

500 to 1000 KSPS, ULTRA LOW POWER, 12-/10-/8-BIT SAR ANALOG-TO-DIGITAL CONVERTER

FEATURES

- Single 4V to 5.25V Supply Operation for ADC12/10/081S101 Single 3.3V to 4.8V Supply Operation for ADC12/10/081S101E
- Throughput Rate: 500 to 800 KSPS for ADC 12/10/081S101 800 to 1000 KSPS for ADC 12/10/081S101E
- Specified Over a Range of Sample Rates
- \rightarrow ±1.25LSB INL, ±1LSB DNL (DAC121S101)
- Zero Latency
- ➤ SPI/DSP/MICROWIRE™/QSPI™ Compatible Serial Interface
- Variable Power Management
- Low Power (ADC 121S101 typical):3.60mW (4V, 800 KSPS)6.05mW (5V 800 KSPS)
- ➤ 6-Pin SOT-23 Package

APPLICATIONS

- Battery Powered Systems
- Base Band Converters in Radio Communication
- Portable Systems
- Remote Data Acquisition
- Instrumentation and Control Systems

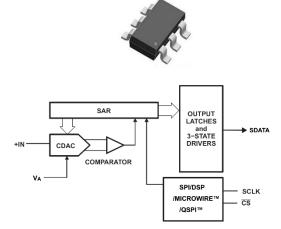


Figure 1. Functional Block Diagram

Pin-Compatible Alternatives by Resolution and Speed

Resolution	Specified for Sample Rate Range of:					
	50 to 200 KSPS	200 to 500 KSPS	500 to 800 KSPS	800 to 1000 KSPS		
12-bit	ADC121S021	ADC121S051	ADC120S101	ADC121S101E		
10-bit	ADC101S021	ADC101S051	ADC101S101	ADC101S101E		
8-bit	ADC081S021	ADC081S051	ADC081S101	ADC081S101E		

SPECIFICATIONS

At-40°C to 85°C, fsample = 800 KSPS and fsclk = 16 MHz if 4 V \leq VdD \leq 5.25 V ; fsample = 1 MSPS and fsclk = 20 MHz if 3.3 V \leq VdD \leq 4.8 V . (unless otherwise noted)

DADAMETER	TEGT COMPLTIONS	ADC121S101E		ADC101S101E		ADC081S101 E		LINUTO
PARAMETER	TEST CONDITIONS	MIN T	YP MAX	MIN T	YP MAX	MIN	TYP MAX	UNITS
SYSTEM PERFORMANCE								
Resolution			12	1	10		8	Bits
No missing codes		12		10		8		Bits
Integral linearity		-1.25	1.25	-1	1	-0.5	0.5	LSB
Differential linearity		-1	1	-1	1	-0.5	0.5	LSB
former Throughput rote	fsclk = 16 MHz, 4 V ≤ VDD ≤ 5.25 V	500	800	500	800	500	80	KSPS
fsample Throughput rate	$\text{fsclk} = 20 \text{ MHz}, \ 3.3 \ \text{V} \leq \text{Vdd} \leq 4.8 \ \text{V}$	800	1000	800	1000	800	100) KSPS
SNR	fin = 100 kHz	7:	2.5		61		49	dB
THD	fin = 100 kHz		-81	-	78		-68	dB

ADC121S101

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		0.90	0.99	
IDD Supply current, Dig	igital inputs =	fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 5 V		1.21	1.35	^
normal operation	0 V or V _{DD}	fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 4 V		0.50	0.58	mA
		fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 5 V		0.80	0.90	
POWER DISSIPATION, AD	DC121S101					•
Normal operation		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		3.60	3.95	mW
		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 5 V		6.05	6.75	mW

ADC101S101

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNITS
		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		0.80	0.95	
IDD Supply current, Dig	gital inputs =	$f_{SAMPLE} = 800 \text{ KSPS}, f_{SCLK} = 16 \text{ MHz}, V_{DD} = 5 \text{ V}$		1.02	1.22	т Л
normal operation	0 V or V _{DD}	fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 4 V		0.55	0.60	mA
		fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 5 V		0.70	0.80	
POWER DISSIPATION, AD	DC101S101					
Normal operation		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		3.18	3.80	mW
		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 5 V		5.09	6.10	mW

ADC081S101

	MIN	TYP	MAX	UNITS	
	fsample = 800 KSPS, $fsclk = 16 MHz$, $Vdd = 4 V$		0.74	0.88	
Digital inputs =	fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 5 V		1.02	1.25	^
0 V or V _{DD}	fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 4 V		0.45	0.45	mA
	fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 5 V		0.75	0.90	
ADC 081S101					
tion.	fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		2.95	3.55	mW
lion	fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 5 V		5.10	6.25	mW
	0 V or V _{DD}	Digital inputs =	SAMPLE = 800 KSPS, fSCLK = 16 MHz, VDD = 4 V	SAMPLE = 800 KSPS, fSCLK = 16 MHz, VDD = 4 V 0.74	

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

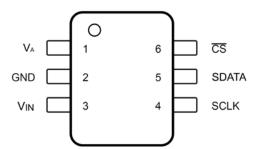


Figure 2. Pin Configuration

TERMINAL		DESCRIPTION		
NAME	NO.	DESCRIPTION		
V_A	1	Power supply input.		
GND	2	Ground for power supply, all analog and digital signals are referred with respect to this pin.		
V _{IN}	3	Analog input. This signal can range from 0 V to $V_{\rm A}$.		
SCLK	4	Digital clock input. This clock directly controls the conversion and readout processes.		
SDATA	5	Digital data output. The output samples are clocked out of this pin on falling edges of the SCLK pin.		
CS	6	Chip Select. On the falling edge of $\overline{\text{CS}}$, a conversion process begins.		

TYPICAL CONNECTION

Figure 3 shows a typical connection diagram for the ADC121S101/101S101/081S101. The 5 V supply should come from a stable power supply such as an LDO. The supply to ADC121S101/101S101/081S101 should be decoupled to the ground. A 1- μ F and a 10-nF decoupling capacitor are required between the V_A and GND pins of the converter. This capacitor should be placed as close as possible to the pins of the device. Always set the V_A supply to be greater than or equal to the maximum input signal to avoid saturation of codes.

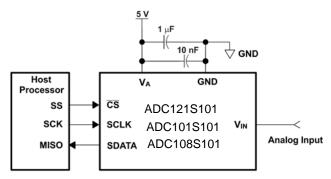
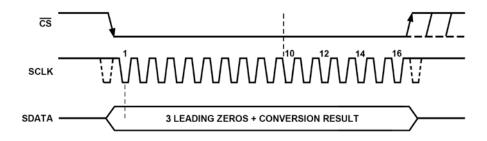
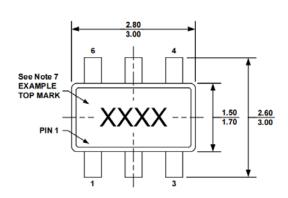



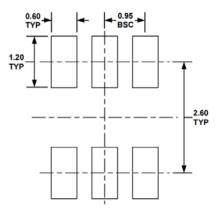
Figure 3. Typical Circuit Configuration

TIMING DIAGRAM

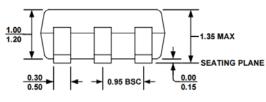
The conversion is initiated on the falling edge of $\overline{\text{CS}}$. The device outputs data while the conversion is in progress, and it requires 16/14/12 serial clock cycles to complete the conversion and access the full results. The ADC121S101/101S101/081S101 data word contains 3 leading zeros, followed by 12-bit/10-bit/8-bit data in MSB first format.

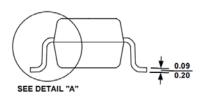
Once a data transfer is complete, SDATA will return to the tri-state mode, and another conversion can be initiated after the quiet time has elapsed by again bringing $\overline{\text{CS}}$ low.


POWER-DOWN MODE

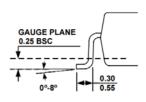

The ADC121S101/101S101/081S101 family has an auto power-down feature. Besides powering down all circuitry, the converter consumes only a small amount of current in this mode. The device automatically wakes up when $\overline{\text{CS}}$ falls. However, not all of the functional blocks are fully powered until sometime before the third falling edge of SCLK. The device powers down once it reaches the end of conversion which is the 16th falling edge of SCLK for the ADC121S101(the 14th and 12th for the 101S101 and 081S101,respectively). The device enters power down mode if $\overline{\text{CS}}$ goes high before the 10th SCLK falling edge. Ongoing conversion stops and SDATA goes to three-state under this power down condition.

These converters achieve lower power dissipation for a fixed throughput rate by using higher SCLK frequencies. Higher SCLK frequencies reduce the acquisition time and conversion time. This means the converters spend more time in auto power-down mode per conversion cycle. For a particular SCLK frequency, the acquisition time and conversion time are fixed. Therefore, a lower throughput increases the proportion of the time the converters are in power down, thereby reducing power consumption.


OUTLINE DIMENTIONS



TOP VIEW


RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

DETAIL "A"

NOTE:

- ALL DIMENSIONS ARE IN MILLIMETERS.
 PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH,
 PROTRUSION OR GATE BURR.
 PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH
- 9) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FEASITION OR PROTRUSION.
 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
 5) DRAWING CONFORMS TO JEDEC MO-178, VARIATION AB.

- 6) DRAWING IS NOT TO SCALE.

 7) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)