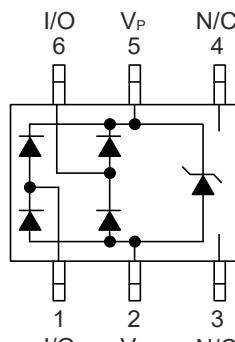


1. Description

The NUP2202W1 transient voltage suppressor is designed to protect high speed data lines from ESD, EFT, and lightning.


2. Applications

- High Speed Communication Line Protection
- USB 1.1 and 2.0 Power and Data Line Protection
- Digital Video Interface (DVI) and HDMI
- Monitors and Flat Panel Displays
- MP3

3. Features

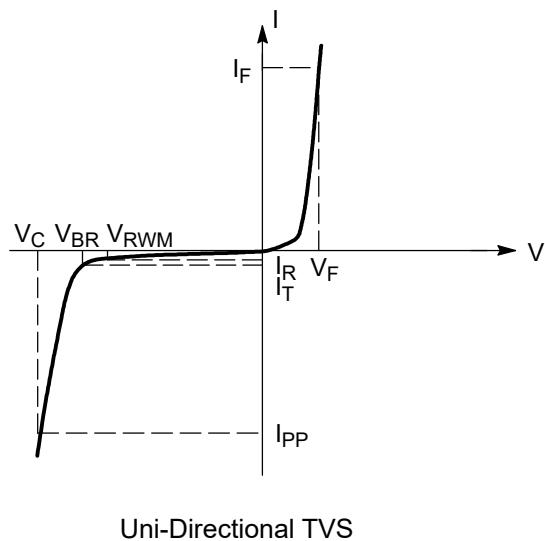
- Low Clamping Voltage
- Stand-Off Voltage: 5 V
- Low Leakage
- UL Flammability Rating of 94 V-0
- Protection for the Following IEC Standards: IEC 61000-4-2 Level 4 ESD Protection
- This is a Pb-Free Device

4. Pinning information

SOT-363

5. Absolute Maximum Ratings $T_J = 25^\circ\text{C}$

Parameter	Symbol	Value	Units
Peak Power Dissipation 8x20 μs @ $T_A=25^\circ\text{C}$ (Note 1)	P_{PK}	500	W
Junction Temperature Range	T_J	-40 to 125	$^\circ\text{C}$
Storage Temperature Range	T_{STG}	-55 to 150	$^\circ\text{C}$
Lead Solder Temperature -Maximum (10 Seconds)	T_L	260	$^\circ\text{C}$
Human Body Model (HBM)	ESD	16000	V
Machine Model (MM)		400	V
IEC 61000-4-2 Air (ESD)		20000	V
IEC 61000-4-2 Contact (ESD)		20000	V
IEC 61000-4-4 (5/50 ns)	EFT	40	A


Notes:

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Nonrepetitive current pulse per Figure 5 (Pin 5 to Pin 2).

6. Electrical Characteristics ($T_A=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter
I_{PP}	Maximum Reverse Peak Pulse Current
V_C	Clamping Voltage @ I_{PP}
V_{RWM}	Working Peak Reverse Voltage
I_R	Maximum Reverse Leakage Current @ V_{RWM}
V_{BR}	Breakdown Voltage @ I_T
I_T	Test Current
I_F	Forward Current
V_F	Forward Voltage @ I_F
P_{PK}	Peak Power Dissipation
C	Capacitance @ $V_R=0$ and $f=1\text{MHz}$

7. Electrical Characteristic ($T_j=25^\circ\text{C}$ unless otherwise specified)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Reverse Working Voltage	V_{RWM}	(Note 2)			5	V
Breakdown Voltage	V_{BR}	$I_T=1\text{mA}$, (Note 3)	6			V
Reverse Leakage Current	I_R	$V_{RWM}=5\text{V}$			5	μA
Clamping Voltage	V_C	$I_{PP}=5\text{A}$ (Note 4)		8.5	12.5	V
Clamping Voltage	V_C	$I_F=8\text{A}$ (Note 4)		8.9	20	V
Maximum Peak Pulse Current	I_{PP}	8x20 μs Waveform (Note 4)			28	A
Junction Capacitance	C_J	$V_R=0\text{V}$, $f=1\text{MHz}$, between I/O Pins and GND	3	5		pF
Junction Capacitance	C_J	$V_R=0\text{V}$, $f=1\text{MHz}$, between I/O Pins	1.5	3		pF
Clamping Voltage	V_C	Per IEC 61000-4-2 (Note 6)	Figure 1 and 2			V

Notes:

2. TVS devices are normally selected according to the working peak reverse voltage ($VRWM$), which should be equal or greater than the DC or continuous peak operating voltage level.
3. V_{BR} is measured at pulse test current I_T .
4. Nonrepetitive current pulse per Figure 5 (Pin 5 to Pin 2).
5. Surge current waveform per Figure 5.
6. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

8.1 Typical characteristic

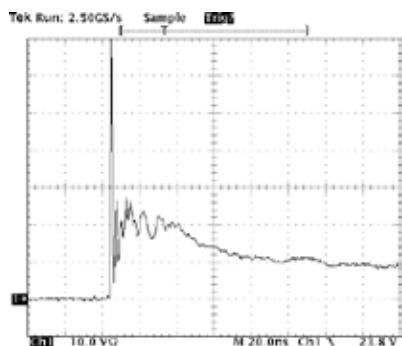


Figure 1: ESD Clamping Voltage Screenshot
Positive 8 kV Contact per IEC61000-4-2

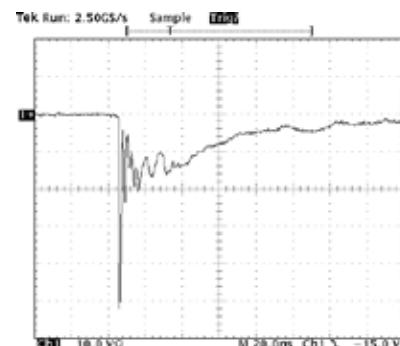


Figure 2: ESD Clamping Voltage Screenshot
Negative 8 kV Contact per IEC61000-4-2

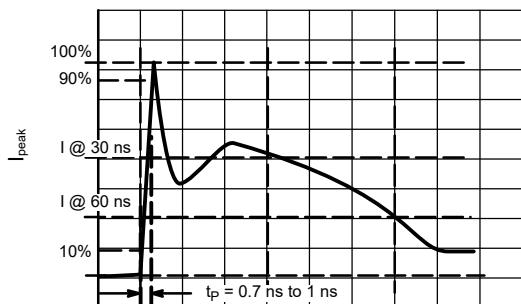


Figure 3: IEC61000-4-2 Waveform

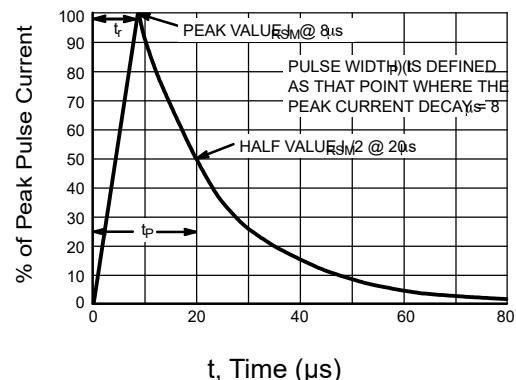


Figure 4: 8 X 20 μs Pulse Waveform

Level	Test Voltage (kV)	First Peak Current (A)	Current at 30 ns(A)	Current at 60 ns(A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

IEC 61000-4-2 Spec

8.2 Typical characteristic

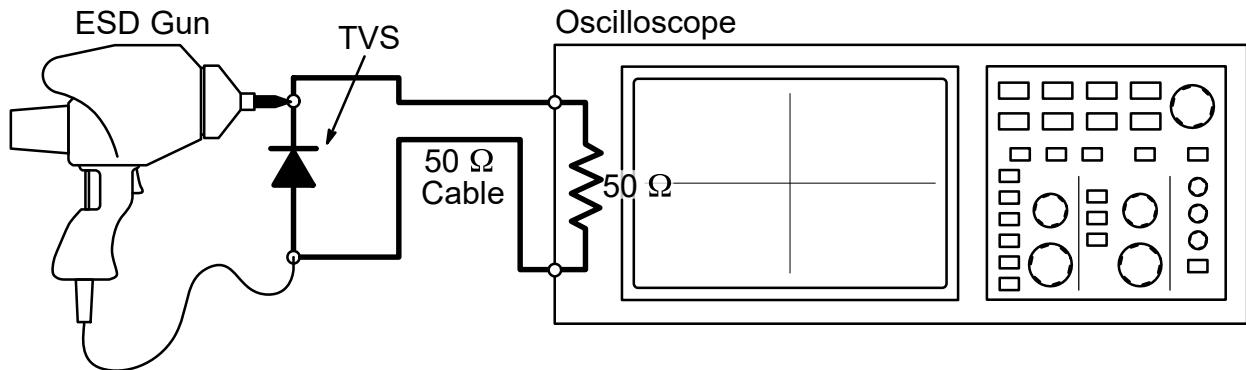


Figure 5: Diagram of ESD Test Setup

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots .

8.3 Typical characteristic

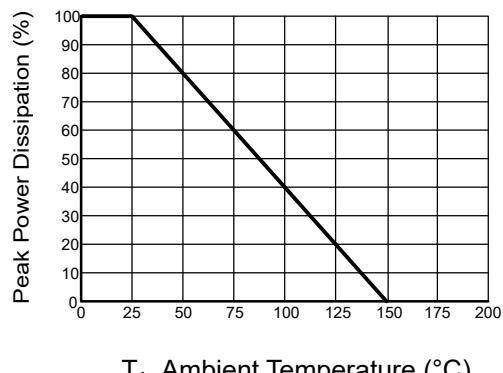


Figure 6: Pulse Derating Curve

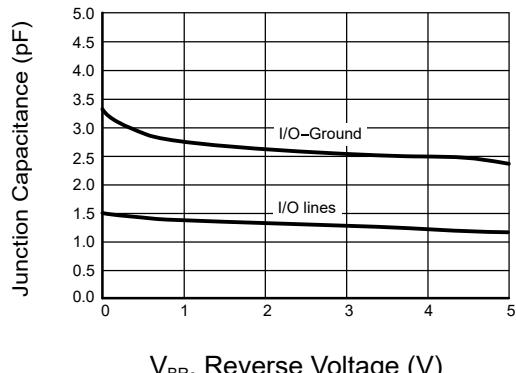
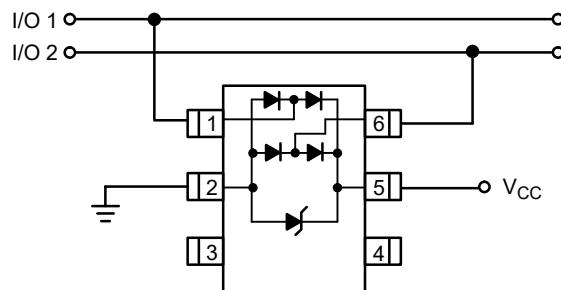



Figure 7: Junction Capacitance vs Reverse Voltage

Figure 8: Clamping Voltage vs. Peak Pulse Current
(8 x 20 μs Waveform)

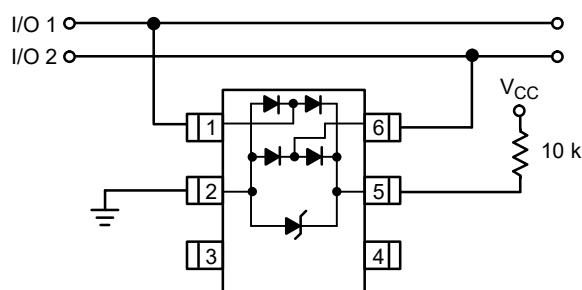
9.1 Applications Information


The NUP2202W1 is a low capacitance TVS diode array designed to protect sensitive electronics such as communications systems, computers, and computer peripherals against damage due to ESD events or transient overvoltage conditions. Because of its low capacitance, it can be used on high speed I/O data lines. The integrated design of the NUP2202W1 offers surge rated, low capacitance steering diodes and a TVS diode integrated in a single package (SC-88). If a transient condition occurs, the steering diodes will drive the transient to the positive rail of the power supply or to ground. The TVS device protects the power line against overvoltage conditions to avoid damage to the power supply and any downstream components.

NUP2202W1 Device Configuration Options

The NUP2202W1 is able to protect two data lines against transient overvoltage conditions by driving them to a fixed reference point for clamping purposes. The steering diodes will be forward biased whenever the voltage on the protected line exceeds the reference voltage (V_f or $V_{CC} + V_f$). The diodes will force the transient current to bypass the sensitive circuit. Data lines are connected at pins 1 and 6. The negative reference is connected at pin 2. This pin must be connected directly to ground by using a ground plane to minimize the PCB's ground inductance. It is very important to reduce the PCB trace lengths as much as possible to minimize parasitic inductance.

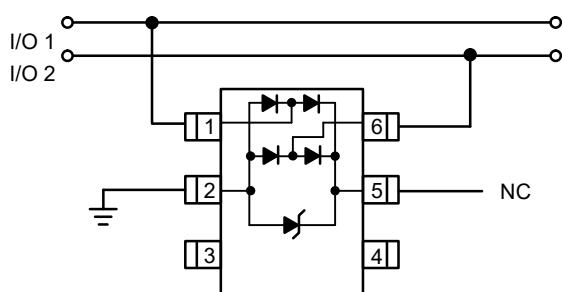
Option 1


Protection of two data lines and the power supply using V_{CC} as reference.

For this configuration, connect pin 5 directly to the positive supply rail (V_{CC}), the data lines are referenced to the supply voltage. The internal TVS diode prevents overvoltage on the supply rail. Biasing of the steering diodes reduces their capacitance.

Option 2

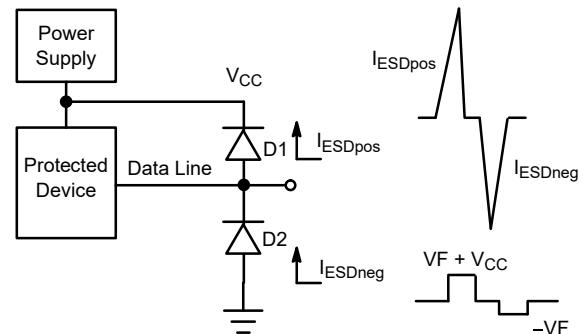
Protection of two data lines with bias and power supply isolation resistor.



9.2 Applications Information

The NUP2202W1 can be isolated from the power supply by connecting a series resistor between pin 5 and VCC. A 10 k resistor is recommended for this application. This will maintain bias on the internal TVS and steering diodes, reducing their capacitance.

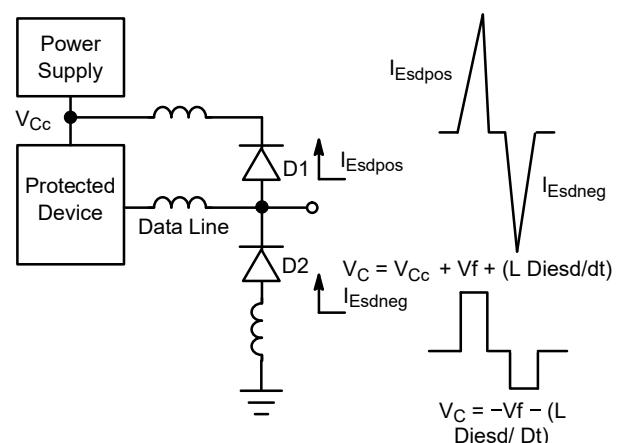
Option 3


Protection of two data lines using the internal TVS diode as reference.

In applications lacking a positive supply reference or those cases in which a fully isolated power supply is required, the internal TVS can be used as the reference. For these applications, pin 5 is not connected. In this configuration, the steering diodes will conduct whenever the voltage on the protected line exceeds the working voltage of the TVS plus one diode drop ($V_C = V_f + V_{TVs}$).

ESD Protection of Power Supply Lines

When using diodes for data line protection, referencing to a supply rail provides advantages. Biasing the diodes reduces their capacitance and minimizes signal distortion. Implementing this topology with discrete devices does have disadvantages. This configuration is shown below:



Looking at the figure above, it can be seen that when a positive ESD condition occurs, diode D1 will be forward biased while diode D2 will be forward biased when a negative ESD condition occurs. For slower transient conditions, this system may be approximated as follows:

For positive pulse conditions: $V_C = V_{CC} + V_{fD1}$

For negative pulse conditions: $V_C = -V_{fD2}$

ESD events can have rise times on the order of some number of nanoseconds. Under these conditions, the effect of parasitic inductance must be considered. A pictorial representation of this is shown below.

9.3 Applications Information

An approximation of the clamping voltage for these fast transients would be:

For positive pulse conditions:

$$V_C = V_{CC} + V_f + (L \frac{di_{ESD}}{dt})$$

For negative pulse conditions:

$$V_C = -V_f - (L \frac{di_{ESD}}{dt})$$

As shown in the formulas, the clamping voltage (V_C) not

only depends on the V_f of the steering diodes but also on the $L \frac{di_{ESD}}{dt}$ factor. A relatively small trace inductance can result in hundreds of volts appearing on the supply rail. This endangers both the power supply and anything attached to that rail. This highlights the importance of good board layout.

Taking care to minimize the effects of parasitic inductance will provide significant benefits in transient immunity.

Even with good board layout, some disadvantages are still present when discrete diodes are used to suppress ESD events across datalines and the supply rail. Discrete diodes with good transient power capability will have larger die and therefore higher capacitance. This capacitance becomes problematic as transmission frequencies increase.

Reducing capacitance generally requires reducing die size. These small die will have higher forward voltage characteristics at typical ESD transient current levels. This voltage combined with the smaller die can result in device failure.

This device integrates a TVS diode within a network of steering diodes.

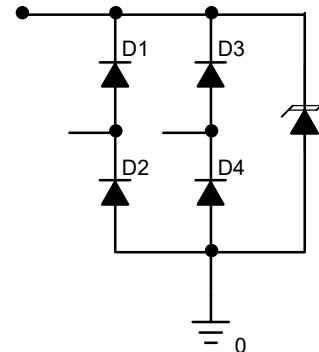
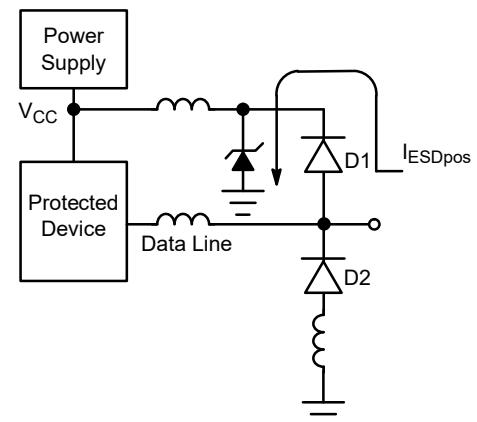



Figure 9. NUP2202W1 Equivalent Circuit

During an ESD condition, the ESD current will be driven to ground through the TVS diode as shown below.

The resulting clamping voltage on the protected IC be: will $V_C = V_f + V_{TVs}$.

The clamping voltage of the TVS diode is provided in Figure 8 and depends on the magnitude of the ESD current. The steering diodes are fast switching devices with unique forward voltage and low capacitance characteristics.

9.4 Applications Information

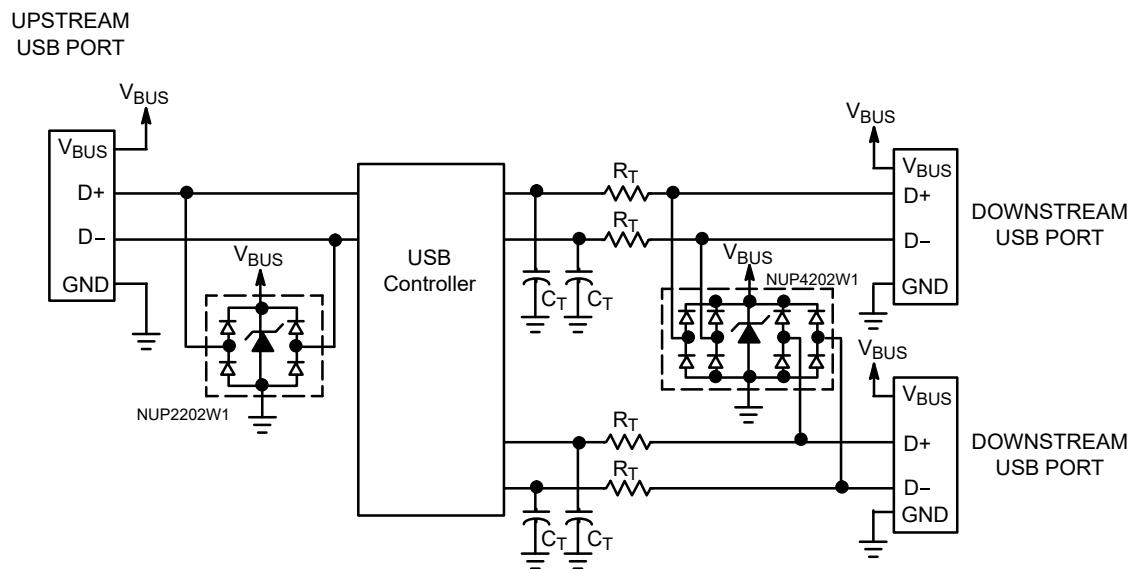
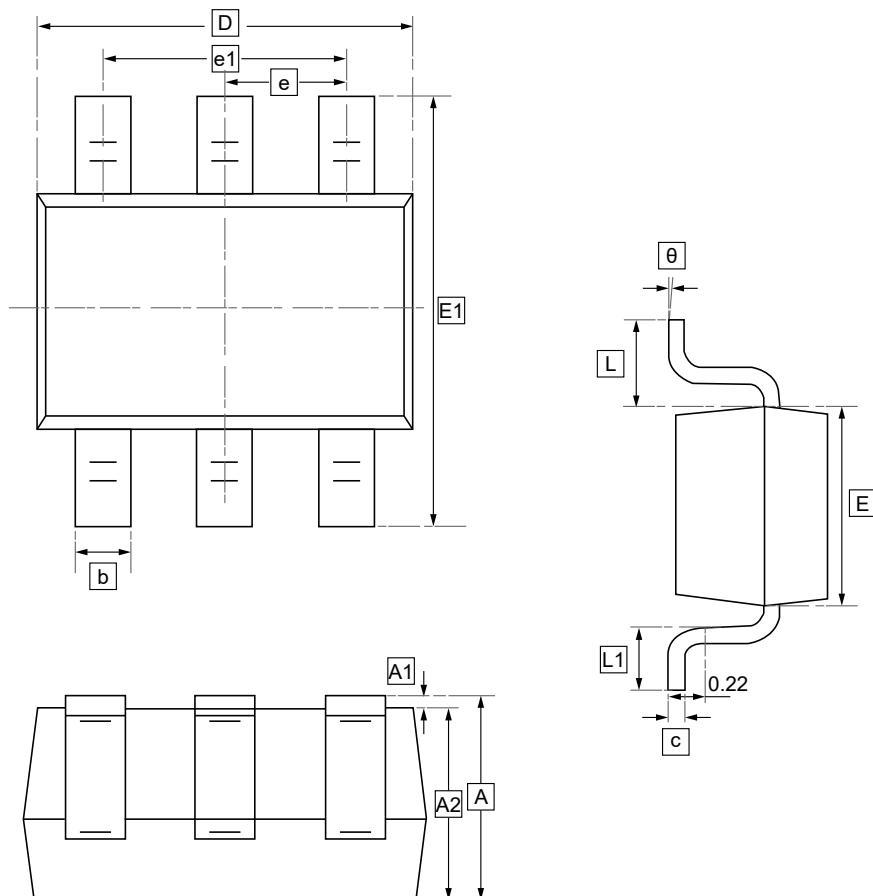
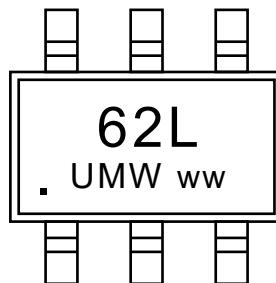



Figure 10. ESD Protection for USB Port

10.SOT-363 Package Outline Dimensions


DIMENSIONS (mm are the original dimensions)

Symbol	A	A1	A2	b	c	D	E	E1	e	e1	L	L1
Min	0.900	0.000	0.900	0.150	0.080	2.000	1.150	2.150	0.65	1.200	0.525	0.260
Max	1.100	0.100	1.000	0.350	0.150	2.200	1.350	2.450	TYP	1.400	REF	0.460

Symbol	θ
Min	0°
Max	8°

11. Ordering information

ww: Batch Code

Order Code	Package	Base QTY	Delivery Mode
UMW NUP2202W1T2G	SOT-363	3000	Tape and reel

12.Disclaimer

UMW reserves the right to make changes to all products, specifications. Customers should obtain the latest version of product documentation and verify the completeness and currency of the information before placing an order.

When applying our products, please do not exceed the maximum rated values, as this may affect the reliability of the entire system. Under certain conditions, any semiconductor product may experience faults or failures. Buyers are responsible for adhering to safety standards and implementing safety measures during system design, prototyping, and manufacturing when using our products to prevent potential failure risks that could lead to personal injury or property damage.

Unless explicitly stated in writing, UMW products are not intended for use in medical, life-saving, or life-sustaining applications, nor for any other applications where product failure could result in personal injury or death. If customers use or sell the product for such applications without explicit authorization, they assume all associated risks.

When reselling, applying, or exporting, please comply with export control laws and regulations of China, the United States, the United Kingdom, the European Union, and other relevant countries, regions, and international organizations.

This document and any actions by UMW do not grant any intellectual property rights, whether express or implied, by estoppel or otherwise. The product names and marks mentioned herein may be trademarks of their respective owners.