

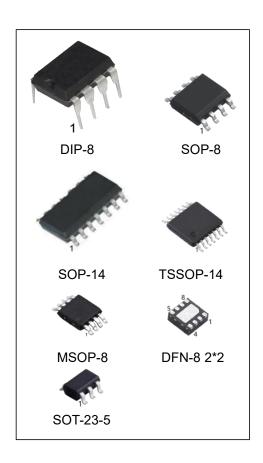
10MHz, RRIO, CMOS, Op Amps

FEATURES

High Gain Bandwidth: 10MHz

Excellent Slew Rate: 8.5V/Us

Rail-To-Rail Input And Output


Lower Offset Voltage: ±0.5mV Max

Input Voltage Range: -0.2V To +5.7V With Vs = 5.5V

Supply Range: +2.1V To +5.5V

• Operating Range: -40°C To +125°C

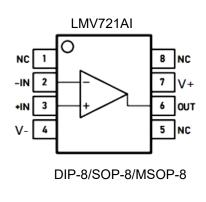
Micro Size Packages: SOT-23-5

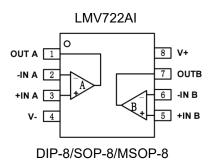
Ordering Information

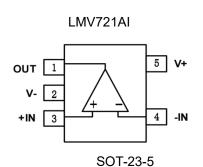
DEVICE	Package Type	MARKING	Packing	Packing Qty
LMV721AIN	DIP-8	V721AI	TUBE	2000pcs/box
LMV721AIM/TR	SOP-8	V721AI	REEL	2500pcs/reel
LMV721AIMM/TR	MSOP-8	721AI	REEL	3000pcs/reel
LMV721AIM5/TR	SOT-23-5	721AI,A30A	REEL	3000pcs/reel
LMV721AIDQ2/TR	DFN-8 2*2	721AI	REEL	4000pcs/reel
LMV722AIN	DIP-8	V722AI	TUBE	2000pcs/box
LMV722AIM/TR	SOP-8	V722AI	REEL	2500pcs/reel
LMV722AIMM/TR	MSOP-8	722AI	REEL	3000pcs/reel
LMV722AIDQ2/TR	DFN-8 2*2	722AI	REEL	4000pcs/reel
LMV724AIM/TR	SOP-14	LMV724AI	REEL	2500pcs/reel
LMV724AIMT/TR	TSSOP-14	V724AI	REEL	2500pcs/reel

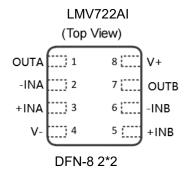
DESCRIPTION

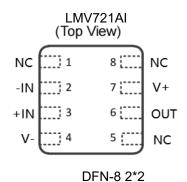
The LMV721AI, LMV722AI, LMV724AI families of products offer low voltage operation and rail-to-rail input and output, as well as excellent speed/power consumption ratio, providing an excellent bandwidth(10MHz) and slew rate (8.5V/us). The operational amplifiers are unity gain stable and feature an ultra-low input bias current.

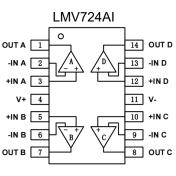

The LMV721AI, LMV722AI, LMV724AI has lower offset voltage, which is guaranteed not upper than 0.5 mV at 25°C with Vs = 5V, VCM = Vs/2.


The LMV721AI, LMV722AI, LMV724AI families of operational amplifiers under single supplies of 2.1V to 5.5V or dual power supplies of ±1.05V to ±2.75V. The devices are ideal for sensor interfaces, active filters and portable applications.


APPLICATIONS


- Sensors
- Active Filters
- Test Equipment
- Driving A/D Converters
- Photodiode Amplification


Pin Configuration



Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

PARAMETER	MIN	MAX	UNIT
Supply Voltage, Vs=(V+) - (V-)		7	V
Signal Input Voltage ⁽²⁾	(V-)-0.5	(V+)+0.5	V
Signal Output Voltage ⁽³⁾	(V-)-0.5	(V+)+0.5	V
Signal Input Current	-10	+10	mA
Signal Output Current	-150	+150	mA
Maximum Junction Temperature		+150	$^{\circ}$ C
Storage Temperature Range	-65	+150	$^{\circ}\mathbb{C}$
Lead Temperature Range (Soldering 10 sec)		+260	$^{\circ}$ C

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 3: Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±150mA or less.

ESD Ratings

SYMBOL	PAF	PARAMETER					
V _(ESD)	Electrostatic discharge	Human-body model (HBM)	±4500	٧			

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

PARAMETE	R	MIN	TYP	MAX	UNIT
Supply Voltage Va=(V+) (V)	Signal-supply	2.1		5.5	V
Supply Voltage, Vs=(V+) - (V-)	Dual-supply	1.05		2.75	V
Operating Temperatu	re Range	-40	+25	+125	$^{\circ}$

Note 2: Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

ELECTRICAL CHARACTERISTICS

(At TA=+25 $^{\circ}$ C, Vs=5V, RL=10k Ω connected to VS/2, and VOUT=VS/2, unless otherwise noted.)

DADAMETED	CVMPOL	CONDITIONS	LMV721AI/722AI/724AI					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT		
POWER SUPPLY								
Operating Voltage Range	Vs		2.1		5.5	V		
Quiescent Current/Amplifier	IQ			0.4		mA		
Power-Supply Rejection Ratio	PSRR	V_s =2.5V to 5.5V, V_{CM} =(V-)+0.5V	75			dB		
Turn-on Time	ton			12		μs		
INPUT								
		V _{CM} = V _S /2, LMV721AI	-0.5	±0.2	+0.5	mV		
Input Offset Voltage	Vos	V _{CM} = V _S /2, LMV722AI	-0.5	±0.2	+0.5	mV		
		V _{CM} = V _S /2, LMV724AI	-0.8	±0.3	+0.8	mV		
Input Offset Voltage Average Drift	Vos TC	TA=-40°C~+125°C		±2.6		uV/℃		
Input Bias Current	lв		-10	±1	+10	pА		
Input Offset Current	los		-10	±1	+10	pА		
Common-Mode Voltage Range	V _{CM}	V _s =5.5V	-0.2		5.7	V		
Common Mada Daiastian Datia	CMDD	V _s = 5.5V, V _{CM} =-0.2V to 4V	70			dB		
Common-Mode Rejection Ratio	CMRR	V _s = 5.5V, V _{CM} =-0.2V to 5.7V	65			dB		
OUTPUT								
Onen Leen Veltere Cain	_	R_L =2 $K\Omega$, V_O =0.15 V to 4.85 V	86			dB		
Open-Loop Voltage Gain	A _{OL}	R _L =10KΩ, V _O =0.05V to 4.95V	96			dB		
Output Cuina Franc Bail		R _L =2KΩ		50		mV		
Output Swing From Rail		R _L =10KΩ		10		mV		
Output Current Source	lout			140		mA		
FREQUENCY RESPONSE								
Slew Rate	SR			8.5		V/µs		
Gain-Bandwidth Product	GBP			10		MHz		
Phase Margin	PM			62		0		
Setting Time,0.1%	ts			0.5		μs		
Overload Recovery Time		V _{IN} .Gain≥V _S		3.2		μs		
NOISE								
Innut Valtage Nais - Descrite		f = 1KHz		9.5		nV/√Hz		
Input Voltage Noise Density	en	f = 10KHz		6.5		nV/√Hz		

TYPICAL CHARACTERISTICS

At T_A =+25°C, V_s =5V, R_L = 10k Ω connected to $V_S/2$, V_{OUT} = $V_S/2$, unless otherwise noted.

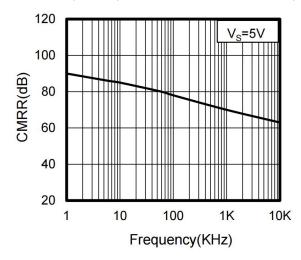
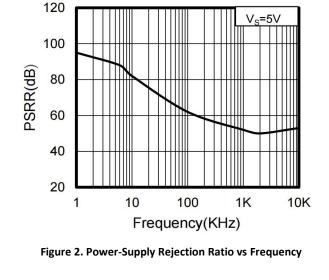



Figure 1. Common-Mode Rejection Ratio vs Frequency

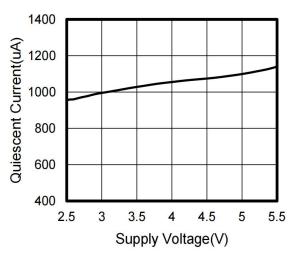


Figure 3. Quiescent Current vs Supply Voltage

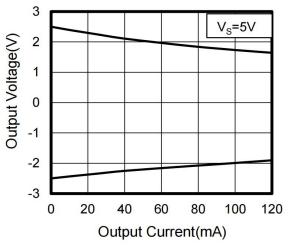


Figure 4. Output Voltage vs Output Current

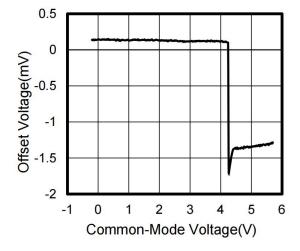


Figure 5. Offset Voltage vs Common-Mode Voltage

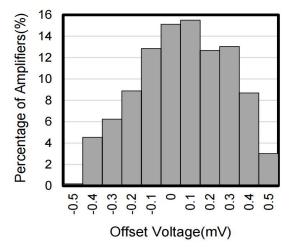


Figure 6. Offset Voltage Production Distribution

LAYOUT

Layout Guideline

Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1uF capacitor closely across the supply pins.

These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI susceptibility.

Layout Example

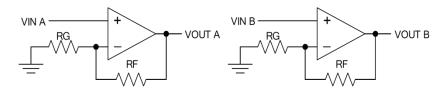
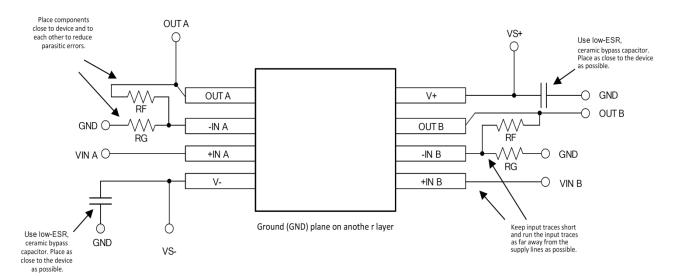
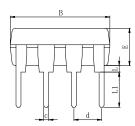
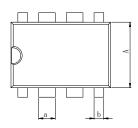
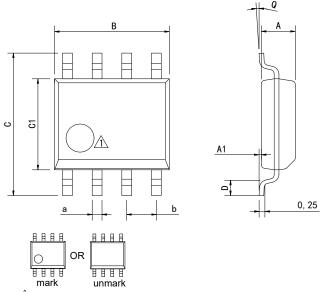


Figure 7. Schematic Representation

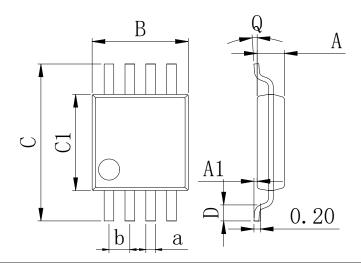

Figure 8. Layout Example

DIP-8



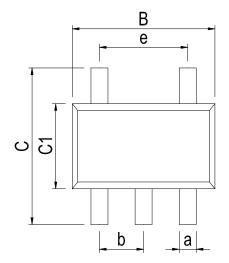
Dimensions In	Dimensions In Millimeters(DIP-8)												
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d		
Min:	6.10	9.00	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC		
Max:	6.68	9.50	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 650		

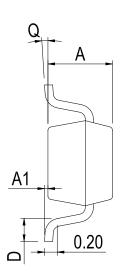
SOP-8



A Package top mark may be in lower left corner or unmark

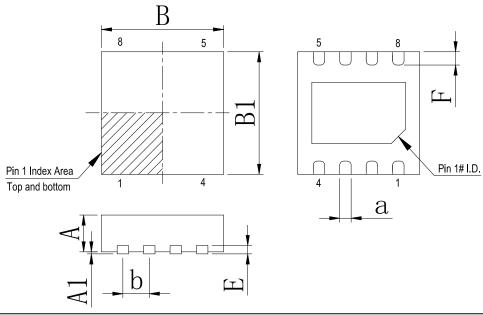
Dimensions In Millimeters(SOP-8)												
Symbol:	Α	A1	В	С	C1	D	Q	а	b			
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC			
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 BSC			



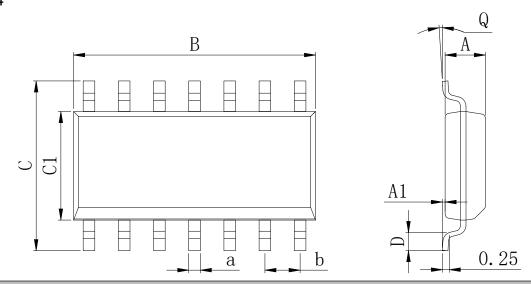

MSOP-8

Dimensions In M	Dimensions In Millimeters(MSOP-8)											
Symbol:	Α	A1	В	С	C1	D	Q	а	b			
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC			
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.05 BSC			

SOT-23-5



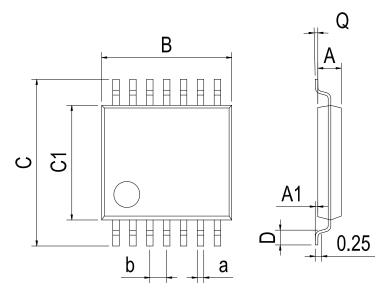
Dimensions In Millimeters(SOT-23-5)											
Symbol:	Α	A1	В	С	C1	D	Q	а	b	е	
Min:	1.00	0.00	2.82	2.65	1.50	0.30	0°	0.30	0.95 BSC	1.90 BSC	
Max:	1.15	0.15	3.02	2.95	1.70	0.60	8°	0.50	0.95 650	1.90 BSC	



DFN-8 2*2

Dimensions In Millimeters(DFN-8 2*2)											
Symbol:	Α	A 1	В	B1	E	F	а	q			
Min:	0.85	0	1.90	1.90	0.15	0.25	0.18	0.50TYP			
Max:	0.95	0.05	2.10	2.10	0.25	0.45	0.30	0.5011P			

SOP-14



Dimensions In Millimeters(SOP-14)												
Symbol:	Α	A1	В	С	C1	D	Q	а	b			
Min:	1.35	0.05	8.55	5.80	3.80	0.40	0°	0.35	1.27 BSC			
Max:	1.55	0.20	8.75	6.20	4.00	0.80	8°	0.45	1.27 650			

9 / 12

TSSOP-14

Dimensions In Millimeters(TSSOP-14)												
Symbol:	Α	A1	В	С	C1	D	Q	а	b			
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65.000			
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.65 BSC			

Revision History

REVISION NUMBER	DATE	REVISION	PAGE
V1.0	2017-11	New	1-12
V1.1	2025-6	Document Reformatting	1-12

LMV721AI/722AI/724AI

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.