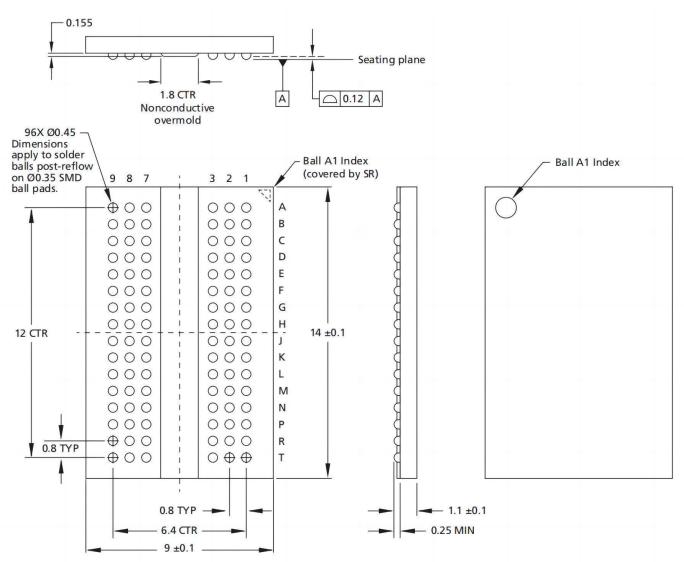
3. Restricted to $T_C(MAX) = 85^{\circ}C$.

4. Tc = +85°C; ASR and ODT are disabled: SRT is enabled.

5. When Tc>+95°C: All IDDX parameters must be derated by 30%.

6. When Tc > +105°C: All IDDX parameters must be derated by 50%.

7. When Tc>+105°C: Self-refresh mode is not available.



5.4 DC Operating Conditions

DDR3L 1. 35V DC Electrical Characteristics and Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	VDD	1.283	1.35	1.45	V
I/O supply voltage	VDDQ	1.283	1.35	1.45	V
Input leakage current Any input $0V \le VIN \le VDD$, VREF Pin $0V \le VIN \le 1.1V$ (All other pins not under test = $0V$)	lι	-2	-	2	μΑ
VREF supply leakage current VREFDQ = VDD/2 or VREFCA = VDD/2 (All other pins not under test = 0V)	Ivref	-1	-	1	μΑ
Output leakage current (DQ off)	loz	-5	-	5	μΑ

6. Package Dimensions

Notes: 1. All dimensions are in millimeters.

2. Solder ball material: SAC305 (96.5% Sn, 3% Ag, 0.5% Cu).

NOTICE

The information presented in this document is for reference only. Involving product optimization and productivity improvement, ChipNobo reserves the right to adjust product indicators and upgrade some technical parameters. ChipNobo is entitled to be exempted from liability for any delay or non-delivery of the information disclosure process that occurs.

本文件中提供的信息仅供参考。涉及产品优化和生产效率改善,ChipNobo 有权调整产品指标和部分技术参数的升级,所出现信息披露过程存在延后或者不能送达的情形,ChipNobo 有获免责权。

The product listed herein is designed to be used with residential and commercial equipment, and do not support sensitive items and specialized equipment in areas where sanctions do exist. ChipNobo Co., Ltd or anyone on its behalf, assumes no responsibility or liability for any damages resulting from improper use.

此处列出的产品旨在民用和商业设备上使用,不支持确有制裁地区的敏感项目和特殊设备,ChipNobo 有限公司或其代表,对因不当使用而造成的任何损害不承担任何责任。

For additional information, please visit our website http://www.chipnobo.com, or consult your nearest Chipnobo sales office for further assistance.

欲了解更多信息,请访问我们的网站 http://www.chipnobo.com,或咨询离您最近的 Chipnobo 销售办事处以获得进一步帮助。