Surface mount LVF Schottky diode Reverse Voltage-40to200v Forward current-2A

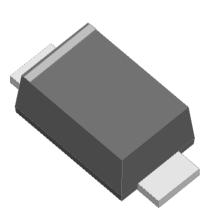
Features

LVF Schottky chip

Low VF, Low power losses, high efficiency Ldeal for surface mounted applications Plastic Case Material has UL Flammability

Mechanical Data

Package: SMAF


Terminals:Tin Plated leads, solderable per

Mil-STD-750 Method 2026

Polarity: As marked

Molding compound meets UL 94 V-0 flammability rating,

ROHS-compliant

Maximum Ratings (Ta=25℃ Unless otherwise specified)

JJu,							
SYMBOL	SS24L	SS26L	SS28L	SS210L	SS215L	SS220L	Umit
V_{RRM}	40	60	80	100	150	200	V
V_{RMS}	28	42	56	70	105	140	V
V _{DC}	40	60	80	100	150	200	V
IO _(AV)	2.0					Α	
IFSM	40.0					Α	
	80.0				Α		
l ² t	6.6					A ² S	
V_{FM}	0.45	0.55	0.	65	0.	85	V
ID	0.2 0.1		mA				
i ir	50 20			mA			
R_{QJA}	65.0		°C/W				
T_J	—55to+150			$^{\circ}$			
T _{STG}	—55to+150			$^{\circ}$			
	SYMBOL V _{RRM} V _{RMS} V _{DC} IO _(AV) IFSM I ² t V _{FM} IR R _{QJA} T _J	SYMBOL SS24L V _{RRM} 40 V _{RMS} 28 V _{DC} 40 IO _(AV) IFSM I ² t V _{FM} 0.45 IR 0 R _{QJA} T _J	SYMBOL SS24L SS26L V _{RRM} 40 60 V _{RMS} 28 42 V _{DC} 40 60 IO _(AV) IFSM IFSM 0.45 0.55 IR 0.2 50 R _{QJA} T _J T _J	SYMBOL SS24L SS26L SS28L V _{RRM} 40 60 80 V _{RMS} 28 42 56 V _{DC} 40 60 80 IO _(AV) 2 4 IFSM 4 6 V _{FM} 0.45 0.55 0. IR 50 6 -55	SYMBOL SS24L SS26L SS28L SS210L V _{RRM} 40 60 80 100 V _{RMS} 28 42 56 70 V _{DC} 40 60 80 100 IO _(AV) 2.0 40.0 IFSM 80.0 80.0 I ² t 6.6 6.6 V _{FM} 0.45 0.55 0.65 IR 50 2 R _{QJA} 65.0 -55to+150	SYMBOL SS24L SS26L SS28L SS210L SS215L V _{RRM} 40 60 80 100 150 V _{RMS} 28 42 56 70 105 V _{DC} 40 60 80 100 150 IO _(AV) 2.0 40.0 40.0 IFSM 80.0 80.0 66.6 66 V _{FM} 0.45 0.55 0.65 0.0 IR 0.2 0.1 0.1 0.1 0.1 R _{QJA} 65.0 -55to+150 -55to+150	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

FIG. 1MAXIMUM AVERAGE FORWARD CURRENT DERATING

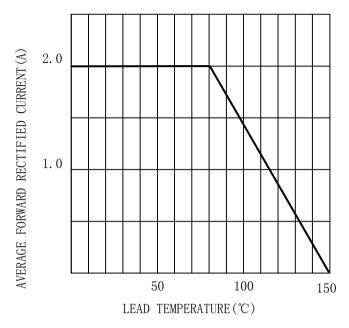


FIG. 2TYPICAL FORWARD CHARACTERISTICS

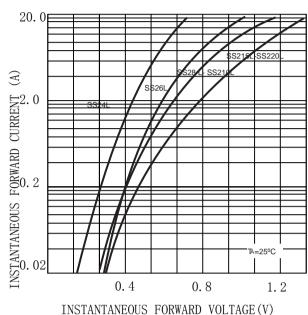


FIG. 3MAXIMUM NON-REPEITIVE SURGE CURRENT

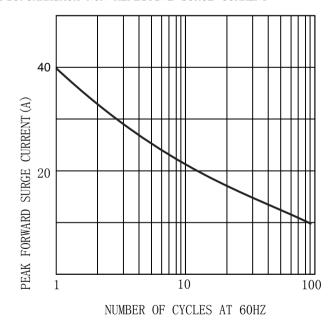
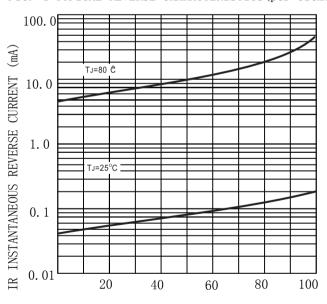
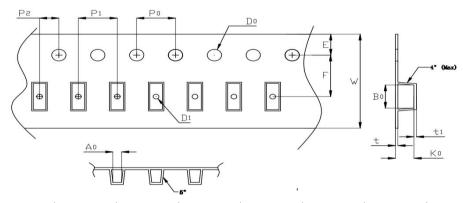



FIG. 4 TYPICAL REVERSE CHARACTERISTICS (per element)

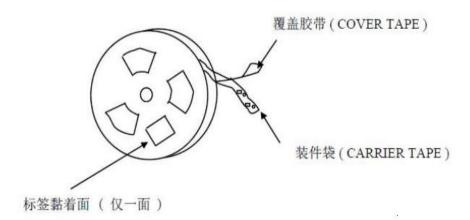
PERCENT OF RATED PEAK REVERSE VOLTAGE (%)

MARKING INFORMATION

= Logo

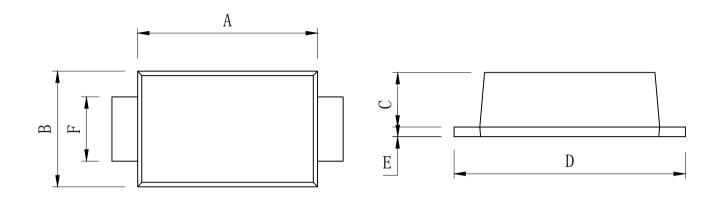

**** = Date Code Marking

SS**L = Marking Code


Print according to customer request

PACKING REQUIRMENTS

Carrier tape packing


Specificati ons	Carrier tape type	Ao	Во	Ko	Ро	W	t	Exiplain
SMAF	Anti-static	2.83± 0.10	4.9± 0.10	1.45± 0.05	4.00± 0.10	12.0± 0.10	0.23± 0.05	

	Tape		13"Reel		7"Reel			
	width	Q'TY/REEL (pcs)	BOX/CAR TOON	Q'TY/REEL (pcs)	Q'TY/REEL (pcs)	BOX/CAR TOON	Q'TY/REEL (pcs)	
SMAF	12mm	10000	20	200000	3000	64	192000	

Outline Dimensions

SMAF

SMAF							
DIM	INC	HES	MM				
	MIN	MAX	MIN	MAX			
A	0. 13	0. 15	3.2	3.8			
В	0.09	0. 11	2.3	2. 7			
С	0.03	0.05	0.8	1.2			
D	0. 16	0.20	4	5			
Е	/	0.01	/	0.3			
F	0.04	0.08	1	2			

Important Statements and disclaimers.

Do not copy or modify file information without permission.

Xumao Micro reserves the right to modify this document and its products.

Specifications are available without prior notice. Customer shall 。 obtain and confirm the latest product information and specifications prior to final design, purchase or use.

Xumao Micro does not assume any implied warranties, including warranties of fitness for special purposes, non-infringement and merchantability.

The products shown here are not designed and licensed for demanding equipment at a level of reliability or for human life and any life-saving related applications or life-sustaining, such as medical devices, transportation equipment, aerospace machinery, and so on. Customers who use or sell these products for such applications do so at their own risk.

As Xumao Micro uses batch number as tracking benchmark, please provide batch number for tracking in case of exception.