

Fast recovery diode Reverse Voltage50V-1000v Forward current-1A

Features

Glass passivated chip
High surge current capability
Ldeal for surface mounted applications
Low power loss, high efficiency
Plastic Case Material has UL Flammability

Mechanical Data

Package: SOD-123FL

Terminals:Tin Plated leads, solderable per

Mil-STD-750 Method 2026

Polarity: As marked

Molding compound meets UL 94 V-0 flammability rating,

ROHS-compliant

Maximum Ratings (Ta=25℃ Unless otherwise specified)

Maximum Ratings (14 20 C offices otherwise opeometr)								
SYMBOL	F1A	F1B	F1D	F1G	F1J	F1K	F1M	Umit
V_{RRM}	50	100	200	400	600	800	1000	٧
V _{RMS}	35	70	140	280	420	560	700	V
V _{DC}	50	100	200	400	600	800	1000	٧
IO _(AV)	1.0				Α			
IFSM	25.0				Α			
ii Givi	50.0				Α			
I ² t	1.7			A ² S				
V_{FM}	1.3				٧			
D.	5.0			uA				
ir.	100.0			u <u></u>				
Trr		15	0.0		250.0	50	0.0	ns
R_{QJa}	75.0		°C/W					
T _J	—55to+150				$^{\circ}$			
T _{STG}	—55to+150			$^{\circ}$				
	SYMBOL V _{RRM} V _{RMS} V _{DC} IO _(AV) IFSM I ² t V _{FM} IR Trr R _{QJa} T _J	SYMBOL F1A V _{RRM} 50 V _{RMS} 35 V _{DC} 50 IO _(AV) IFSM I ² t V _{FM} IR Trr R _{Q,Ja} T _J	SYMBOL F1A F1B V _{RRM} 50 100 V _{RMS} 35 70 V _{DC} 50 100 IO _(AV) IFSM I ² t V _{FM} IR Trr 15 R _{Q,Ja} T _J	SYMBOL F1A F1B F1D V _{RRM} 50 100 200 V _{RMS} 35 70 140 V _{DC} 50 100 200 IO _(AV) IFSM IFSM IFSM IR Trr 150.0 R _{Q,Ja} T _J —	SYMBOL F1A F1B F1D F1G V _{RMM} 50 100 200 400 V _{RMS} 35 70 140 280 V _{DC} 50 100 200 400 IO _(AV) 1.0 25.0 IFSM 50.0 50.0 I* 1.3 5.0 IR 100.0 100.0 Trr 150.0 75.0 R _{Q,Ja} 75.0 -55to+15	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SYMBOL F1A F1B F1D F1G F1J F1K V _{RMS} 50 100 200 400 600 800 V _{RMS} 35 70 140 280 420 560 V _{DC} 50 100 200 400 600 800 IO _(AV) 1.0 25.0 50.0 50.0 1.7 1.7 1.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

FIG. 1MAXIMUM AVERAGE FORWARD CURRENT DERATING

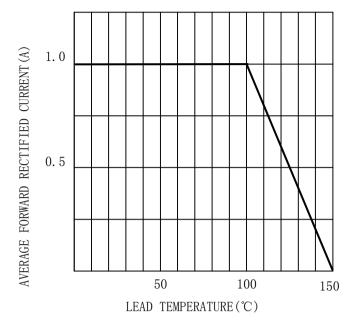


FIG. 2TYPICAL FORWARD CHARACTERISTICS

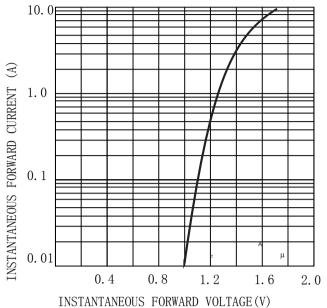


FIG. 3MAXIMUM NON-REPEITIVE SURGE CURRENT

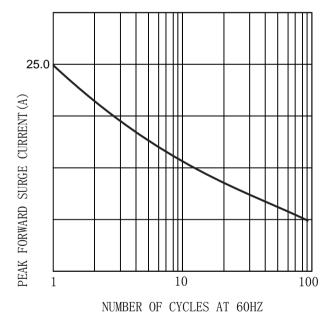
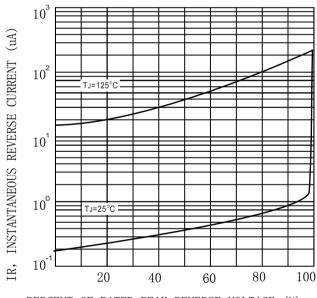
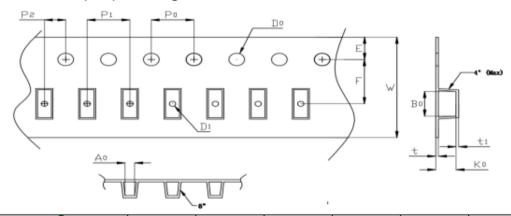



FIG. 4 TYPICAL REVERSE CHARACTERISTICS (per element)

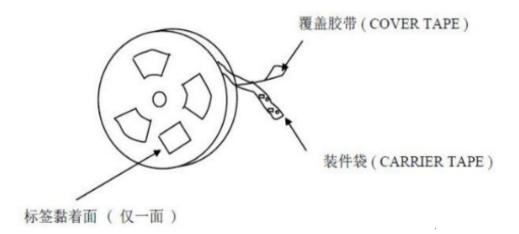
PERCENT OF RATED PEAK REVERSE VOLTAGE (%)

MARKING INFORMATION

🤝 = Logo

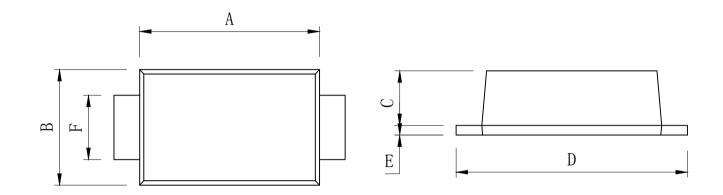

**** = Date Code Marking

F** = Marking Code


Print according to customer request

PACKING REQUIRMENTS

· Carrier tape packing


	Specificati	Carrier	۸۵	Во	Ко	Po	w		Exiplain
L	ons	tape type	AU	ВО	KU	FU	VV		Exiplain
S	OD-123FL	Anti-static	1.95± 0.10	3.95± 0.10	1.35± 0.10	4.00 ± 0.10	8.0 ± 0.10	0.23 ± 0.05	

DEVICE TYPE	Tape width	7"Reel				
		Q'TY/REEL (pcs)	BOX/CAR TOON	Q'TY/REEL (pcs)		
SOD-123FL	8mm	3000	80	240000		

Outline Dimensions

SOD-123FL

SOD-123FL						
DIM	INC	HES	MM			
	MIN	MAX	MIN	MAX		
A	0.10	0.12	2.5	3		
В	0.06	0.08	1.5	2		
С	0.03	0.06	0.7	1.5		
D	0. 12	0.16	3	4		
Е	/	0.01	/	0.3		
F	0.02	0.06	0.5	1.5		

Important Statements and disclaimers.

Do not copy or modify file information without permission.

Xumao Micro reserves the right to modify this document and its products.

Specifications are available without prior notice. Customer shall 。 obtain and confirm the latest product information and specifications prior to final design, purchase or use.

Xumao Micro does not assume any implied warranties, including warranties of fitness for special purposes, non-infringement and merchantability.

The products shown here are not designed and licensed for demanding equipment at a level of reliability or for human life and any life-saving related applications or life-sustaining, such as medical devices, transportation equipment, aerospace machinery, and so on. Customers who use or sell these products for such applications do so at their own risk.

As Xumao Micro uses batch number as tracking benchmark, please provide batch number for tracking in case of exception.