

NCT6122D / NCT6126D Nuvoton Super I/O

Date: September 12, 2023 Revision 2.4

Table of Contents -

1.	GEN	IERAL DESCRIPTION······	····· 1
2.	FEA	TURES·····	2
<i>3</i> .	BLO	CK DIAGRAM ······	5
4.	PIN	LAYOUT	6
5.	PIN	DESCRIPTION	8
5.1	L LP	C Interface ·····	9
5.2	eS	PI Interface ······	و
5.3		ulti-Mode Parallel Port ······	c
		erial Port Interface (NCT6122D: UART A ~ UART B; NCT6126D: UART A ~ UART F) ··································	
5.4			
5.5		3C Interface·····	
5.6	S CI	R Interface·····	····15
5.7	' Ha	ardware Monitor Interface ·····	15
5.8	3 In	tel® PECI Interface ······	16
5.9		dvanced Configuration & Power Interface······	
		Advanced Sleep State Control····································	
5.1		•	
5.1		S0ix Interface ······	
5.1	.2	Port 80 Message and 7 segment Display ······	····17
5.1	13	SMBus Interface	18
5.1	4	Power Pins	19
5.1		AMD SB-TSI Interface ······	19
5.1		Dual Voltage Control ······	
5.1		WatchDog	
		IR	
5.1			
5.1		LED	
5.2		General Purpose I/O Port ······	
	5.20.1	GPIO-0 Interface	
	5.20.2	GPIO-1 Interface GPIO-2 Interface GPIO-2 Interface GPIO-3	
	5.20.4	GPIO-3 Interface	
	5.20.5	GPIO-4 Interface ······	
	5.20.6	GPIO-5 Interface ······	
5	5.20.7	GPIO-6 Interface ·····	
5	5.20.8	GPIO-7 Interface ·····	
	5.20.9	GPIO-8 Interface ·····	
	5.20.10		
	5.20.11	GPIO-A Interface·····	28

_	20.12 GPIO-B Interface 20.13 GPIO Transition 20.13	
5.21	Strapping Pins ·····	30
5.22		
6.	GLUE LOGIC ······	33
6.1	ACPI Glue Logic·····	33
6.2	LATCH_BKFD_CUT ······	36
	3VSBSW	
6.3		
6.4	PSON# Block Diagram ·····	38
6.5	PWROK	39
6.6	AT / ATX Mode	40
6.6	·	
6.6	5.2 AT Mode	40
6.7	Front Panel LEDs·····	Δ1
6.7		
6.7		
6.7		
6.7	7.4 LED Pole (LED_POL)	42
6.7	7.5 Deeper Sleeping State Detect Function	43
6.8	Advanced Sleep State Control (ASSC) Function ······	44
6.8		44
6.8		
6.8		
6.9	Modern Standby (S0ix)	47
6.10		
	·	
7.	CONFIGURATION REGISTER ACCESS PROTOCOL	
7.1	Configuration Sequence	54
7.1		
7.1		
7.1		
7.1		55
7.1		
8.	HARDWARE MONITOR······	57
8.1	General Description ·····	57
8.2	Access Interfaces ·····	57
8.3	LPC Interface ·····	57
8.4	ESPI interface ·····	
8.5	I ² C interface······	
	Analog Inputs ······	
8.6	Analog Inputs 5.1 Voltages Over 2 048 V or Less Than 0 V	

8.6		Voltage Data Format ·····	
8.6		Temperature Data Format······	
8.7		CI	
8.8		n Speed Measurement and Control ·······	67
8.8		Fan Speed Reading ·····	
8.8		Fan Speed Calculation by Fan Count Reading	67
8.8	_	Fan Speed Calculation by Fan RPM Reading Fan Speed Control	
8.8 8.8		SMART FAN™ Control	
8.8		Temperature Source & Reading for Fan Control	
8.9	SIV	IART FAN TM I ·······	69
8.9	9.1	Thermal Cruise Mode ·····	
8.9	9.2	Speed Cruise Mode····	71
8.10	9	SMART FAN™ IV & Close Loop Fan Control RPM Mode·······	75
8.1	0.1	Step Up Time / Step Down Time ·····	
_	.0.2	Fan Output Step ·····	
_	0.3	Revolution Pulse Selection	
_	.0.4 .0.5	Weight Value Control ······ Max Duty Compare Source ······	
8.11		Alert and Interrupt ······	
	1.1	SMI# Interrupt Mode······	
8.1	1.2	Voltage SMI# Mode·····	
8.1	1.3	Fan SMI# Mode·····	
8.1	1.4	Temperature SMI# Mode ·····	
8.1	1.5	OVT# Interrupt Mode ·····	
	1.6	Caseopen Detection	
9.		DWARE MONITOR REGISTER SET	
9.1		dress Port (Port x5h)······	
9.2	Da	ta Port (Port x6h)······	90
9.3	Va	lue RAM — Index 00h ~ 6Fh (Bank 0) ······	91
9.4	SIV	IIOVT1 Temperature Source (High Byte) Register – Index 10h (Bank 0) ······	93
9.5	SIV	IIOVT2 Temperature Source (High Byte) Register – Index 11h (Bank 0) ······	94
9.6	SIV	IIOVT3 Temperature Source (High Byte) Register – Index 12h (Bank 0) ······	94
9.7	SIV	IIOVT1-3 Temperature Source (Low Byte) Register – Index 16h (Bank 0)······	94
9.8	Sys	stem Fan Control Temperature Register (Integer Value)- Index 18h (Bank 0)······	94
9.9	СР	U Fan Control Temperature Register (Integer Value)- Index 19h (Bank 0)·········	95
9.10	,	AUX Fan0 Control Temperature Register (Integer Value)- Index 1Ah (Bank 0)······	95
9.11	F	an Temperature Register (Fractional Value)- Index 1Bh (Bank 0) ······	95
9.12	(SYSFANIN) FANIN1 COUNT High-byte Register – Index 20h (Bank 0) ······	96
9.13	(SYSFANIN) FANIN1 COUNT Low-byte Register – Index 21h (Bank 0) ······	96
9.14	(CPUFANIN) FANIN2 COUNT High-byte Register – Index 22h (Bank 0) ······	96

9.15	(CPUFANIN) FANIN2 COUNT Low-byte Register – Index 23h (Bank 0) ······	···97
9.16	(AUXFANIN0) FANIN3 COUNT High-byte Register – Index 24h (Bank 0) ······	···97
9.17	(AUXFANIN0) FANIN3 COUNT Low-byte Register – Index 25h (Bank 0) ······	···97
9.18	(AUXFANIN1) FANIN4 COUNT High-byte Register – Index 26h (Bank 0) ······	···97
9.19	(AUXFANIN1) FANIN4 COUNT Low-byte Register – Index 27h (Bank 0) ······	98
9.20	(AUXFANIN2) FANIN5 COUNT High-byte Register – Index 28h (Bank 0) ·······	98
9.21	(AUXFANIN2) FANIN5 COUNT Low-byte Register – Index 29h (Bank 0) ······	98
9.22	(SYSFANIN) FANIN1 SYSFAN Duty Target Register – Index 2Ah (Bank 0) ······	99
9.23	(CPUFANIN) FANIN2 CPUFAN Duty Target Register – Index 2Bh (Bank 0)······	99
9.24	(AUXFANINO) FANIN3 AUXFANO Duty Target Register – Index 2Ch (Bank 0) ······	99
9.25	(AUXFANIN1) FANIN4 AUXFAN1 Duty Target Register – Index 2Dh (Bank 0) ···································	99
9.26	(AUXFANIN2) FANIN4 AUXFAN2 Duty Target Register – Index 2Eh (Bank 0)······	·100
9.27	SYSFANIN SPEED HIGH-BYTE VALUE (RPM) - Index 30h (Bank 0)	·100
9.28	SYSFANIN SPEED LOW-BYTE VALUE (RPM) - Index 31h (Bank 0) ······	·100
9.29	CPUFANIN SPEED HIGH-BYTE VALUE (RPM) - Index 32h (Bank 0)	·100
9.30	CPUFANIN SPEED LOW-BYTE VALUE (RPM) - Index 33h (Bank 0) ······	·101
9.31	AUXFANINO SPEED HIGH-BYTE VALUE (RPM) - Index 34h (Bank 0)	·101
9.32	AUXFANINO SPEED LOW-BYTE VALUE (RPM) - Index 35h (Bank 0)	·101
9.33	AUXFANIN1 SPEED HIGH-BYTE VALUE (RPM) - Index 36h (Bank 0)	·101
9.34	AUXFANIN1 SPEED LOW-BYTE VALUE (RPM) - Index 37h (Bank 0)	·102
9.35	AUXFANIN2 SPEED HIGH-BYTE VALUE (RPM) - Index 38h (Bank 0)	·102
9.36	AUXFANIN2 SPEED LOW-BYTE VALUE (RPM) - Index 39h (Bank 0)	·102
9.37	(FANIN) FANIN1 SYSFAN RPM Target Register – Index 3Ah (Bank 0)······	·102
9.38	(FANIN) FANIN2 CPUFAN RPM Target Register – Index 3Bh (Bank 0) ·······	·103
9.39	(FANIN) FANIN3 AUXFAN0 RPM Target Register – Index 3Ch (Bank 0) ······	·103
9.40	(FANIN) FANIN4 AUXFAN1 RPM Target Register – Index 3Dh (Bank 0)······	·103
9.41	(FANIN) FANIN5 AUXFAN2 RPM Target Register – Index 3Eh (Bank 0) ······	·103
9.42	PORT 80 DATA INPUT Register 1 – Index 46h (Bank 0) ······	·104
9.43	PORT 80 DATA INPUT Register 2 – Index 47h (Bank 0) ······	·104
9.44	PORT 80 DATA INPUT Register 3 – Index 48h (Bank 0) ······	·104
9.45	PORT 80 DATA INPUT Register 4 – Index 49h (Bank 0) ······	·104
9.46	SYSFAN Max Duty Output Register – Index 4Ah (Bank 0) ······	·105
9.47	CPUFAN Max Duty Output Register – Index 4Bh (Bank 0)······	·105

9.48	AUXFAN0 Max Duty Output Register – Index 4Ch (Bank 0) ······	··105
9.49	Bank Select Register – Index 4Eh (Bank 0) ······	··106
9.50	PCH_CHIP_CPU_MAX_TEMP Register – Index 50h (Bank 0)······	··106
9.51	PCH_CHIP_TEMP Register – Index 51h (Bank 0) ······	··106
9.52	PCH_CPU_TEMP_H Register – Index 52h (Bank 0)······	··106
9.53	PCH_CPU_TEMP_L Register – Index 53h (Bank 0)······	··107
9.54	PCH_MCH_TEMP Register – Index 54h (Bank 0)······	107
9.55	PCH_TSIO_TEMP_H Register – Index 59h (Bank 0)······	··107
9.56	PCH_TSIO_TEMP_L Register – Index 5Ah (Bank 0)······	108
9.57	PCH_TSI1_TEMP_H Register – Index 5Bh (Bank 0) ······	108
9.58	PCH_TSI1_TEMP_L Register – Index 5Ch (Bank 0) ·······	108
9.59	ByteTemp_H Register – Index 69h (Bank 0) ······	109
9.60	ByteTemp_L Register – Index 6Ah (Bank 0) ······	109
9.61	PECI Agent0 Temp Register – Index 6Bh (Bank 0)·····	109
9.62	PECI Agent1 Temp Register – Index 6Dh (Bank 0) ······	109
9.63	Interrupt Status Register 1 – Index 70h (Bank 0)·····	110
9.64	Interrupt Status Register 2 – Index 71h (Bank 0)·····	110
9.65	Interrupt Status Register 3 – Index 72h (Bank 0)·····	··110
9.66	Interrupt Status Register 4 – Index 73h (Bank 0)·····	111
9.67	Interrupt Status Register 5 – Index 74h (Bank 0)·····	111
9.68	Interrupt Status Register 6 – Index 75h (Bank 0)·····	··112
9.69	Interrupt Status Register 7 – Index 76h (Bank 0)·····	112
9.70	Real Time Status Register 1 – Index 77h (Bank 0)······	113
9.71	Real Time Status Register 2 – Index 78h (Bank 0)······	114
9.72	Real Time Status Register 3 – Index 79h (Bank 0)······	··114
9.73	Real Time Status Register 4 – Index 7Ah (Bank 0) ······	115
9.74	Real Time Status Register 5 – Index 7Bh (Bank 0)······	115
9.75	Real Time Status Register 6 – Index 7Ch (Bank 0)······	116
9.76	Real Time Status Register 7 – Index 7Dh (Bank 0) ······	117
9.77	Reserved Register – Index 7Eh ~ 7Fh (Bank 0)······	117
9.78	SMI# Mask Register 1 – Index 80h (Bank 0) ·····	117
9.79	SMI# Mask Register 2 – Index 81h (Bank 0) ······	117
9.80	SMI# Mask Register 3 – Index 82h (Bank 0)	·· 118

9.81	SMI# Mask Register 4 – Index 83h (Bank 0) ······	·118
9.82	SMI# Mask Register 5 – Index 84h (Bank 0) ······	·119
9.83	SMI# Mask Register 6 – Index 85h (Bank 0) ······	·119
9.84	SMI# Mask Register 7 – Index 86h (Bank 0) ······	·120
9.85	CPUVCORE High Limit Voltage Register – Index 90h (Bank 0) ······	·120
9.86	CPUVCORE Low Limit Voltage Register – Index 91h (Bank 0)······	·120
9.87	VINO High Limit Voltage Register – Index 92h (Bank 0)·····	·121
9.88	VINO Low Limit Voltage Register – Index 93h (Bank 0) ······	·121
9.89	AVSB High Limit Voltage Register – Index 94h (Bank 0)······	·121
9.90	AVSB Low Limit Voltage Register – Index 95h (Bank 0)	·121
9.91	3VCC High Limit Voltage Register – Index 96h (Bank 0) ······	·122
9.92	3VCC Low Limit Voltage Register – Index 97h (Bank 0)·····	·122
9.93	VIN1 High Limit Voltage Register – Index 98h (Bank 0)·····	·122
9.94	VIN1 Low Limit Voltage Register – Index 99h (Bank 0) ······	·122
9.95	VIN2 High Limit Voltage Register – Index 9Ah (Bank 0) ······	·123
9.96	VIN2 Low Limit Voltage Register – Index 9Bh (Bank 0) ······	·123
9.97	VHIF High Limit Voltage Register – Index 9Ch (Bank 0)······	·123
9.98	VHIF Low Limit Voltage Register – Index 9Dh (Bank 0) ······	·123
9.99	3VSB High Limit Voltage Register – Index 9Eh (Bank 0) ······	·124
9.100	3VSB Low Limit Voltage Register – Index 9Fh (Bank 0) ······	·124
9.101	VBAT High Limit Voltage Register – Index A0h (Bank 0) ······	·124
9.102	VBAT Low Limit Voltage Register – Index A1h (Bank 0) ······	·124
9.103	VTT High Limit Voltage Register – Index A2h (Bank 0)·····	·125
9.104	VTT Low Limit Voltage Register – Index A3h (Bank 0)	·125
9.105	Reserved Register – Index A4h ~ AFh (Bank 0) ······	·125
9.106	SMIOVT1 Temperature Source Select Register – Index B0h (Bank 0) ·······	·125
9.107	SMIOVT2 Temperature Source Select Register – Index B1h (Bank 0) ···································	·126
9.108	SMIOVT3 Temperature Source Select Register – Index B2h (Bank 0) ···································	·127
9.109	SMI/OVT Control Register – Index B6h (Bank 0) ·····	·128
9.110	SMIOVT1 Control Register – Index B7h (Bank 0) ······	·128
9.111	SMIOVT2 Control Register – Index B8h (Bank 0) ······	·129
9.112	SMIOVT3 Control Register – Index B9h (Bank 0) ······	·129
9.113	Reserved Register – Index BDh ~ BFh (Bank 0)······	·130

9.114	SMIOVT1 Shut-down mode High Limit Temperature Register – Index C0h (Bank 0)130
9.115	SMIOVT1 Shut-down mode Low Limit Temperature Register – Index C1h (Bank 0) ·······130
9.116	SMIOVT1 Temperature Source Over-temperature (High Byte) Register – Index C2h (Bank 0) ·······131
9.117	SMIOVT1 Temperature Source Hysteresis (High Byte) Register – Index C3h (Bank 0) ······131
9.118	SMIOVT2 Shut-down mode High Limit Temperature Register – Index C4h (Bank 0) ······131
9.119	SMIOVT2 Shut-down mode Low Limit Temperature Register – Index C5h (Bank 0) ······131
9.120	SMIOVT2 Temperature Source Over-temperature (High Byte) Register – Index C6h (Bank 0) ······ 132
9.121	SMIOVT2 Temperature Source Hysteresis (High Byte) Register – Index C7h (Bank 0) ······132
9.122	SMIOVT3 Shut-down mode High Limit Temperature Register – Index C8h (Bank 0)132
9.123	SMIOVT3 Shut-down mode Low Limit Temperature Register – Index C9h (Bank 0) ·······133
9.124	SMIOVT3 Temperature Source Over-temperature (High Byte) Register – Index Cah (Bank 0) ······ 133
9.125	SMIOVT3 Temperature Source Hysteresis (High Byte) Register – Index CBh (Bank 0) ······133
9.126	Reserved Register – Index D8h ~ DFh (Bank 0)······133
9.127	(SYSFANIN) Fan Count Limit High-byte Register – Index E0h (Bank 0) ·······133
9.128	(SYSFANIN) Fan Count Limit Low-byte Register – Index E1h (Bank 0)······134
9.129	(CPUFANIN) Fan Count Limit High-byte Register – Index E2h (Bank 0) ·······134
9.130	(CPUFANIN) Fan Count Limit Low-byte Register – Index E3h (Bank 0)······134
9.131	(AUXFANINO) Fan Count Limit High-byte Register – Index E4h (Bank 0)······134
9.132	(AUXFANINO) Fan Count Limit Low-byte Register – Index E5h (Bank 0)······135
9.133	(AUXFANIN1) Fan Count Limit High-byte Register – Index E6h (Bank 0)······135
9.134	(AUXFANIN1) Fan Count Limit Low-byte Register – Index E7h (Bank 0)······135
9.135	(AUXFANIN2) Fan Count Limit High-byte Register – Index E8h (Bank 0) ·······136
9.136	(AUXFANIN2) Fan Count Limit Low-byte Register – Index E9h (Bank 0)······136
9.137	FANIN5 IN/OUT Control Register – Index EAh (Bank 0) ·······136
9.138	Reserved Register – Index EBh ~ EFh (Bank 0)······136
9.139	SYSFAN PWM Output Frequency Configuration Register – Index F0h (Bank 0)······137
9.140	CPUFAN PWM Output Frequency Configuration Register – Index F1h (Bank 0) ·······137
9.141	AUXFAN0 PWM Output Frequency Configuration Register – Index F2h (Bank 0)······137
9.142	FAN Output Mode Configuration – Index F3h (Bank 0)······138
9.143	Reserved Register – Index F4h (Bank 0)139
9.144	FANIN5 Revolution Pulses Selection Register – Index F5h (Bank 0)139
9.145	FANIN1~4 Revolution Pulses Selection Register – Index F6h (Bank 0) ·······139
9 146	Serial Rus Address Register - Index E7h (Rank (1)

9.147	FANIN1~4 IN/OUT Control Register – Index F8h (Bank 0) ······	L40
9.148	AUXFAN1 PWM Output Frequency Configuration Register – Index F9h (Bank 0)······	L 41
9.149	AUXFAN2 PWM Output Frequency Configuration Register – Index Fah (Bank 0)······	L41
9.150	Reserved Register – Index FBh ~ FCh (Bank 0)	L 42
9.151	Nuvoton Vendor ID Register by I2C Interface - Index FDh (Bank 0)	L42
9.152	Nuvoton Vendor ID Register by LPC Interface – Index FEh (Bank 0) ······	L43
9.153	Chip ID – Index FFh (Bank 0) ·····	L43
9.154 (Bank 1)	SYSFAN Monitor Temperature Source Select Register/ STOPDUTY Enable Register – Index 10h	143
9.155	SYSFAN Target Temperature Register / SYSFANIN Target Speed_L Register – Index 11h (Bank 1) · 1	L44
9.156	SYSFANIN Tolerance_H / Target Speed_H Register – Index 12h (Bank 1) ······	L45
9.157	SYSFAN MODE Register / SYSFAN TOLERRANCE Register – Index 13h (Bank 1) ·······	L45
9.158	SYSFAN Step Up Time Register – Index 14h (Bank 1)······	L45
9.159	SYSFAN Step Down Time Register – Index 15h (Bank 1) ······	L46
9.160	SYSFAN Stop Value Register – Index 16h (Bank 1)······	L46
9.161	SYSFAN Start-up Value Register – Index 17h (Bank 1) ······	
9.162	SYSFAN Stop Time Register – Index 18h (Bank 1)	L46
9.163	SYSFAN Output Value Select Register – Index 19h (Bank 1)······	L47
9.164	SYSFAN Temperature Critical Register – Index 1Ah (Bank 1) ······	L47
9.165	SYSFAN Critical Temperature Tolerance Register – Index 1Bh (Bank 1)······	L47
9.166	SYSFAN Enable Critical Duty / Fanout Step Register – Index 1Ch (Bank 1)······	L48
9.167	SYSFAN Critical Duty Register – Index 1Dh (Bank 1) ······	L48
9.168	SYSFAN Enable Close Loop Fan Control RPM Mode Register – Index 1Eh (Bank 1) ······	L48
9.169	SYSFAN Enable RPM High Mode / RPM Mode Tolerance Register – Index 1Fh (Bank 1) ·············	L49
9.170	CPUFAN Monitor Temperature Source Select Register/ STOPDUTY Enable Register – Index 20h	
(Bank 1)		149
9.171	CPUFAN Target Temperature Register / CPUFANIN Target Speed_L Register – Index 21h (Bank 1)	
9.172	CPUFANIN Tolerance_H / Target Speed_H Register – Index 22h (Bank 1) ······	L50
9.173	CPUFAN MODE Register / CPUFAN TOLERRANCE Register – Index 23h (Bank 1)	
9.174	CPUFAN Step Up Time Register – Index 24h (Bank 1) ······	
9.175	CPUFAN Step Down Time Register – Index 25h (Bank 1) ······	
9.176	CPUFAN Stop Value Register – Index 26h (Bank 1)······	L 52
0 177	CDI JEANOUT Start-up Value Register - Index 27h (Rank 1)	152

9.178	CPUFAN Stop Time Register – Index 28h (Bank 1)
9.179	CPUFANOUT Output Value Select Register – Index 29h (Bank 1)
9.180	CPUFAN Temperature Critical Register – Index 2Ah (Bank 1)153
9.181	CPUFAN Critical Temperature Tolerance Register – Index 2Bh (Bank 1) ·······153
9.182	CPUFAN Enable Critical Duty / Fanout Step Register – Index 2Ch (Bank 1)
9.183	CPUFAN Critical Duty Register – Index 2Dh (Bank 1)
9.184	CPUFAN Enable Close Loop Fan Control RPM Mode Register – Index 2Eh (Bank 1)156
9.185	CPUFAN Enable RPM High Mode / RPM Mode Tolerance Register – Index 2Fh (Bank 1) ······154
9.186	AUXFANO Monitor Temperature Source Select Register / STOPDUTY Enable Register - Index 30h
(Bank 1)	
9.187	AUXFAN0 Target Temperature Register / AUXFANIN0 Target Speed_L Register – Index 31h (Bank 1)
9.188	AUXFANINO Tolerance_H / Target Speed_H Register – Index 32h (Bank 1)150
9.189	AUXFANO MODE Register / AUXFANO TOLERRANCE Register – Index 33h (Bank 1) ·······156
9.190	AUXFAN0 Step Up Time Register – Index 34h (Bank 1)·······15
9.191	AUXFAN0 Step Down Time Register – Index 35h (Bank 1)15
9.192	AUXFAN0 Stop Value Register – Index 36h (Bank 1)15
9.193	AUXFAN0 Start-up Value Register – Index 37h (Bank 1)15a
9.194	AUXFAN0 Stop Time Register – Index 38h (Bank 1)158
9.195	AUXFANO Output Value Select Register – Index 39h (Bank 1)15a
9.196	AUXFAN0 Temperature Critical Register – Index 3Ah (Bank 1) ·······15
9.197	AUXFANO Critical Temperature Tolerance Register – Index 3Bh (Bank 1)159
9.198	AUXFAN0 Enable Critical Duty / Fanout Step Register – Index 3Ch (Bank 1)······159
9.199	AUXFAN0 Critical Duty Register – Index 3Dh (Bank 1)
9.200	AUXFAN0 Enable Close Loop Fan Control RPM Mode Register – Index 3Eh (Bank 1) ······166
9.201	AUXFAN0 Enable RPM High Mode / RPM Mode Tolerance Register – Index 3Fh (Bank 1) ·······16
9.202	SYSFAN (SMART FAN™ IV) Temperature 1 Register(T1) – Index 60h (Bank 1) ·······16
9.203	SYSFAN (SMART FAN™ IV) Temperature 2 Register(T2) – Index 61h (Bank 1) ·······16
9.204	SYSFAN (SMART FAN™ IV) Temperature 3 Register(T3) – Index 62h (Bank 1) ·······16
9.205	SYSFAN (SMART FAN™ IV) Temperature 4 Register(T4) – Index 63h (Bank 1) ·······16
9.206	SYSFAN (SMART FAN™ IV) FD1/RPM1 Register – Index 64h (Bank 1) ·······162
9.207	SYSFAN (SMART FAN™ IV) FD2/RPM2 Register – Index 65h (Bank 1) ·······162
9.208	SYSFAN (SMART FAN™ IV) FD3/RPM3 Register – Index 66h (Bank 1) ·······162
9.209	SYSFAN (SMART FAN™ IV) FD4/RPM4 Register – Index 67h (Bank 1) ···············162

9.210	SYSFAN Weight value Configuration Register – Index 68h (Bank 1) ······	··· 163
9.211	SYSFAN Weight Temperature Step Register – Index 69h (Bank 1)·····	··· 163
9.212	SYSFAN Weight Temperature Step Tolerance Register – Index 6Ah (Bank 1)·······	···164
9.213	SYSFAN Weight Step Register – Index 6Bh (Bank 1) ······	···164
9.214	SYSFAN Weight Temperature Base Register – Index 6Ch (Bank 1) ······	···164
9.215	SYSFAN Weight Fan Duty Base Register – Index 6Dh (Bank 1) ······	···164
9.216	SYSFAN Enable PECIERR DUTY Register – Index 6Eh (Bank 1) ······	··· 165
9.217	SYSFAN Pre-Configured Register For PECI Error – Index 6Fh (Bank 1)	··· 165
9.218	CPUFAN (SMART FAN™ IV) Temperature 1 Register(T1) – Index 70h (Bank 1) ···································	··· 165
9.219	CPUFAN (SMART FAN™ IV) Temperature 2 Register(T2) – Index 71h (Bank 1) ···································	···166
9.220	CPUFAN (SMART FAN [™] IV) Temperature 3 Register(T3) – Index 72h (Bank 1) ···································	···166
9.221	CPUFAN (SMART FAN™ IV) Temperature 4 Register(T4) – Index 73h (Bank 1) ···································	···166
9.222	CPUFAN (SMART FAN™ IV) FD1/RPM1 Register – Index 74h (Bank 1) ···································	···166
9.223	CPUFAN (SMART FAN™ IV) FD2/RPM2 Register – Index 75h (Bank 1) ···································	···167
9.224	CPUFAN (SMART FAN™ IV) FD3/RPM3 Register – Index 76h (Bank 1) ···································	···167
9.225	CPUFAN (SMART FAN™ IV) FD4/RPM4 Register – Index 77h (Bank 1) ···································	···167
9.226	CPUFAN Weight value Configuration Register – Index 78h (Bank 1) ······	···167
9.227	CPUFAN Weight Temperature Step Register – Index 79h (Bank 1)·····	···168
9.228	CPUFAN Weight Temperature Step Tolerance Register – Index 7Ah (Bank 1)······	···168
9.229	CPUFAN Weight Step Register – Index 7Bh (Bank 1) ······	···169
9.230	CPUFAN Weight Temperature Base Register – Index 7Ch (Bank 1) ······	···169
9.231	CPUFAN Weight Fan Duty Base Register – Index 7Dh (Bank 1) ······	···169
9.232	CPUFAN Enable PECIERR DUTY Register – Index 7Eh (Bank 1) ······	··· 170
9.233	CPUFAN Pre-Configured Register For PECI Error – Index 7Fh (Bank 1)······	··· 170
9.234	AUXFAN0 (SMART FAN™ IV) Temperature 1 Register(T1) – Index 80h (Bank 1)····································	··· 170
9.235	AUXFAN0 (SMART FAN™ IV) Temperature 2 Register(T2) – Index 81h (Bank 1)····································	··· 170
9.236	AUXFAN0 (SMART FAN™ IV) Temperature 3 Register(T3) – Index 82h (Bank 1)····································	··· 171
9.237	AUXFAN0 (SMART FAN™ IV) Temperature 4 Register(T4) – Index 83h (Bank 1) ···································	··· 171
9.238	AUXFAN0 (SMART FAN™ IV) FD1/RPM1 Register – Index 84h (Bank 1) ···································	··· 171
9.239	AUXFAN0 (SMART FAN™ IV) FD2/RPM2 Register – Index 85h (Bank 1) ···································	··· 171
9.240	AUXFAN0 (SMART FAN™ IV) FD3/RPM3 Register – Index 86h (Bank 1) ···································	··· 172
9.241	AUXFAN0 (SMART FAN™ IV) FD4/RPM4 Register – Index 87h (Bank 1) ···································	··· 172
9.242	AUXFANO Weight value Configuration Register – Index 88h (Bank 1) ······	172

9.243	AUXFANO Weight Temperature Step Register – Index 89h (Bank 1)	173
9.244	AUXFANO Weight Temperature Step Tolerance Register – Index 8Ah (Bank 1) ······	173
9.245	AUXFAN0 Weight Step Register – Index 8Bh (Bank 1) ······	174
9.246	AUXFAN0 Weight Temperature Base Register – Index 8Ch (Bank 1)	174
9.247	AUXFAN0 Weight Fan Duty Base Register – Index 8Dh (Bank 1) ······	174
9.248	AUXFAN0 Enable PECIERR DUTY Register – Index 8Eh (Bank 1) ······	174
9.249	AUXFAN0 Pre-Configured Register For PECI Error – Index 8Fh (Bank 1) ······	175
9.250	AUXFAN1 Monitor Temperature Source Select Register/STOPDUTY Enable Register – Index 90h	
(Bank 1)	175
9.251	AUXFAN1 Target Temperature Register / AUXFANIN1 Target Speed_L Register – Index 91h (Bankana)	
		_
9.252	AUXFANIN1 Tolerance_H / Target Speed_H Register – Index 92h (Bank 1) ······	
9.253	AUXFAN1 MODE Register / AUXFAN1 TOLERRANCE Register – Index 93h (Bank 1)	
9.254	AUXFAN1 Step Up Time Register – Index 94h (Bank 1)······	177
9.255	AUXFAN1 Step Down Time Register – Index 95h (Bank 1) ······	177
9.256	AUXFAN1 Stop Value Register – Index 96h (Bank 1)	178
9.257	AUXFAN1 Start-up Value Register – Index 97h (Bank 1) ······	178
9.258	AUXFAN1 Stop Time Register – Index 98h (Bank 1)·····	178
9.259	AUXFAN1 Output Value Select Register – Index 99h (Bank 1)	178
9.260	AUXFAN1 Temperature Critical Register – Index 9Ah (Bank 1) ·····	179
9.261	AUXFAN1 Critical Temperature Tolerance Register – Index 9Bh (Bank 1)	
9.262	AUXFAN1 Enable Critical Duty / Fanout Step Register – Index 9Ch (Bank 1)	179
9.263	AUXFAN1 Critical Duty Register – Index 9Dh (Bank 1) ······	180
9.264	AUXFAN1 Enable Close Loop Fan Control RPM Mode Register – Index 9Eh (Bank 1)	180
9.265	AUXFAN1 Enable RPM High Mode / RPM Mode Tolerance Register – Index 9Fh (Bank 1)	180
9.266 (Bank 1	AUXFAN2 Monitor Temperature Source Select Register/ STOPDUTY Enable Register – Index A0h)	
9.267	AUXFAN2 Target Temperature Register / AUXFANIN2 Target Speed_L Register – Index A1h (Ban	
9.268	AUXFANIN2 Tolerance_H / Target Speed_H Register – Index A2h (Bank 1)······	182
9.269	AUXFAN2 MODE Register / AUXFAN2 TOLERRANCE Register – Index A3h (Bank 1)······	182
9.270	AUXFAN2 Step Up Time Register – Index A4h (Bank 1) ······	182
9.271	AUXFAN2 Step Down Time Register – Index A5h (Bank 1)	183
9.272	AUXFAN2 Stop Value Register – Index A6h (Bank 1) ······	183

9.273	AUXFAN2 Start-up Value Register – Index A7h (Bank 1)······	·183
9.274	AUXFAN2 Stop Time Register – Index A8h (Bank 1) ······	·184
9.275	AUXFAN2 Output Value Select Register – Index A9h (Bank 1) ······	·184
9.276	AUXFAN2 Temperature Critical Register – Index Aah (Bank 1) ······	·184
9.277	AUXFAN2 Critical Temperature Tolerance Register – Index Abh (Bank 1) ······	·184
9.278	AUXFAN2 Enable Critical Duty / Fanout Step Register – Index Ach (Bank 1)······	·185
9.279	AUXFAN2 Critical Duty Register – Index Adh (Bank 1)	·185
9.280	AUXFAN2 Enable Close Loop Fan Control RPM Mode Register – Index Aeh (Bank 1)······	·185
9.281	AUXFAN2 Enable RPM High Mode / RPM Mode Tolerance Register – Index Afh (Bank 1) ···········	·186
9.282	AUXFAN1 (SMART FAN™ IV) Temperature 1 Register(T1) – Index D0h (Bank 1)····································	·186
9.283	AUXFAN1 (SMART FAN™ IV) Temperature 2 Register(T2) – Index D1h (Bank 1)····································	·186
9.284	AUXFAN1 (SMART FAN™ IV) Temperature 3 Register(T3) – Index D2h (Bank 1)····································	·187
9.285	AUXFAN1 (SMART FAN™ IV) Temperature 4 Register(T4) – Index D3h (Bank 1)····································	·187
9.286	AUXFAN1 (SMART FAN™ IV) FD1/RPM1 Register – Index D4h (Bank 1)····································	·187
9.287	AUXFAN1 (SMART FAN™ IV) FD2/RPM2 Register – Index D5h (Bank 1)····································	·187
9.288	AUXFAN1 (SMART FAN™ IV) FD3/RPM3 Register – Index D6h (Bank 1)····································	·188
9.289	AUXFAN1 (SMART FAN™ IV) FD4/RPM4 Register – Index D7h (Bank 1)····································	·188
9.290	AUXFAN1 Enable PECIERR DUTY Register – Index DEh (Bank 1)······	·188
9.291	AUXFAN1 Pre-Configured Register For PECI Error – Index DFh (Bank 1) ······	·188
9.292	AUXFAN2 (SMART FAN™ IV) Temperature 1 Register(T1) – Index E0h (Bank 1) ···································	·189
9.293	AUXFAN2 (SMART FAN™ IV) Temperature 2 Register(T2) – Index E1h (Bank 1) ···································	·189
9.294	AUXFAN2 (SMART FAN™ IV) Temperature 3 Register(T3) – Index E2h (Bank 1) ···································	·189
9.295	AUXFAN2 (SMART FAN™ IV) Temperature 4 Register(T4) – Index E3h (Bank 1) ···································	·190
9.296	AUXFAN2 (SMART FAN™ IV) FD1/RPM1 Register – Index E4h (Bank 1) ···································	·190
9.297	AUXFAN2 (SMART FAN™ IV) FD2/RPM2 Register – Index E5h (Bank 1) ···································	·190
9.298	AUXFAN2 (SMART FAN™ IV) FD3/RPM3 Register – Index E6h (Bank 1) ···································	·190
9.299	AUXFAN2 (SMART FAN™ IV) FD4/RPM4 Register – Index E7h (Bank 1) ···································	·191
9.300	AUXFAN2 Enable PECIERR DUTY Register – Index Eeh (Bank 1) ······	·191
9.301	AUXFAN2 Pre-Configured Register For PECI Error – Index Efh (Bank 1) ······	
9.302	Reserved Register – Index F0h~FFh (Bank 1)······	·191
9.303	PECI Function Control Registers – Index 00h~03h (Bank 2)·····	·191
9.304	PECI Enable Function Register – Index 00h (Bank 2)······	·192
9.305	PECI Timing Config Register – Index 01h (Bank 2) ·······	·192

9.306	PECI Agent Config Register – Index 02h (Bank 2)·····	·193
9.307	PECI Temperature Config Register – Index 03h (Bank 2)······	·193
9.308	PECI Command Tbase0 Register – Index 04h (Bank 2) ·····	·194
9.309	PECI Command Tbase1 Register – Index 05h (Bank 2) ······	·194
9.310	PECI Agent Relative Temperature Register – Index 06h ~ 0Dh (Bank 2)······	·194
9.311	PECI Command Write Data Registers – Index 10h ~ 1Fh (Bank 2)·····	·196
9.312	PECI Command Address Register – Index 10h (Bank 2)	·196
9.313	PECI Command Write Length Register – Index 11h (Bank 2) ······	·196
9.314	PECI Command Read Length Register – Index 12h (Bank 2)·····	·196
9.315	PECI Command Code Register – Index 13h (Bank 2) ······	·196
9.316	PECI Command Write Data 1 Register – Index 14h (Bank 2) ······	·197
9.317	PECI Command Write Data 2 Register – Index 15h (Bank 2) ······	·197
9.318	PECI Command Write Data 3 Register – Index 16h (Bank 2) ······	·197
9.319	PECI Command Write Data 4 Register – Index 17h (Bank 2) ······	·197
9.320	PECI Command Write Data 5 Register – Index 18h (Bank 2) ······	·198
9.321	PECI Command Write Data 6 Register – Index 19h (Bank 2) ······	·198
9.322	PECI Command Write Data 7 Register – Index 1Ah (Bank 2) ······	·198
9.323	PECI Command Write Data 8 Register – Index 1Bh (Bank 2) ······	·199
9.324	PECI Command Write Data 9 Register – Index 1Ch (Bank 2) ······	·199
9.325	PECI Command Write Data 10 Register – Index 1Dh (Bank 2) ······	·199
9.326	PECI Command Write Data 11 Register – Index 1Eh (Bank 2)·····	-200
9.327	PECI Command Write Data 12 Register – Index 1Fh (Bank 2)·····	-200
9.328	PECI Command Read Data Registers – Index 20h ~ 24h (Bank 2) ······	-200
9.329	PECI Absolute Temperature value Register – Index 20h-21h (Bank 2)······	·200
9.330	PECI Absolute Temperature value Register – Index 20h (Bank 2)······	-200
9.331	PECI Absolute Temperature value Register – Index 21h (Bank 2)······	·201
9.332	PECI Command Alive Agent and Warning Flag Register – Index 24h (Bank 2) ······	·201
9.333	PECI Command Read Data Register – Index 30h ~ 38h (Bank 2) ······	•202
9.334	PECI Command Read Data 1 Register – Index 30h (Bank 2) ·····	-202
9.335	PECI Command Read Data 2 Register – Index 31h (Bank 2) ······	-202
9.336	PECI Command Read Data 3 Register – Index 32h (Bank 2) ······	-202
9.337	PECI Command Read Data 4 Register – Index 33h (Bank 2) ·····	-203
9.338	PECI Command Read Data 5 Register – Index 34h (Bank 2) ···································	.203

9.339	PECI Command Read Data 6 Register – Index 35h (Bank 2) ······	203
9.340	PECI Command Read Data 7 Register – Index 36h (Bank 2) ······	203
9.341	PECI Command Read Data 8 Register – Index 37h (Bank 2) ······	··204
9.342	PECI Command Read Data 9 Register – Index 38h (Bank 2) ······	··204
9.343	Voltage and Temperature Read Register – Index 00h~0Fh (Bank 3) ·····	··206
9.344	SYSTIN Temperature Sensor Offset Register – Index 11h (Bank 3) ······	207
9.345	CPUTIN Temperature Sensor Offset Register – Index 12h (Bank 3) ······	207
9.346	AUXTIN Temperature Sensor Offset Register – Index13h (Bank 3)······	207
9.347	Reserved Register – Index 14h ~ 16h (Bank 3)·····	208
9.348	Configuration Register – Index 17h (Bank 3)·····	··208
9.349	VBAT Monitor Control Register – Index 18h (Bank 3)······	208
9.350	Current Mode Enable Register – Index 19h (Bank 3) ······	209
9.351	Reserved Register – Index 1Ah ~ 8Fh (Bank 3) ······	··209
9.352	PECI Agent Enable Register – Index 90h (Bank 3) ······	209
9.353	Reserved Register – Index 91h ~ B9h (Bank 3) ······	··210
9.354	AUXFAN2 Max Duty Compare Source Select Register – Index BAh (Bank 3) ······	··210
9.355	SYSFAN CPUFAN Max Duty Compare Source Select Register – Index BBh (Bank 3)······	··210
9.356	AUXFAN0 AUXFAN1 Max Duty compare Source Select Register – Index BCh (Bank 3) ······	··211
9.357	BEEP Control Register1 – Index C0h (Bank 3) ······	212
9.358	BEEP Control Register2 – Index C1h (Bank 3) ······	··213
9.359	BEEP Control Register3 – Index C2h (Bank 3) ······	··213
9.360	BEEP Control Register4 – Index C3h (Bank 3) ······	··214
9.361	BEEP Control Register5 – Index C4h (Bank 3) ······	··214
9.362	SYSFAN DUTY PER STEP Register – Index D8h (Bank 3)······	··215
9.363	CPUFAN DUTY PER STEP Register – Index D9h (Bank 3)·····	··215
9.364	AUXFANO DUTY PER STEP Register – Index DAh (Bank 3) ······	··215
9.365	AUXFAN1 DUTY PER STEP Register – Index DBh (Bank 3) ······	··216
9.366	AUXFAN2 DUTY PER STEP Register – Index DCh (Bank 3) ······	··216
9.367	SYSFAN Max Duty Output Register – Index E0h (Bank 3)·····	··216
9.368	CPUFAN Max Duty Output Register – Index E1h (Bank 3)·····	··216
9.369	AUXFAN0 Max Duty Output Register – Index E2h (Bank 3)······	··217
9.370	AUXFAN1 Max Duty Output Register – Index E3h (Bank 3)······	··217
9.371	AUXFAN2 Max Duty Output Register – Index E4h (Bank 3)······	217

9.372	HM Read Only Register	218
10. UA	RT PORT·····	222
10.1	UART Control Register (UCR) (Read/Write)	222
10.2	UART Status Register (USR) (Read/Write)	224
10.3	Handshake Control Register (HCR) (Read/Write)	224
10.4	Handshake Status Register (HSR) (Read/Write) ······	225
10.5	UART FIFO Control Register (UFR) (Write only)	226
10.6	Interrupt Status Register (ISR) (Read only) ······	226
10.7	Interrupt Control Register (ICR) (Read/Write) ······	227
10.8	Programmable Baud Generator (BLL/BHL) (Read/Write)	
10.9	User-defined Register (UDR) (Read/Write)	
10.10	Extending FIFO	
10.11	UART RS485 Auto Flow Control····································	
10.12	UART 9BIT-MODE	
10.12		
10.12.	•	
10.13	UART switch	
II. PAI	RALLEL PORT	········ 235
	Printer Interface Logic	
11.1	Printer Interface Logic ·····	235
11.1 11.2	Printer Interface Logic ······ Enhanced Parallel Port (EPP)······	·······235 ······236
11.1	Printer Interface Logic ·····	2 35 2 36 236
11.1 11.2 11.2.1	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer	235 236 236
11.1 11.2 11.2.1 11.2.2	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port	235236236237237
11.1 11.2 11.2.1 11.2.2 11.2.3	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3	235236236237237
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions	235236236237237238
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation	235236236237237238238
11.1 11.2 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation	235236236237237238238238
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation	235236236237237238238238
11.1 11.2 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation	235236236237238238238239
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation Extended Capabilities Parallel (ECP) Port ECP Register and Bit Map	235236236237238238238239239
11.1 11.2 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation Extended Capabilities Parallel (ECP) Port ECP Register and Bit Map Data and ecpAFifo Port	235236236237237238238238239239239
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.3 11.3.1 11.3.2 11.3.3	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation EXTENDED CAPABILITIES PARALLEL (ECP) Port ECP Register and Bit Map Data and ecpAFifo Port Device Status Register (DSR)	235236236237237238238239239239241
11.1 11.2 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.3 11.3.1 11.3.2 11.3.3 11.3.4	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation EXTENDED CAPABILITIES Parallel (ECP) Port ECP Register and Bit Map Data and ecpAFifo Port Device Status Register (DSR) Device Control Register (DCR)	235236236237237238238239239239241241
11.1 11.2 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation EXTENDED Capabilities Parallel (ECP) Port ECP Register and Bit Map Data and ecpAFifo Port Device Status Register (DSR) Device Control Register (DCR) CFIFO (Parallel Port Data FIFO) Mode = 010	235236236237238238238239239241241242
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation EPP Version 1.7 Operation EXECT Register and Bit Map Data and ecpAFifo Port Device Status Register (DSR) Device Control Register (DCR) CFIFO (Parallel Port Data FIFO) Mode = 010 ECPDFIFO (ECP Data FIFO) Mode = 011	235236236237238238238239239241241241242
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 11.3.7	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation EPP Version 1.7 Operation ECP Register and Bit Map Data and ecpAFifo Port Device Status Register (DSR) Device Control Register (DCR) CFIFO (Parallel Port Data FIFO) Mode = 010 ECPDFIFO (ECP Data FIFO) Mode = 011 TFIFO (Test FIFO Mode) Mode = 110	235236236237237238238238239239241241241242242
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 11.3.7 11.3.8	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation Extended Capabilities Parallel (ECP) Port ECP Register and Bit Map Data and ecpAFifo Port Device Status Register (DSR) Device Control Register (DCR) CFIFO (Parallel Port Data FIFO) Mode = 010 ECPDFIFO (ECP Data FIFO) Mode = 011 TFIFO (Test FIFO Mode) Mode = 110 CNFGA (Configuration Register A) Mode = 111	235236236237237238238239239241241241242242
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 11.3.7 11.3.8 11.3.9	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Version 1.9 Operation EPP Version 1.7 Operation Extended Capabilities Parallel (ECP) Port ECP Register and Bit Map Data and ecpAFifo Port Device Status Register (DSR) Device Control Register (DCR) CFIFO (Parallel Port Data FIFO) Mode = 010 ECPDFIFO (ECP Data FIFO) Mode = 011 TFIFO (Test FIFO Mode) Mode = 110 CNFGA (Configuration Register A) Mode = 111 CNFGB (Configuration Register B) Mode = 111	235236236237238238238239239241241241242242242
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 11.3.7 11.3.8 11.3.9 11.3.1	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Din Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation EPP Version 1.7 Operation ECP Register and Bit Map Data and ecpAFifo Port Device Status Register (DSR) Device Control Register (DCR) CFIFO (Parallel Port Data FIFO) Mode = 010 ECPDFIFO (ECP Data FIFO) Mode = 011 TFIFO (Test FIFO Mode) Mode = 110 CNFGA (Configuration Register A) Mode = 111 CNFGB (Configuration Register B) Mode = 111	235236236237238238238239239241241241242242242242
11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 11.3.7 11.3.8 11.3.9	Printer Interface Logic Enhanced Parallel Port (EPP) Data Port (Data Swapper) Printer Status Buffer Printer Control Latch and Printer Control Swapper EPP Address Port EPP Data Port 0-3 EPP Pin Descriptions EPP Operation EPP Version 1.9 Operation EPP Version 1.7 Operation EPP Version 1.7 Operation ECP Register and Bit Map Data and ecpAFifo Port Device Status Register (DSR) Device Control Register (DCR) CFIFO (Parallel Port Data FIFO) Mode = 010 ECPDFIFO (ECP Data FIFO) Mode = 011 TFIFO (Test FIFO Mode) Mode = 110 CNFGA (Configuration Register A) Mode = 111 CNFGB (Configuration Register B) Mode = 111 CNFGB (Configuration Register B) Mode = 111 CNFGB (Configuration Register B) Mode = 111 CNFGB (Extended Control Register) Mode = all ECP Pin Descriptions	235236236237237238238238239239241241241241242242242242

11.3.13	FIFO Operation ·····	246
11.3.14	DMA Transfers·····	
11.3.15	Programmed I/O (NON-DMA) Mode······	246
12. KEYI	BOARD CONTROLLER ·····	247
12.1	Output Buffer······	247
12.2	nput Buffer ·····	247
12.3	Status Register·····	248
	Commands	
	Hardware GATEA20/Keyboard Reset Control Logic·······	
12.5.1	KB Control Register (Logical Device 5, CR-F0)	251
12.5.1	Port 92 Control Register (Default Value = 0x24)	
	SUMER INFRARED REMOTE (CIR)	
	CIR Register Table ······	
13.1.1	IR Configuration Register – Base Address + 0·····	
13.1.2	IR Status Register – Base Address + 1	
13.1.3 13.1.4	IR Interrupt Configuration Register – Base Address + 2 ·································	
13.1.4	IR RX Sample Limited Count High Byte Register (SLCH) – Base Address + 6·······	
13.1.5	IR RX Sample Limited Count Low Byte Register (SLCL) – Base Address + 7 ········	
13.1.7	IR FIFO Configuration Register (FIFOCON) – Base Address + 8······	
13.1.8	IR Sample RX FIFO Status Register – Base Address + 9······	
13.1.9	IR Sample RX FIFO Register – Base Address + A ·······	
13.1.10	IR FSM Status Register (IRFSM) – Base Address + F······	
14. CON	SUMER INFRARED REMOTE (CIR) WAKE-UP······	258
14.1	CIR WAKE-UP Register Table······	
14.1.1	IR Configuration Register – Base Address + 0	
14.1.2	IR Status Register – Base Address + 1·····	
14.1.3	IR Interrupt Configuration Register – Base Address + 2 ·····	
14.1.4	IR FIFO Compare Depth Configuration Register – Base Address + 3 ······	
14.1.5	IR FIFO Compare Tolerance Configuration Register – Base Address + 4 ······	
14.1.6	RX FIFO Count– Base Address + 5	
14.1.7	IR RX Sample Limited Count High Byte Register (SLCH) – Base Address + 6	261
14.1.8	IR RX Sample Limited Count Low Byte Register (SLCL) – Base Address + 7	261
14.1.9	IR FIFO Configuration Register (FIFOCON) – Base Address + 8····· IR Sample RX FIFO Status Register – Base Address + 9·······	
14.1.10 14.1.11	IR Sample RX FIFO Status Register – Base Address + A ······	
14.1.11	Write FIFO – Base Address + B ·································	
14.1.12	Read FIFO Only – Base Address + C ······	
14.1.14	Read FIFO Index – Base Address + D ······	
14.1.15	FIFO Ignore (IGNORE) – Base Address + E ······	
14.1.16	IR FSM Status Register (IRFSM) – Base Address + F······	
15. POV	/ER MANAGEMENT EVENT ······	265
15.1	Power Control Logic ······	266
15.1.1	PSON# Logic······	
15.1.2	AC Power Failure Resume·····	

15.2	Wake Up the System by Keyboard and Mouse	
15.2.1	a a a problem and a a a a a a a a a a a a a a a a a a	
15.2.2	Waken up by Mouse events ·····	269
15.3	Resume Reset Logic ·····	269
16. SER	RIALIZED IRQ	271
16.1	Start Frame ·····	271
16.2	IRQ/Data Frame ·····	272
16.3	Stop Frame ·····	273
17. WA	TCHDOG TIMER······	274
18. GEI	NERAL PURPOSE I/O······	277
18.1	GPIO ARCHITECTURE ·····	277
18.2	ACCESS CHANNELS	283
18.3	GPIO TRANSITION ·····	283
19. SM	BUS MASTER INTERFACE······	284
19.1	General Description·····	284
19.2	Introduction to the SMBus Master ······	284
19.2.1	Data Transfer Format ······	
19.2.2	Arbitration	
19.2.3	Clock Synchronization	285
19.3	SB-TSI	286
19.3.1	SB-TSI Address ·····	286
19.4	PCH	286
19.4.1	Command Summary ······	286
19.5	SMBus Master·····	287
19.5.1	Block Diagram ·····	
19.5.2	Programming Flow ······	
19.5.3	TSI Routine·····	
19.5.4	PCH Routine·····	
19.5.5	BYTE Routine ·····	290
19.5.6	Manual Mode interface ·····	290
19.6	Register Type Abbreviations ·····	
19.6.1	Enter the Extended Function Mode ·····	
19.6.2	Configure the Configuration Registers	292
19.7	SMBus Master Register Set	
19.7.1	SMBus Register Map·····	
19.7.2	SMBus Data (SMDATA) – Bank 0 ·····	
19.7.3	SMBus Write Data Size (SMWRSIZE) – Bank 0·····	
19.7.4	SMBus Command (SMCMD) – Bank 0 ·····	
19.7.5	SMBus INDEX (SMIDX) – Bank 0 ·····	
19.7.6	SMBus Control (SMCTL) – Bank 0 ······· SMBus Address (SMADDR) – Bank 0 ······	
1977	NVIBUS AUDITESS (NIVIALIUR) - BANK U····································	

	19.7.8	SCL FREQ (SCLFREQ) – Bank 0·····	
	19.7.9	PCH Address (PCHADDR) – Bank 0 ·····	
	19.7.10	` = '	
	19.7.11	, , , , , , , , , , , , , , , , , , , ,	
	19.7.12 19.7.13		
	19.7.13		
	19.7.15	• , ,	
	19.7.16	·	
	19.7.17	BYTE INDEX_H (BYTE_IDX_H) – Bank 0	299
	19.7.18	- \	
	19.7.19	` = /	
	19.7.20	TSI AGENT1 ADDR (TSI1_ADDR) – Bank 0·····	300
20). FAD	DING LED·····	302
2:	1. RES	ETIC LOGIC ·····	303
22	2. POR	RT80 TO UART······	·· 304
23	3. <i>CO</i> N	NFIGURATION REGISTER ······	305
		Chip (Global) Control Register	
		Logical Device 1 (PRT)	
		Logical Device 2 (UARTA)	
		Logical Device 3 (UARTB)	
		Logical Device 5 (KBC)	
		Logical Device 6 (CIR)	
		Logical Device 7 (GPIO) ······	
		Logical Device 8 (GPIO, WDT1)·····	
	23.9	Logical Device 9 (GPIO) ·····	···364
	23.10	Logical Device A (ACPI) ·····	373
	23.11	Logical Device B (HM, LED) ·····	··· 385
	23.12	Logical Device D (WDT2)	···392
	23.13	Logical Device E (CIR WAKE-UP)	395
	23.14	Logical Device F (GPIO)	403
	23.15	Logical Device 10 (UARTC) ·····	408
	23.16	Logical Device 11 (UARTD)······	413
	23.17	Logical Device 12 (UARTE) ·····	···418
	23.18	Logical Device 13 (UARTF)······	423
		Logical Device 14 (PORT80, IR)	
		Logical Device 15 (FADING LED) ····································	
		Logical Device 16 (DFFP SLFFP)	

24.	SPE	CIFATIONS	439
24	l.1	Absolute Maximum Ratings······	439
24	1.2	DC CHARACTERISTICS ·····	439
25.	AC (CHARACTERISTICS	443
		Power On / Off Timing······	
		AC Power Failure Resume Timing······	
25		LPC Timing ······	
25	5.4	eSPI Interface Timing······	448
25	5.5	PECI Timing ······	450
25	5.6	SMBus Timing ·····	450
25	5.7	UART Parameters ······	451
	25.7.1	UART Receiver Timing ·····	452
	25.7.2	UART Transmitter Timing ······	
	25.7.3	Modem Control Timing	452
25	5.8	Parallel Port Mode Parameters ·······	
2.	25.8.1	Parallel Port Timing	
	25.8.2	EPP Data or Address Read Cycle Timing Parameters ······	
	25.8.3	EPP Data or Address Read Cycle (EPP Version 1.9)	
	25.8.4	EPP Data or Address Read Cycle (EPP Version 1.7)	
	25.8.5	EPP Data or Address Write Cycle Timing Parameters	
	25.8.6	EPP Data or Address Write Cycle (EPP Version 1.9)	
	25.8.7	EPP Data or Address Write Cycle (EPP Version 1.7)	
	25.8.8	Parallel Port FIFO Timing Parameters	459
	25.8.9	Parallel FIFO Timing ·····	
	25.8.10	6	
	25.8.11	6	
	25.8.12	<u> </u>	
	25.8.13	0	
	25.8.14	<u> </u>	
	25.8.15		
	25.8.16 25.8.17	, 5	
	25.8.17		
	25.8.19	·	
	25.8.20	•	
	25.8.21		
25	5.9	GPIO Timing Parameters·····	
	25.9.1	GPIO Write Timing·····	466
26.	TOP	MARKING SPECIFICATIONS	467
27.	ORE	PERING INFORMATION ·····	468
28.	PAC	KAGE SPECIFICATION ······	469
29.		ISION HISTORY ·······	

LIST OF FIGURE

Figure 3-1 NCT6122D / NCT6126D Block Diagram	5
Figure 4-1 NCT6122D Pin Layout	6
Figure 4-2 NCT6126D Pin Layout	7
Figure 6-1 RSMRST# and DPWROK	33
Figure 6-2 RSMRST# and DPWROK (Enable ATX5VSB detect)	34
Figure 6-3 PWROK	34
Figure 6-4 RSMRST# monitor 3VSB/VHIF	34
Figure 6-5 Reset IC to PWROK	35
Figure 6-6 LATCH_BKFD_CUT	36
Figure 6-7 3VSBSW	37
Figure 6-8 PSON# Block Diagram	38
Figure 6-9 PWROK Block Diagram	
Figure 6-10 Illustration of Dual Color LED application	41
Figure 6-11 Illustration of LED polarity	43
Figure 6-12 ASSC Application Diagram	44
Figure 7-1 Structure of the Configuration Register	52
Figure 7-2 Configuration Register	54
Figure 8-1 LPC Bus' Reads from / Write to Internal Registers	58
Figure 8-2 eSPI Protocol Transaction	59
Figure 8-4 Serial Bus Write to Internal Address Register Followed by the Data Byte	60
Figure 8-5 Serial Bus Read from Internal Address Register	60
Figure 8-6 Analog Inputs and Application Circuit of the NCT6122D / NCT6126D	61
Figure 8-7 Monitoring Temperature from Thermistor	
Figure 8-8 Monitoring Temperature from Thermal Diode (Voltage Mode)	64
Figure 8-9 Monitoring Temperature from Thermal Diode (Current Mode)	
Figure 8-10 PECI Temperature	65
Figure 8-11 Temperature and Fan Speed Relation after Tbase Offsets	66
Figure 8-12 Thermal Cruise™ Mode Parameters Figure	70
Figure 8-13 Mechanism of Thermal Cruise™ Mode (PWN Duty Cycle)	71
Figure 8-14 Mechanism of Thermal Cruise™ Mode (DC Output Voltage)	71
Figure 8-15 Mechanism of Fan Speed Cruise $^{\text{TM}}$ Mode	
Figure 8-16 SMART FAN™ IV & Close Loop Fan Control Mechanism	75
Figure 8-17 Fan Control Duty Mode Programming Flow	78
Figure 8-18 Close-Loop Fan Control RPM Mode Programming Flow	79
Figure 8-19 CPUFAN SMART FAN™ IV Table Parameters Figure	80
Figure 8-20 Fanout Step Relation of CPUFANOUT	80
Figure 8-21 SYS TEMP and Weight Value Relations	81
Figure 8-22 Weighting Duty Mode Programming Flow	82
Figure 8-23 SMI Mode of Voltage and Fan Inputs	83
Figure 8-24 Shut-down Interrupt Mode	84
Figure 8-25 SMI Mode of SYSTIN I	85
Figure 8-26 SMI Mode of SYSTIN II	86
Figure 8-27 Shut-down Interrupt Mode	86
Figure 8-28 SMI Mode of CPUTIN	
Figure 8-29 OVT# Modes of Temperature Inputs	88
Figure 8-30 Caseopen Mechanism	
Figure 12-1 Keyboard and Mouse Interface	247
Figure 15-1 Power Control Mechanism	
Figure 15-2 Power Sequence from S5 to S0, then Back to S5	
Figure 15-3 The previous state is "on"	268
Figure 15-4 The previous state is "off"	268

NCT6122D / NCT6126D

Figure 15-5 Mechanism of Resume Reset Logic	270
Figure 16-1 Start Frame Timing with Source Sampled A Low Pulse on IRQ1	271
Figure 16-2 Stop Frame Timing with Host Using 17 SERIRQ Sampling PeriodPrioding Period	273
Figure 17-1 RSMRST# Event When Logical Device D CRFO Bit[7] and Bit[6] as 2'b01	275
Figure 17-2 PWROK Event When Logical Device D CRF0 Bit[7] and Bit[6] as 2'b10	275
Figure 17-3 SLP_S3# Event When Logical Device D CRF0 Bit[7] and Bit[6] as 2'b11	276
Figure 19-1 Data Transfer Format	284
Figure 19-2 SMBus Arbitration	285
Figure 19-3 Clock synchronization	285
Figure 19-4 SMBus Master Block Diagram	287
Figure 19-5 Programming Flow	288
Figure 19-6 TSI Routine	289
Figure 19-7 PCH Routine	289
Figure 19-8 Byte Routine	290
Figure 19-9 Manual Mode Programming Flow	291
Figure 20-1 Example of Fading LED	
Figure 21-1 RESET IC Timing Chart	30 3
Figure 22-1 PORT80 to UART Block Diagram	304

LIST OF TABLE

Table 6-1 Pin Description	33
Table 7-1 Devices of I/O Base Address	53
Table 8-1 Temperature Data Format	
Table 8-2 Display Registers − at SMART FAN [™] I Mode	72
Table 8-3 Relative Registers − at Thermal Cruise [™] Mode	73
Table 8-4 Relative Registers – at Speed Cruise™ Mode	
Table 8-5 Relative Register-at SMART FAN™ IV Control Mode	75
Table 8-6 Relative Register-at Weight Value Control	81
Table 8-7 Relative Register of SMI functions	87
Table 8-8 Relative Register of OVT functions	
Table 10-1 Register Summary for UART	223
Table 11-1 Pin Descriptions for SPP, EPP, and ECP Modes	
Table 11-2 EPP Register Addresses	236
Table 11-3 Address and Bit Map for SPP and EPP Modes	236
Table 11-4 ECP Mode Description	239
Table 11-5 ECP Register Addresses	
Table 11-6 Bit Map of the ECP Registers	
Table 12-1 Bit Map of Status Register	
Table 12-2 KBC Command Sets	249
Table 13-1 CIR Register Table	
Table 14-1 CIR Wake-Up Register Table	
Table 15-1 Bit Map of Logical Device A, CR[E4h], Bits[6:5]	
Table 15-2 Definitions of Mouse Wake-Up Events	269
Table 15-3 Timing and Voltage Parameters of RSMRST#	270
Table 16-1 SERIRQ Sampling Periods	
Table 18-1 Relative Control Registers of GPIO 63, 64, 44 and 45 that Support Wake-Up Function	
Table 18-2 GPIO Group Programming Table	277
Table 18-3 GPIO Multi-Function Routing Table	282
Table 18-4 GPIO Register Addresses	283
Table 19-1 SB-TSI Address Encoding	
Table 19-2 PCH Command Summary	
Table 19-3 SMBus Master Bank O Registers	292
Table 20-1 Duty cycle increase/decrease time	302
Table 20-2 Bright/Dark extend time	302

1. GENERAL DESCRIPTION

The NCT6122D / NCT6126D is a member of Nuvoton's Super I/O product line. The NCT6122D / NCT6126D monitors several critical parameters in PC hardware, including power supply voltages, fan speeds, and temperatures. In terms of temperature monitoring, the NCT6122D / NCT6126D adopts the Current Mode (dual current source) and thermistor sensor approach. The NCT6122D / NCT6126D also supports the Smart Fan control system, including "SMART FANTM I and SMART FANTM IV, which makes the system more stable and user-friendly.

The NCT6122D / NCT6126D supports 6 high-speed serial communication port (UART). Each UART includes a 128-byte send/receive FIFO, a programmable baud rate generator, complete modem-control capability, and a processor interrupt system. The UART supports legacy speeds up to 115.2K bps as well as even higher baud rates of 230K, 460K, or 921K bps to support higher speed modems.

The NCT6122D / NCT6126D supports the PC-compatible printer port (SPP), the bi-directional printer port (BPP), the enhanced parallel port (EPP) and the extended capabilities port (ECP). The NCT6122D / NCT6126D supports keyboard and mouse interface which is 8042-based keyboard controller.

The NCT6122D / NCT6126D provides flexible I/O control functions through a set of general purpose I/O (GPIO) ports. These GPIO ports may serve as simple I/O ports or may be individually configured to provide alternative functions.

The NCT6122D / NCT6126D supports the Intel® PECI (Platform Environment Control Interface), AMD® SB-TSI interface, and Intel® Deep Sleep Well glue logic which helps customers to reduce the external circuits needed while using Deep Sleep Well function.

The NCT6122D / NCT6126D supports to decode port 80 diagnostic messages on the LPC bus. This could help on system power on debugging. With Nuvoton Port80 Analyzer AP or debug card, it will be easier and more convenient. It also supports two-color LED control to indicate system power states, Consumer IR function for remote control purpose, and also Advanced Power Saving function to further reduce the power consumption while the system is at S5 state.

The configuration registers inside the NCT6122D / NCT6126D support mode selection, function enable and disable, and power-down selection. Furthermore, the configurable PnP features are compatible with the plug-and-play feature in Windows, making the allocation of the system resources more efficient than ever.

Publication Release Date: September 12, 2023

2. FEATURES

General

Meet LPC Spec. 1.1

Support LDRQ# (LPC DMA), SERIRQ (Serialized IRQ)

Integrated hardware monitor functions

Support DPM (Device Power Management), ACPI (Advanced Configuration and Power Interface)

Programmable configuration settings

Oscillator free (No external 24MHz or 48MHz clock input needed)

Support selective pins of 5 V tolerance

eSPI Interface

UART

NCT6122D - 2 high-speed, 16550-compatible UART with 128-byte send / receive FIFO

Support RS485

NCT6126D - 6 high-speed, 16550-compatible UART with 128-byte send / receive FIFO

Support RS485

--- Supports auto flow control

Fully programmable serial-interface characteristics:

- --- 5, 6, 7 or 8-bit characters
- --- Even, odd or no parity bit generation / detection
- --- 1, 1.5 or 2 stop-bit generation

Internal diagnostic capabilities:

- --- Loop-back controls for communications link fault isolation
- --- Break, parity, overrun, framing error simulation

Programmable baud rate generator allows division of clock source by any value from 1 to (2¹⁶-1)

Maximum baud rate for clock source 14.769 MHz is up to 921K bps. The baud rate at 24 MHz is 1.5 M bps.

-2-

Parallel Port

Compatible with IBM® parallel port

Support PS/2-compatible bi-directional parallel port

Support Enhanced Parallel Port (EPP) - Compatible with IEEE 1284 specification

Support Extended Capabilities Port (ECP) - Compatible with IEEE 1284 specification

Enhanced printer port back-drive current protection

Keyboard Controller

8042-based keyboard controller

Asynchronous access to two data registers and one status register

Software-compatible with 8042

Support PS/2 mouse

Support Port 92

Support both interrupt and polling modes

Fast Gate A20 and Hardware Keyboard Reset

Publication Release Date: September 12, 2023

12MHz operating frequency

Hardware Monitor Functions

Smart Fan control system

Programmable threshold temperature to speed fan fully while current temperature exceeds this threshold in the Thermal Cruise™ mode

Support Current Mode (dual current source) temperature sensing method

Ten voltage inputs (CPUVCORE, VTT, VIN[0..2], VHIF, 3VCC, AVSB, 3VSB and VBAT)

Three fan-speed monitoring inputs

Three fan-speed controls

Dual mode for fan control (PWM and DC) for SYSFANOUT, CPUFANOUT and AUXFANOUT

Built-in case open detection circuit

Programmable hysteresis and setting points for all monitored items

Issue SMI#, OVT# (Over-temperature) to activate system protection

Nuvoton Health Manager support

Provide I²C master / slave interface to read / write registers

CIR and IR (Infrared)

Support IrDA version 1.0 SIR protocol with maximum baud rate up to 115.2K bps

Support SHARP ASK-IR protocol with maximum baud rate up to 57,600 bps

Support Consumer IR, including CIRRX

General Purpose I/O Ports

GPIO0 ~ GPIOB programmable general purpose I/O ports

Two access channels, indirect (via 2E/2F or 4E/4F) and direct (Base Address) access.

-3-

ACPI Configuration

Support Glue Logic functions

Support general purpose Watch Dog Timer functions

OnNow Functions

Keyboard Wake-Up by programmable keys

Mouse Wake-Up by programmable buttons

OnNow Wake-Up from all of the ACPI sleeping states (S1-S5)

PECI Interface

Support PECI 1.1, 2.0 and 3.0 specification

Support 2 CPU addresses and 2 domains per CPU address

Publication Release Date: September 12, 2023

AMD SB-TSI Interface

Support AMD® SB-TSI specification

SMBus Interface

Support SMBus Slave interface to report Hardware Monitor device data Support SMBus Master interface to get thermal data from PCH Support SMBus Master interface to get thermal data from MXM module

Power Measurement

Support Power Consumption measurement Fading LED driver control for power status and diagnostic indications

Advanced Power Saving

Advanced Sleep State Control to save motherboard Stand-by power consumption

Operation voltage

3.3 Volt

Package

128-pin LQFP Green

3. BLOCK DIAGRAM

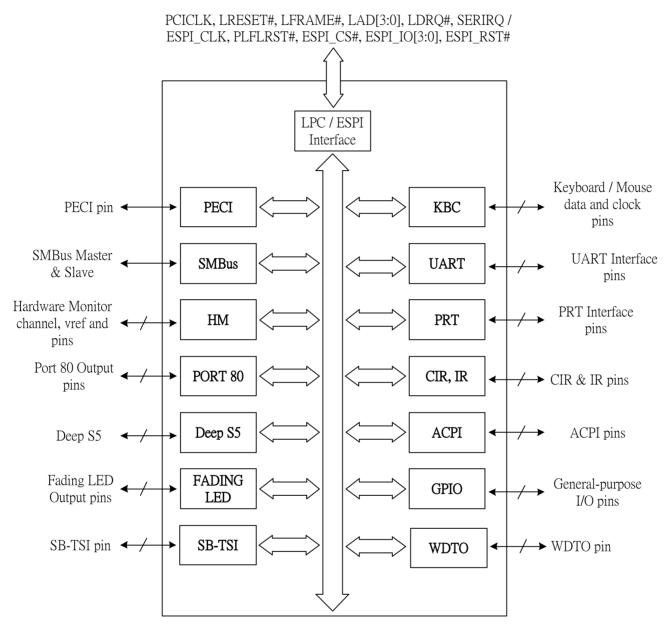


Figure 3-1 NCT6122D / NCT6126D Block Diagram

4. PIN LAYOUT

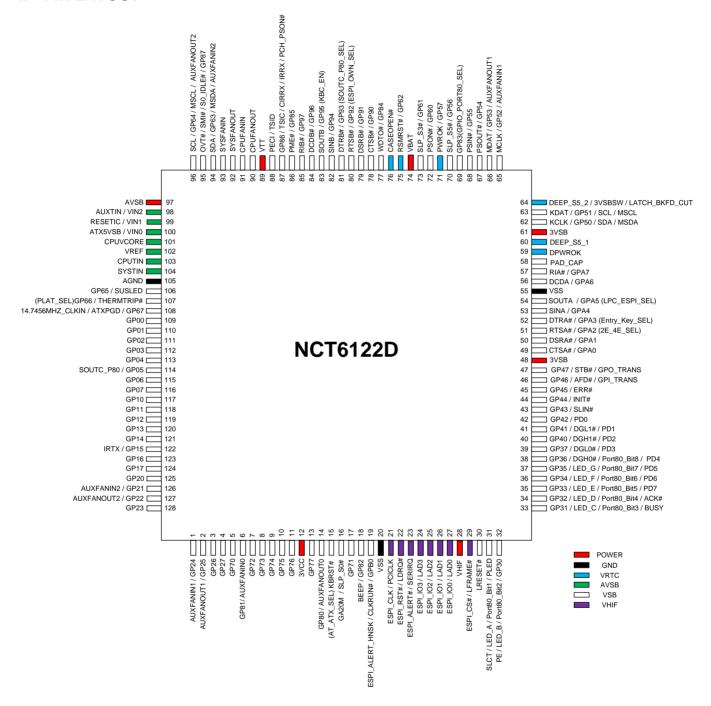


Figure 4-1 NCT6122D Pin Layout

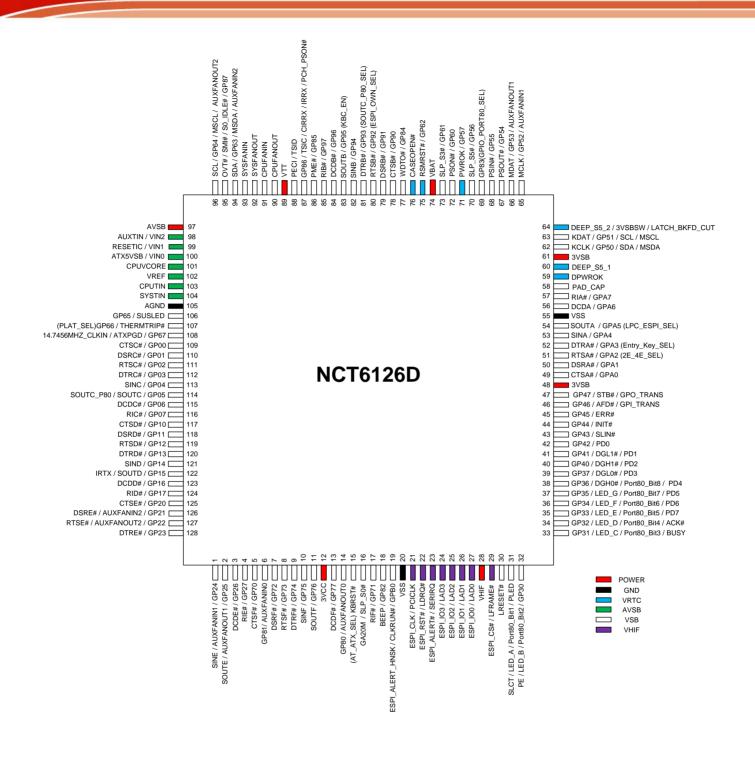


Figure 4-2 NCT6126D Pin Layout

5. PIN DESCRIPTION

Note: Please refer to 24.2 DC CHARACTERISTICS for details.

AOUT - Analog output pin
AIN - Analog input pin

 IN_{to318} - 3.3V/1.8V TTL-level input pin

 ${\rm IN}_{\rm sn318}$ - 3.3V/1.8V TTL-level, Schmitt-trigger input pin

 $IN_{t_{D3}}$ - 3.3V TTL-level input pin

 ${\rm IN}_{\rm tsn3}$ - 3.3V TTL-level, Schmitt-trigger input pin

 IN_{gp5} - 5V GTL-level input pin IN_{tn5} - 5V TTL-level input pin

IN_{tscup5} - 5V TTL-level, Schmitt-trigger, input buffer with controllable pull-up

IN_{tsp5} - 5V TTL-level, Schmitt-trigger input pin

$$\begin{split} & IN_{tdp5} & -5V \ TTL\text{-level input pin with internal pull-down resistor} \\ & IN_{tup5} & -5V \ TTL\text{-level input pin with internal pull-up resistor} \\ & O_8 & -\text{output pin with 8-mA source-sink capability} \end{split}$$

 $\begin{array}{lll} \text{OD}_8 & & \text{- open-drain output pin with 8-mA sink capability} \\ \text{O}_{12} & & \text{- output pin with 12-mA source-sink capability} \\ \text{OD}_{12} & & \text{- open-drain output pin with 12-mA sink capability} \\ \text{O}_{24} & & \text{- output pin with 24-mA source-sink capability} \\ \text{OD}_{24} & & \text{- open-drain output pin with 24-mA sink capability} \\ \text{O}_{48} & & \text{- output pin with 48-mA source-sink capability} \\ \text{OD}_{48} & & \text{- open-drain output pin with 48-mA sink capability} \\ \end{array}$

 I/O_{v3} - Bi-direction pin with source capability of 6 mA and sink capability of 1 mA

I/O_{v4} - Bi-direction pin with source capability of 6 mA

 $\begin{array}{ll} O_{12cu} & \text{- output pin 12-mA source-sink capability with controllable pull-up} \\ OD_{12cu} & \text{- open-drain 12-mA sink capability output pin with controllable pull-up} \end{array}$

OX₈ - output pin with 8-mA source-sink capability and output voltage high level depend VHIF
ODX₈ - open-drain output pin with 8-mA sink capability and output voltage high level depend VHIF

5.1 LPC Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
19	CLKRUN#	I/O	IN _{tp318} OD ₈	VSB	Clock RUN signal.
21	PCICLK	ı	IN _{tp318}	VHIF	PCI-clock input. 19.2MHz-33MHz support.
22	LDRQ#	0	OX ₈	VHIF	Encoded DMA Request signal.
23	SERIRQ	I/O	IN_{tp318} OX_8 ODX_8	VHIF	Serialized IRQ input / output.
24-27	LAD[3:0]	I/O	IN _{tp318} ODX ₈	VHIF	These signal lines communicate address, control, and data information over the LPC bus between a host and a peripheral.
29	LFRAME#	ı	IN _{tp318}	VHIF	Indicates the start of a new cycle or the termination of a broken cycle.
30	LRESET#	I	IN _{sp318}	VSB	Reset signal. It can be connected to the PLTRST# signal on the host.

5.2 eSPI Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
19	ESPI_ALERT_ HNSK	I/O	${\sf IN_{tp318}} \atop {\sf OD_{12}}$	VSB	Alert handshake signal. Pulling down a $4.7 \text{K}\Omega$ resistor to GND is recommended.
21	ESPI_CLK	ļ	IN _{tp318}	VHIF	The eSPI_CLK provides the reference timing for all the serial input and output operations.
22	ESPI_RST#	_	IN _{tp318}	VHIF	Reset the eSPI interface for both master and slaves.
23	ESPI_ALERT#	I/O	OX ₈	VHIF	A dedicated Alert# pin is used to signal the Alert event.
24-27	ESPI_IO[3:0]	I/O	IN_{tp318} ODX_8	VHIF	These are bi-directional input/output pins used to transfer data between master and slaves.
29	ESPI_CS#	I	IN _{sp318}	VHIF	Driving Chip Select# low selects a particular eSPI slave for the transaction.

5.3 Multi-Mode Parallel Port

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
-----	--------	-----	----------------	---------------	-------------

-9-

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
31	SLCT	I	IN _{tsp5}	VSB	PRINTER MODE: An active-high input on this pin indicates that the printer is selected. See the description of the parallel port for the
					definition of this pin in ECP and EPP modes.
32	PE	I	IN _{tsp5}	VSB	PRINTER MODE: An active-high input on this pin indicates that the printer has detected the end of the paper. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
					PRINTER MODE:
33	BUSY	I	IN _{tsp5}	VSB	An active-high input indicates that the printer is not ready to receive data. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
					PRINTER MODE: ACK#
34	ACK#	I	IN _{tsp5}	VSB	An active-low input on this pin indicates that the printer has received data and is ready to accept more data. See the descriptions of the parallel port for the definition of this pin in ECP and EPP modes.
					PRINTER MODE: ERR#
45	ERR#	I	IN _{tsp5}	VSB	An active-low input on this pin indicates that the printer has encountered an error condition. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
					PRINTER MODE: SLIN#
43	SLIN#	0	O ₁₂	VSB	Output line for detection of printer selection. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
					PRINTER MODE: INIT#
44	INIT#	0	O ₁₂	VSB	Output line for the printer initialization. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
					PRINTER MODE: AFD#
46	AFD#	0	O ₁₂	VSB	An active-low output from this pin causes the printer to auto feed a line after a line is printed. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
					PRINTER MODE: STB#
47	STB#	0	O ₁₂	VSB	An active-low output is used to latch the parallel data into the printer. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
			141		PRINTER MODE: PD0
42	PD0	I/O	IN _{tsp5} O ₁₂	VSB	Parallel port data bus bit 0. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
41	PD1	I/O	IN _{tsp5}	VSB	PRINTER MODE: PD1 Parallel port data bus bit 1. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
40	PD2	I/O	IN _{tsp5}	VSB	PRINTER MODE: PD2 Parallel port data bus bit 2. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
39	PD3	I/O	IN _{tsp5}	VSB	PRINTER MODE: PD3 Parallel port data bus bit 3. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
38	PD4	I/O	IN _{tsp5}	VSB	PRINTER MODE: PD4 Parallel port data bus bit 4. See the description of the parallel port for the definition of this pin in ECP and EPP modes.
37	PD5	I/O	IN _{tsp5}	VSB	PRINTER MODE: PD5 Parallel port data bus bit 5. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
36	PD6	I/O	IN _{tsp5}	VSB	PRINTER MODE: PD6 Parallel port data bus bit 6. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.
35	PD7	I/O	IN _{tsp5} O ₂₄	VSB	PRINTER MODE: PD7 Parallel port data bus bit 7. See the description of the parallel port for the definitions of this pin in ECP and EPP modes.

5.4 Serial Port Interface (NCT6122D: UART A ~ UART B; NCT6126D: UART A ~ UART F)

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
57	RIA#	I	IN _{tp5}	VSB	Ring Indicator. An active-low signal indicates that a ring signal is being received from the modem or the data set.
56	DCDA#	I	IN _{tp5}	VSB	Data Carrier Detection. An active-low signal indicates the modem or data set has detected a data carrier.
54	SOUTA	0	O ₁₂	VSB	UART A Serial Output. This pin is used to transmit serial data out to the communication link.
53	SINA	I	IN _{tp5}	VSB	Serial Input. This pin is used to receive serial data through the communication link.
52	DTRA#	0	O ₁₂	VSB	UART A Data Terminal Ready. An active-low signal informs the modem or data set that the controller is ready to communicate.

	T		T		
PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
51	RTSA#	0	O ₁₂	VSB	UART A Request To Send. An active-low signal informs the modem or data set that the controller is ready to send data.
50	DSRA#	I	IN _{tp5}	VSB	Data Set Ready. An active-low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
49	CTSA#	I	IN _{tp5}	VSB	Clear To Send. This is the modem-control input. The function of these pins can be tested by reading bit 4 of the handshake status register.
85	RIB#	I	IN _{tp5}	VSB	Ring Indicator. An active-low signal indicates that a ring signal is being received from the modem or the data set.
84	DCDB#	I	IN _{tp5}	VSB	Data Carrier Detection. An active-low signal indicates the modem or data set has detected a data carrier.
83	SOUTB	0	O ₁₂	VSB	UART B Serial Output. This pin is used to transmit serial data out to the communication link.
82	SINB	I	IN _{tp5}	VSB	Serial Input. This pin is used to receive serial data through the communication link.
81	DTRB#	0	O ₁₂	VSB	UART B Data Terminal Ready. An active-low signal informs the modem or data set that the controller is ready to communicate.
80	RTSB#	0	O ₁₂	VSB	UART B Request To Send. An active-low signal informs the modem or data set that the controller is ready to send data.
79	DSRB#	I	IN _{tp5}	VSB	Data Set Ready. An active-low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
78	CTSB#	I	IN _{tp5}	VSB	Clear To Send. This is the modem-control input. The function of these pins can be tested by reading bit 4 of the handshake status register.
116	RIC#	I	IN _{tp5}	VSB	Ring Indicator. An active-low signal indicates that a ring signal is being received from the modem or the data set.
115	DCDC#	I	IN _{tp5}	VSB	Data Carrier Detection. An active-low signal indicates the modem or data set has detected a data carrier.
114	SOUTC	0	O ₁₂	VSB	UART C Serial Output. This pin is used to transmit serial data out to the communication link.
114	SOUTC_P80	0	O ₁₂	VSB	PORT80 to UART Serial Output. This pin is used to transmit serial data out to the communication link.
113	SINC	I	IN _{tp5}	VSB	Serial Input. This pin is used to receive serial data through the communication link.
112	DTRC#	0	O ₁₂	VSB	UART C Data Terminal Ready. An active-low signal informs the modem or data set that the controller is ready to communicate.
111	RTSC#	0	O ₁₂	VSB	UART C Request To Send. An active-low signal informs the modem or data set that the controller is ready to send data.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
110	DSRC#	I	IN _{tp5}	VSB	Data Set Ready. An active-low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
109	CTSC#	I	IN _{tp5}	VSB	Clear To Send. This is the modem-control input. The function of these pins can be tested by reading bit 4 of the handshake status register.
124	RID#	I	IN _{tp5}	VSB	Ring Indicator. An active-low signal indicates that a ring signal is being received from the modem or the data set.
123	DCDD#	I	IN _{tp5}	VSB	Data Carrier Detection. An active-low signal indicates the modem or data set has detected a data carrier.
122	SOUTD	0	O ₁₂	VSB	UART D Serial Output. This pin is used to transmit serial data out to the communication link.
121	SIND	ı	IN _{tp5}	VSB	Serial Input. This pin is used to receive serial data through the communication link.
120	DTRD#	0	O ₁₂	VSB	UART D Data Terminal Ready. An active-low signal informs the modem or data set that the controller is ready to communicate.
119	RTSD#	0	O ₁₂	VSB	UART D Request To Send. An active-low signal informs the modem or data set that the controller is ready to send data.
118	DSRD#	I	IN _{tp5}	VSB	Data Set Ready. An active-low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
117	CTSD#	I	IN _{tp5}	VSB	Clear To Send. This is the modem-control input. The function of these pins can be tested by reading bit 4 of the handshake status register.
4	RIE#	I	IN _{tp5}	VSB	Ring Indicator. An active-low signal indicates that a ring signal is being received from the modem or the data set.
3	DCDE#	I	IN _{tp5}	VSB	Data Carrier Detection. An active-low signal indicates the modem or data set has detected a data carrier.
2	SOUTE	0	O ₁₂	VSB	UART E Serial Output. This pin is used to transmit serial data out to the communication link.
1	SINE	I	IN _{tp5}	VSB	Serial Input. This pin is used to receive serial data through the communication link.
128	DTRE#	0	O ₁₂	VSB	UART E Data Terminal Ready. An active-low signal informs the modem or data set that the controller is ready to communicate.
127	RTSE#	0	O ₁₂	VSB	UART E Request To Send. An active-low signal informs the modem or data set that the controller is ready to send data.
126	DSRE#	I	IN _{tp5}	VSB	Data Set Ready. An active-low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
125	CTSE#	Ι	IN _{tp5}	VSB	Clear To Send. This is the modem-control input. The function of these pins can be tested by reading bit 4 of the handshake status register.
17	RIF#	Ι	IN _{tp5}	VSB	Ring Indicator. An active-low signal indicates that a ring signal is being received from the modem or the data set.
13	DCDF#	-	IN _{tp5}	VSB	Data Carrier Detection. An active-low signal indicates the modem or data set has detected a data carrier.
11	SOUTF	0	O ₂₄	VSB	UART F Serial Output. This pin is used to transmit serial data out to the communication link.
10	SINF	ı	IN _{tp5}	VSB	Serial Input. This pin is used to receive serial data through the communication link.
9	DTRF#	0	O ₂₄	VSB	UART F Data Terminal Ready. An active-low signal informs the modem or data set that the controller is ready to communicate.
8	RTSF#	0	O ₂₄	VSB	UART F Request To Send. An active-low signal informs the modem or data set that the controller is ready to send data.
7	DSRF#	I	IN _{tp5}	VSB	Data Set Ready. An active-low signal indicates the modem or data set is ready to establish a communication link and transfer data to the UART.
5	CTSF#	I	IN _{tp5}	VSB	Clear To Send. This is the modem-control input. The function of these pins can be tested by reading bit 4 of the handshake status register.
108	14.7456MHZ _CLKIN	I	IN _{tp5}	VSB	UART-clock 14.7456-MHz input

5.5 KBC Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
16	GA20M	0	O ₁₂	VSB	Gate A20 output. This pin is high after system reset. (KBC P21)
15	KBRST#	0	O ₁₂	VSB	Keyboard reset. This pin is high after system reset. (KBC P20) *Note1
62	KCLK	I/O	IN _{tsp5} OD ₁₂	VSB	Keyboard Clock.
63	KDAT	I/O	IN _{tsp5} OD ₁₂	VSB	Keyboard Data.
65	MCLK	I/O	IN _{tsp5} OD ₁₂	VSB	PS2 Mouse Clock.
66	MDAT	I/O	IN _{tsp5} OD ₁₂	VSB	PS2 Mouse Data.

Note1 : Refer to APN for KBRST# external circuit implementation.

5.6 CIR Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
87	CIRRX	I	IN_{tsp5}	VSB	CIR input for long length.

5.7 Hardware Monitor Interface

PIN	SYMBOL	1/0	BUFFER TYPE	POWER WELL	DESCRIPTION
76	CASEOPEN#	I	IN _{tp5}	VRTC	CASE OPEN detection. An active-low input from an external device when the case is open. This signal can be latched if pin VBAT is connected to the battery, even if the system is in G3 state.
					Pulling down a 2-M Ω resistor to GND is recommended if not in use.
107	THERMTRIP#	I	IN_{tp5}	VRTC	Thermal Trip detection. Active low signal indicating the CPU is too hot. Used to turn off to the main power supply
98	VIN2 / AUXTIN	1	AIN	AVSB	Analog input for voltage measurement (Range: 0 to 2.048 V)
99	VIN1	Ι	AIN	AVSB	Analog input for voltage measurement (Range: 0 to 2.048 V)
99	RESETIC	1	AIN	AVSB	Analog input for voltage measurement (Range: 0 to 2.048 V)
100	VIN0	_	AIN	AVSB	Analog input for voltage measurement (Range: 0 to 2.048 V)
100	ATX5VSB	I	AIN	AVSB	Analog input for voltage measurement (Range: 1.2 to 1.3 V)
101	CPUVCORE	_	AIN	AVSB	Analog input for voltage measurement (Range: 0 to 2.048 V)
102	VREF	0	AOUT	AVSB	Reference Voltage (around 2.048 V).
103	CPUTIN	_	AIN	AVSB	The input of temperature sensor 2. It is used for CPU temperature sensing.
104	SYSTIN	_	AIN	AVSB	The input of temperature sensor 1. It is used for system temperature sensing.
95	OVT#	0	OD ₁₂	VSB	The output of over temperature Shutdown. This pin indicates the temperature is over the temperature limit. (Default after LRESET#)
95	SMI#	0	OD ₁₂	VSB	System Management Interrupt channel output.
6	AUXFANIN0	I	IN _{tsp5}	VSB	0 to +5 V amplitude fan tachometer input.
			AOUT		
14	AUXFANOUT0	0	O ₁₂ OD ₁₂	VSB	PWM duty-cycle signal for fan speed control.
1	AUXFANIN1	I	IN _{tsp5}	VSB	0 to +5 V amplitude fan tachometer input.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
2	AUXFANOUT1	0	AOUT O ₁₂ OD ₁₂	VSB	PWM duty-cycle signal for fan speed control.
65	AUXFANIN1	I	IN _{tsp5}	VSB	0 to +5 V amplitude fan tachometer input.
66	AUXFANOUT1	0	AOUT O ₁₂ OD ₁₂	VSB	PWM duty-cycle signal for fan speed control.
91	CPUFANIN	ı	${\sf IN_{tsp5}} \ {\sf O_{12}}$	VSB	0 to +5 V amplitude fan tachometer input. This pin will keep level low when VCC off.
90	CPUFANOUT	0	AOUT O ₁₂ OD ₁₂	VSB	PWM duty-cycle signal for fan speed control.
93	SYSFANIN	ı	${\sf IN}_{\sf tsp5}$ ${\sf O}_{\sf 12}$	VSB	0 to +5 V amplitude fan tachometer input. This pin will keep level low when VCC off.
92	SYSFANOUT	0	AOUT O ₁₂ OD ₁₂	VSB	PWM duty-cycle signal for fan speed control. DC voltage output for fan speed control.
94	AUXFANIN2	I	IN_{tsp5}	VSB	0 to +5 V amplitude fan tachometer input.
96	AUXFANOUT2	0	AOUT O ₁₂ OD ₁₂	VSB	PWM duty-cycle signal for fan speed control.
126	AUXFANIN2	I	IN _{tsp5}	VSB	0 to +5 V amplitude fan tachometer input.
127	AUXFANOUT2	0	AOUT O ₁₂ OD ₁₂	VSB	PWM duty-cycle signal for fan speed control.
18	BEEP	0	OD ₁₂	VSB	Beep function for hardware monitor.

5.8 Intel® PECI Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
88	PECI	I/O	I/O _{V3}	VTT	INTEL® CPU PECI interface. Connect to CPU.
89	VTT	I	Power	VTT	INTEL® CPU Vtt Power.

5.9 Advanced Configuration & Power Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
68	PSIN#	1	IN_{tp5}	VSB	Panel Switch Input. This pin is active-low with an internal pulled-up resistor.
67	PSOUT#	0	OD ₁₂	VSB	Panel Switch Output. This signal is used to wake-up the system from S3/S5 state.
75	RSMRST#	0	OD ₁₂	VRTC	Resume reset signal output.
73	SLP_S3#	I	IN _{tp5}	VSB	SLP_S3# input.
70	SLP_S5#	I	IN _{tp5}	VSB	SLP_S5# input.
108	ATXPGD	I	IN _{tp5}	VSB	ATX power good signal.
72	PSON#	0	OD ₁₂	VSB	Power supply on-off output.
71	PWROK	0	O ₁₂ OD ₁₂	VRTC	3VCC PWROK signal.
64	3VSBSW	0	OD ₂₄	VRTC	Switch 3VSB power to memory when in S3 state.
59	DPWROK	0	OD ₁₂	VRTC	V3A signal output

5.10 Advanced Sleep State Control

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
60	DEEP_S5_ 1	0	OD ₂₄	VRTC	This pin is to control system power for entering "more power saving mode".
64	DEEP_S5_ 2	0	OD ₂₄	VRTC	This pin is to control system power for entering "more power saving mode".

5.11 S0ix Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
16	SLP_S0#	I	IN_{tp5}	VSB	Modern Standby input signal.
87	PCH_PS ON#	I	IN _{tp5}	VSB	Modern Standby input signal.
95	S0_IDLE#	0	O ₁₂	VSB	Modern Standby output signal. Indicate S0ix duration.

5.12 Port 80 Message and 7 segment Display

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
31	PORT80_ Bit1	0	O ₁₂	VSB	Anode outputs for Binary LED. Common cathode output of display on decoded Port80 message.
32	PORT80_ Bit2	0	O ₁₂	VSB	Anode outputs for Binary LED. Common cathode output of display on decoded Port80 message.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
33	PORT80_ Bit3	0	O ₁₂	VSB	Anode outputs for Binary LED. Common cathode output of display on decoded Port80 message.
34	PORT80_ Bit4	0	O ₁₂	VSB	Anode outputs for Binary LED. Common cathode output of display on decoded Port80 message.
35	PORT80_ Bit5	0	O ₁₂	VSB	Anode outputs for Binary LED. Common cathode output of display on decoded Port80 message.
36	PORT80_ Bit6	0	O ₁₂	VSB	Anode outputs for Binary LED. Common cathode output of display on decoded Port80 message.
37	PORT80_ Bit7	0	O ₁₂	VSB	Anode outputs for Binary LED. Common cathode output of display on decoded Port80 message.
38	PORT80_ Bit8	0	O ₁₂	VSB	Anode outputs for Binary LED. Common cathode output of display on decoded Port80 message.
38	DGH0#	0	O ₂₄	VSB	Common cathode output of high nibble display on decoded Port80 message. Switching frequency is about 250Hz.
39	DGL0#	0	O ₂₄	VSB	Common cathode output of low nibble display on decoded Port80 message. Switching frequency is about 250KHz.
40	DGH1#	0	O ₂₄	VSB	Common cathode output of high nibble display on decoded Port81 message. Switching frequency is about 250Hz.
41	DGL1#	0	O ₂₄	VSB	Common cathode output of low nibble display on decoded Port81 message. Switching frequency is about 250Hz.
31 32 33 34 35 36 37	LED_A LED_B LED_C LED_D LED_E LED_F LED_G	0	O ₁₂	VSB	Anode outputs for 7-Segment LED.

5.13 SMBus Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
63	SCL/MSCL	I/O	IN _{tsp5} OD ₁₂	VSB	SMBus clock.
62	SDA/MSDA	I/O	IN _{tsp5} OD ₁₂	VSB	SMBus bi-directional Data.
94	SDA/MSDA	I/O	IN _{tsp5} OD ₁₂	VSB	SMBus bi-directional Data.
96	SCL/MSCL	I/O	IN _{tsp5} OD ₁₂	VSB	SMBus clock.

5.14 Power Pins

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
48, 61	3VSB	I		3VSB	+3.3 V stand-by power supply for the digital circuits.
74	VBAT	I		VBAT	+3 V on-board battery for the digital circuits.
12	3VCC	I		3VCC	+3.3 V power supply for driving 3 V on host interface.
28	VHIF	-		VHIF	3.3V or 1.8V standby power supply for driving on host interface. It will be monitor by the RSMRST# signal.
97	AVSB	1		AVSB	Analog +3.3 V power input. Internally supply power to all analog circuits.
105	CPUD- / AGND	I		CPUD- / AGND	Analog ground. The ground reference for all analog input. Internally connected to all analog circuits. This pin should be connected to ground.
20, 55	VSS	I		VSS	Ground.
89	VTT	ı		VTT	INTEL® CPU Vtt power.
58	PAD_CAP	0			External Filter Capacitor 1uF (for internal VSB 1.8V)

5.15 AMD SB-TSI Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
87	TSIC	0	OD ₁₂	VTT	AMD SB-TSI clock output.
88	TSID	I/O	IN _{tsp3} OD ₁₂	VTT	AMD SB-TSI data input / output.

5.16 Dual Voltage Control

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
64	LATCH_BK FD_CUT	0	O ₂₄	VRTC	Power distribution control (When switching between main and standby regulators) for system transition into and out of the S5 sleep state.

5.17 WatchDog

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
77	WDTO#	0	OD ₁₂	VSB	Watchdog Timer output signal.

5.18 IR

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
87	IRRX	I	IN _{tsp5}	VSB	IR Receiver input.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
122	IRTX	0	O ₁₂	VSB	IR Transmitter output.

5.19 LED

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
106	SUSLED	0	O ₁₂	VSB	Suspend Led signal. This pin can be reflects sleep s5 state through fading led register setting.
31	PLED	0	OD ₁₂	VSB	Power Led signal. This pin can be reflects PWROK state through fading led register setting.

5.20 General Purpose I/O Port

5.20.1 GPIO-0 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
109	GP00	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 0 bit 0.
110	GP01	I/O	IN_{tp5} O_{12} OD_{12}	VSB	General-purpose I/O port 0 bit 1.
111	GP02	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 0 bit 2.
112	GP03	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 0 bit 3.
113	GP04	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 0 bit 4.
114	GP05	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 0 bit 5.
115	GP06	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 0 bit 6.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
116	GP07	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 0 bit 7.

5.20.2 GPIO-1 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
117	GP10	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 1 bit 0.
118	GP11	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 1 bit 1.
119	GP12	I/O	$\begin{array}{c} {\sf IN}_{\sf tp5} \\ {\sf O}_{\sf 12} \\ {\sf OD}_{\sf 12} \end{array}$	VSB	General-purpose I/O port 1 bit 2.
120	GP13	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 1 bit 3.
121	GP14	I/O	$\begin{array}{c} \mathrm{IN}_{\mathrm{tp5}} \\ \mathrm{O}_{\mathrm{12}} \\ \mathrm{OD}_{\mathrm{12}} \end{array}$	VSB	General-purpose I/O port 1 bit 4.
122	GP15	I/O	${ m IN}_{ m tp5}$ ${ m O}_{ m 12}$ ${ m OD}_{ m 12}$	VSB	General-purpose I/O port 1 bit 5.
123	GP16	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 1 bit 6.
124	GP17	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 1 bit 7.

5.20.3 GPIO-2 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
125	GP20	I/O	$\begin{array}{c} {\sf IN}_{\sf tp5} \\ {\sf O}_{\sf 12} \\ {\sf OD}_{\sf 12} \end{array}$	VSB	General-purpose I/O port 2 bit 0.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
126	GP21	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 2 bit 1.
127	GP22	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 2 bit 2.
128	GP23	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{12} \\ \text{OD}_{12} \end{array}$	VSB	General-purpose I/O port 2 bit 3.
1	GP24	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 2 bit 4.
2	GP25	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 2 bit 5.
3	GP26	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 2 bit 6.
4	GP27	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 2 bit 7.

5.20.4 GPIO-3 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
32	GP30	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 3 bit 0.
33	GP31	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 3 bit 1.
34	GP32	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 3 bit 2.
35	GP33	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 3 bit 3.

PIN	SYMBOL	1/0	BUFFER TYPE	POWER WELL	DESCRIPTION
36	GP34	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 3 bit 4.
37	GP35	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 3 bit 5.
38	GP36	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{24} \\ OD_{24} \end{array}$	VSB	General-purpose I/O port 3 bit 6.
39	GP37	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{24} \\ OD_{24} \end{array}$	VSB	General-purpose I/O port 3 bit 7.

5.20.5 GPIO-4 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
40	GP40	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 4 bit 0.
41	GP41	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 4 bit 1.
42	GP42	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{12} \\ \text{OD}_{12} \end{array}$	VSB	General-purpose I/O port 4 bit 2.
43	GP43	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 4 bit 3.
44	GP44	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 4 bit 4.
45	GP45	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 4 bit 5.
46	GP46	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{12} \\ \text{OD}_{12} \end{array}$	VSB	General-purpose I/O port 4 bit 6.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
47	GP47	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{12} \\ \text{OD}_{12} \end{array}$	VSB	General-purpose I/O port 4 bit 7.

5.20.6 GPIO-5 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
62	GP50	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 5 bit 0.
63	GP51	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 5 bit 1.
65	GP52	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 5 bit 2.
66	GP53	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 5 bit 3.
67	GP54	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 5 bit 4.
68	GP55	I/O	IN_{tp5} O_8 OD_8	VSB	General-purpose I/O port 5 bit 5.
70	GP56	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 5 bit 6.
71	GP57	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 5 bit 7.

5.20.7 GPIO-6 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
72	GP60	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 6 bit 0.
73	GP61	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 6 bit 1.
75	GP62	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 6 bit 2.
94	GP63	I/O	$\begin{array}{c} IN_{tsp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 6 bit 3.
96	GP64	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 6 bit 4.
106	GP65	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 6 bit 5.
107	GP66	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 6 bit 6.
108	GP67	I/O	IN_{tp5} O_{12} OD_{12}	VSB	General-purpose I/O port 6 bit 7.

5.20.8 GPIO-7 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
5	GP70	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 7 bit 0.
17	GP71	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 7 bit 1.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
7	GP72	I/O	IN_{tp5} O_{12} OD_{12}	VSB	General-purpose I/O port 7 bit 2.
8	GP73	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 7 bit 3.
9	GP74	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 7 bit 4.
10	GP75	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 7 bit 5.
11	GP76	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 7 bit 6.
13	GP77	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 7 bit 7.

5.20.9 GPIO-8 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
14	GP80	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 8 bit 0.
6	GP81	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 8 bit 1.
18	GP82	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 8 bit 2.
69	GP83	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 8 bit 3.
77	GP84	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 8 bit 4.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
86	GP85	I/O	$\begin{array}{c} \mathrm{IN}_{\mathrm{tp5}} \\ \mathrm{O}_{\mathrm{12}} \\ \mathrm{OD}_{\mathrm{12}} \end{array}$	VSB	General-purpose I/O port 8 bit 5.
87	GP86	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 8 bit 6.
95	GP87	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 8 bit 7.

5.20.10 GPIO-9 Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
78	GP90	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port 9 bit 0.
79	GP91	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 9 bit 1.
80	GP92	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 9 bit 2.
81	GP93	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 9 bit 3.
82	GP94	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port 9 bit 4.
83	GP95	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 9 bit 5.
84	GP96	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 9 bit 6.
85	GP97	I/O	$\begin{array}{c} {\rm IN_{tp5}} \\ {\rm O_{12}} \\ {\rm OD_{12}} \end{array}$	VSB	General-purpose I/O port 9 bit 7.

5.20.11 GPIO-A Interface

PIN	SYMBOL	1/0	BUFFER TYPE	POWER WELL	DESCRIPTION
49	GPA0	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port A bit 0.
50	GPA1	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port A bit 1.
51	GPA2	I/O	$\begin{array}{c} \mathrm{IN}_{\mathrm{tp5}} \\ \mathrm{O}_{\mathrm{12}} \\ \mathrm{OD}_{\mathrm{12}} \end{array}$	VSB	General-purpose I/O port A bit 2.
52	GPA3	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{12} \\ \text{OD}_{12} \end{array}$	VSB	General-purpose I/O port A bit 3.
53	GPA4	I/O	$\begin{array}{c} \text{IN}_{\text{tsp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port A bit 4.
54	GPA5	I/O	$\begin{array}{c} \mathrm{IN}_{\mathrm{tp5}} \\ \mathrm{O}_{\mathrm{12}} \\ \mathrm{OD}_{\mathrm{12}} \end{array}$	VSB	General-purpose I/O port A bit 5.
56	GPA6	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port A bit 6.
57	GPA7	I/O	$\begin{array}{c} IN_{tp5} \\ O_{12} \\ OD_{12} \end{array}$	VSB	General-purpose I/O port A bit 7.

5.20.12 GPIO-B Interface

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
19	GPB0	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{\text{12}} \\ \text{OD}_{\text{12}} \end{array}$	VSB	General-purpose I/O port B bit 0.

5.20.13 GPIO Transition

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
46	GPI_TRANS	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{12} \\ \text{OD}_{12} \end{array}$	VSB	General-purpose I/O Transition input.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
47	GPO_TRANS	I/O	$\begin{array}{c} \text{IN}_{\text{tp5}} \\ \text{O}_{12} \\ \text{OD}_{12} \end{array}$	VSB	General-purpose I/O Transition output.

5.21 Strapping Pins

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION
51	2E_4E_SEL	I	IN _{tdp5}	VSB	SIO I/O addresses selection. (Strapped by VSB power [internal RSMRST# signal]) Strapped to high: SIO I/O address is 4Eh/4Fh. Strapped to low: SIO I/O address is 2Eh/2Fh.
52	Entry_Key_S EL	I	IN _{tdp5}	VSB	SIO entry key selection (Strapped by VSB power [internal RSMRST# signal]) Strapped to high: The Entry Key is 88. Strapped to low: The Entry Key is 87.
69	GPIO_PORT 80_SEL	I	IN _{tdp5}	VSB	Port80 function selection. (Strapped by VCC power) Strapped to high: Port80 function. Strapped to low: non-Port80 function.
15	AT_ATX_SEL	I	IN _{tdp5}	VSB	Enable AT_ATX power sequence selection. (Strapped by VSB power [internal RSMRST# signal]) Active high: ATX Active low: AT See configuration register.
54	LPC_ESPI_S EL	I	IN _{tdp5}	VSB	Host interface function selection. (Strapped by VSB) Active high: eSPI interface Active low: LPC interface See configuration register.
80	ESPI_OWN_S EL	I	ESPI owner setting. (Strapped by VSB power [internal RSMRST Active high: ESPI owner. Active low: Not ESPI owner		(Strapped by VSB power [internal RSMRST# signal]) Active high: ESPI owner.

PIN	SYMBOL	I/O	BUFFER TYPE	POWER WELL	DESCRIPTION	
81	SOUTC_P80_	ı	IN _{tdp5}	VSB	SOUTC_P80 function selection. (Strapped by VSB power [internal RSMRST# signal])	
01	SEL				Strapped to high: SOUTC_P80 function. Strapped to low: non-SOUTC_P80 function.	
83	KBC_EN	I	IN _{tdp5}	VSB Pin 62/63 65/66 PAD Function Selection. (Strapped by VSB power [internal RSMRST# signal Active high: KBC Function. Active low: Others		
107	PLAT_SEL	ı	IN _{tdp5}	VSB	Big core and Atom platform select (Strapped by VSB power [internal RSMRST# signal]) Active 3VSB: Atom platform Active 3VCC: Big core platform	

Note . All Strapping results can be programming by LPC Interface. There are three conditions below:

- 1) VSB Strapping result can be programming by LPC, and reset by RSMRST#.
- 2) VCC Strapping result can be programming by LPC, and reset by PWROK.

5.22 Internal pull-up, pull-down pins

Signal	Pin(s)	Power well	Туре	Resistor	Note			
	Si	trapping Pi	ns					
2E_4E_SEL	51	VSB	Pull- down	47.4K	2			
Entry_Key_SEL	52	VSB	Pull- down	47.4K	2			
GPIO_PORT80_S EL	69	VSB	Pull- down	47.4K	1			
LPC_ESPI_SEL	54	VSB	Pull- down	47.4K	2			
ESPI_OWN_SEL	80	VSB	Pull- down	47.4K	2			
SOUTC_P80_SEL	81	VSB	Pull- down	47.4K	2			
KBC_EN	83	VSB	Pull-up	47.4K	2			
PLAT_SEL	107	VSB	Pull- down	47.4K	2			
Adva	Advanced Configuration & Power Interface							
PSIN#	68	VSB	Pull-up	47.03K				
AT_ATX_SEL	15	VSB	Pull-up	47.03K				

Note1. Active only during VCC Power-up reset

Note2. Active only during VSB Power-up reset

6. GLUE LOGIC

6.1 ACPI Glue Logic

Table 6-1 Pin Description

SYMBOL	PIN	DESCRIPTION			
SLP_S5#	70	SLP_S5# input.			
PWROK	71	This pin generates the PWROK signals while 3VCC present.			
RSMRST#	75	The RSMRST# signal is a reset output and is used as the VSB power on reset signal for the South Bridge. When the NCT6122D / NCT6126D detects the 3VSB voltage rises to "V1", it then starts a delay – "t1" before the rising edge of RSMRST# asserting. If the 3VSB voltage falls below "V2", the RSMRST# de-asserts immediately.			

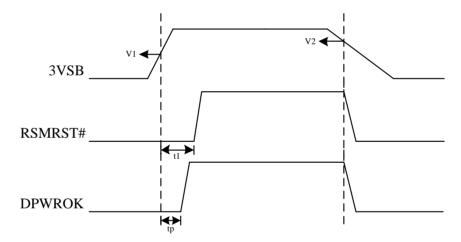


Figure 6-1 RSMRST# and DPWROK

The ATX5VSB is less than 1.2V, and the RSMRST# will be de-asserted. Please refer to the figure below.

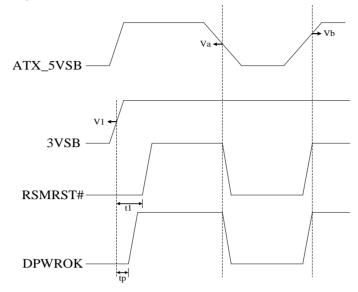


Figure 6-2 RSMRST# and DPWROK (Enable ATX5VSB detect)

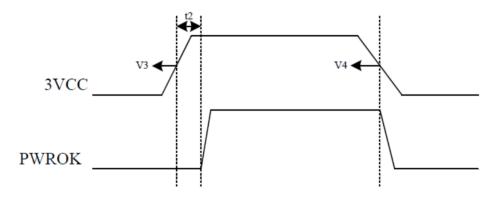


Figure 6-3 PWROK

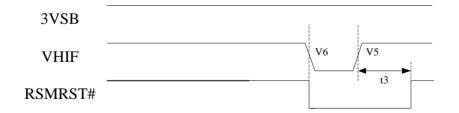


Figure 6-4 RSMRST# monitor 3VSB/VHIF

TIMING	PARAMETER	MIN	MAX	UNIT
t1	Valid 3VSB to RSMRST# inactive	200	300	mS
tp	Valid 3VSB to DPWROK inactive	10	30	mS
t2	Valid 3VCC to PWROK active	300	500	mS

Publication Release Date: September 12, 2023

TIMING	PARAMETER	MIN	MAX	UNIT
t3	Valid VHIF to RSMRST#	36	40	ms

DC	PARAMETER	MIN	MAX	UNIT
V1	3VSB Valid Voltage		3.1	Volt
V2	3VSB Ineffective Voltage	2.92		Volt
V3	3VCC Valid Voltage	-	2.75	Volt
V4	3VCC Ineffective Voltage	2.3	-	Volt
V5	VHIF Valid Voltage	-	1.3-1.4	Volt
V6	VHIF Ineffective Voltage	1.1-1.2	-	Volt
Va	ATX5VSB Ineffective Voltage	1.2	1.3	Volt
Vb	ATX5VSB Valid Voltage	1.2	1.3	Volt

Note: 1. The values above are the worst-case results of R&D simulation.

The ResetIC function controls the PWROK on/off. The PWROK is turned off for a period 140ms when detect pin RESETIC falling edge. If RESETIC low for a long while, PWROK will turn off again after a while. Please refer to the figure below.

The main function is enable by LDE_CRE6[1], and the RESETIN pin has the debounce controlled by LDA_CRED[4].

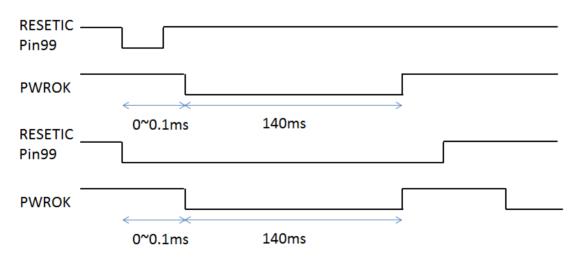
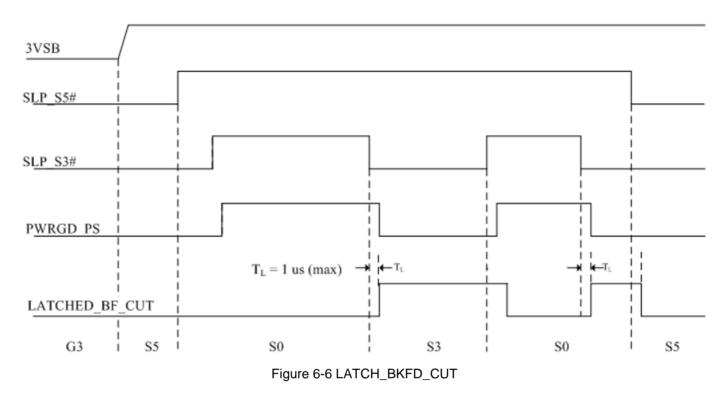



Figure 6-5 Reset IC to PWROK

6.2 LATCH_BKFD_CUT

NCT6126D supports LATCH_BKFD_CUT functions, please refer the timing diagram below.

LATCH_BKFD_CUT (Latched_Backfeed_Cut) – When high, switches dual rails to standby power.

6.3 3VSBSW

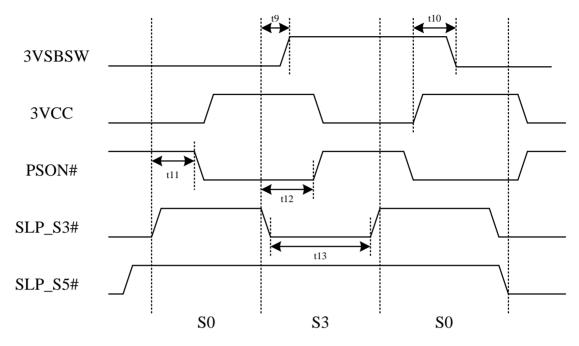


Figure 6-7 3VSBSW

TIMING	PARAMETER	MIN	MAX	UNIT
t9	SLP_S3# active to 3VSBSW active	0	30	mS
t10	3VCC active to 3VSBSW inactive	120	190	mS
t11	SLP_S3# inactive to PSON# active	0	80	nS
t12	SLP_S3# active to PSON# inactive	15	45	mS
t13	SLP_S3# minimal Low Time	40	1	mS

6.4 PSON# Block Diagram

The PSON# function controls the main power on/off. The main power is turned on when PSON# is low. Please refer to the figure below.

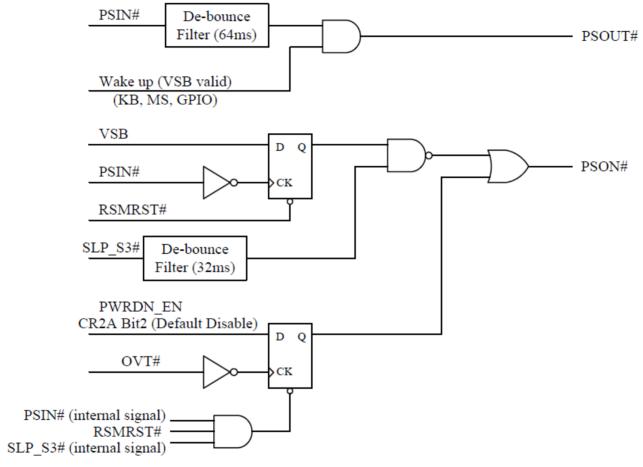


Figure 6-8 PSON# Block Diagram

6.5 PWROK

PWROK Signal indicates the main power (VCC Power) is valid. Besides, valid PWROK signal also requires the following conditions, as shown in the figure below.

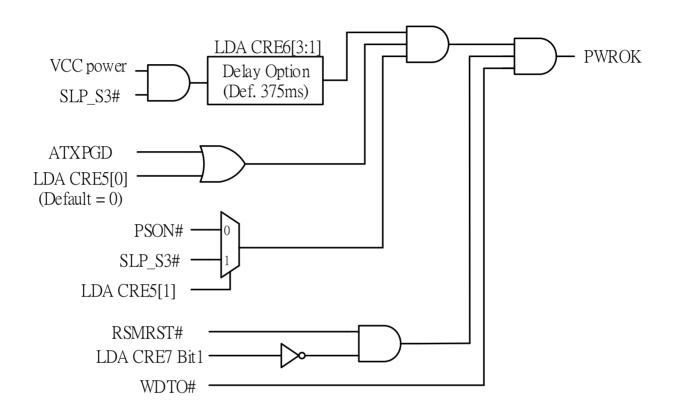
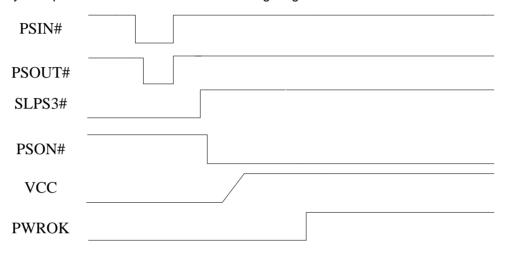
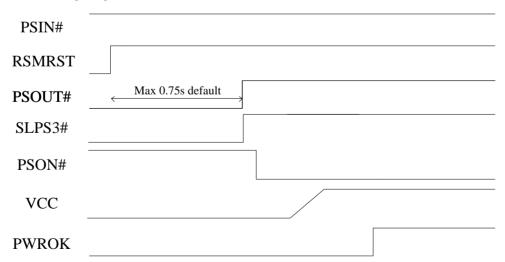


Figure 6-9 PWROK Block Diagram



6.6 AT / ATX Mode

NCT6122D / NCT6126D supports different power supply operation, AT mode / ATX mode, please refer to the decription and timing diagram below. AT mode or ATX mode operation depends on a hardware strapping pin, pin15 KBRST#. The strapping result shows in CR 2F[6].


6.6.1 ATX Mode

If pin 15 is strapping high, NCT6122D / NCT6126D operates at ATX mode. In this mode, user needs to push power button to turn on system power. The illustration is as following diagram:

6.6.2 AT Mode

If pin 15 is strapping low, NCT6122D / NCT6126D operates at AT mode. In this mode, NCT6122D / NCT6126D will auto turn on system power within LD9_CRE4[1:0]. The default value of LD9_CRE4[1:0] is 0.75 second maximum. The illustration is as following diagram.

6.7 Front Panel LEDs

NCT6122D / NCT6126D supports two LED control to some GPIO pins - GRN_LED and YLW_LED.

For dual-color LED application:

(1)GRN_LED pin is connected to a 470ohm resistor to 5VSB, and the cathode of the green LED and the anode of the yellow LED.

(2)YLW_LED pin is connected to a 470ohm resistor to 5VSB, and the cathode of the yellow LED and the anode of the green LED.

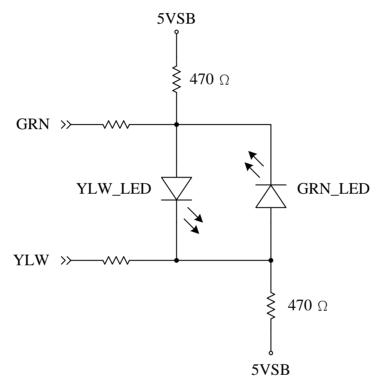


Figure 6-10 Illustration of Dual Color LED application

GRN_LED and YLW_LED pins are designed to show currently power states. There are Manual Mode and Automatic Mode:

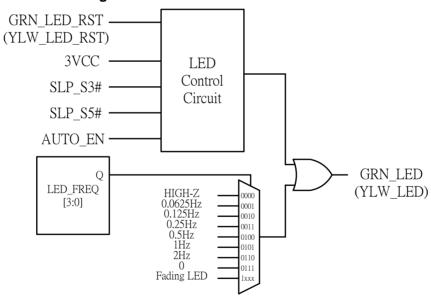
6.7.1 Automatic Mode

Power state is S0 or S1: GRN_LED will be asserted by default.

Power state is S3: YLW_LED will be asserted by default.

Power state is S4 or S5: Both GRN_LED and YLW_LED will be de-asserted by default.

AUTO_EN	3VCC	Power State	SLP_S3#	SLP_S5#	GRN_LED	YLW_LED
1	1	S0,S1	1	1	GRN_BLK_FREQ	HIGH-Z
1	0	S3	0	1	HIGH-Z	YLW_BLK_FREQ
1	0	S4,S5	0	0	HIGH-Z	HIGH-Z



6.7.2 Manual Mode

AUTO_EN	GRN_LED_RST# (YLW_LED_RST#)	3VCC	Power State	SLP_S3#	SLP_S5#	GRN_LED	YLW_LED
0	0	1	S0,S1	1	1	GRN_BLK_FREQ	YLW_BLK_FREQ
0	0	0	S3	0	1	HIGH-Z	HIGH-Z
0	0	0	S4,S5	0	0	HIGH-Z	HIGH-Z
0	1	Х	S0 ~ S5	Х	Х	GRN_BLK_FREQ	YLW_BLK_FREQ

Register Name	Register Location		
AUTO_EN	Logical Device B, CRF5h, bit7		
GRN_BLK_FREQ	Logical Device B, CRF5h, bit3~0		
YLW_BLK_FREQ	Logical Device B, CRF6h, bit3~0		
GRN_LED_RST#	Logical Device B, CRF5h, bit6		
YLW_LED_RST#	Logical Device B, CRF6h, bit6		

6.7.3 S0~S5 LED Blink Block Diagram

6.7.4 LED Pole (LED_POL)

Set to 0b, GRN_LED output is active low, as the following Figure (a) Set to 1b, GRN_LED output is active high, as the following Figure (b)

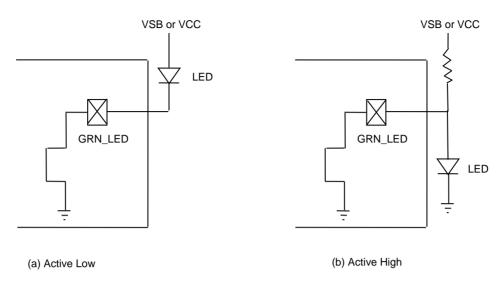
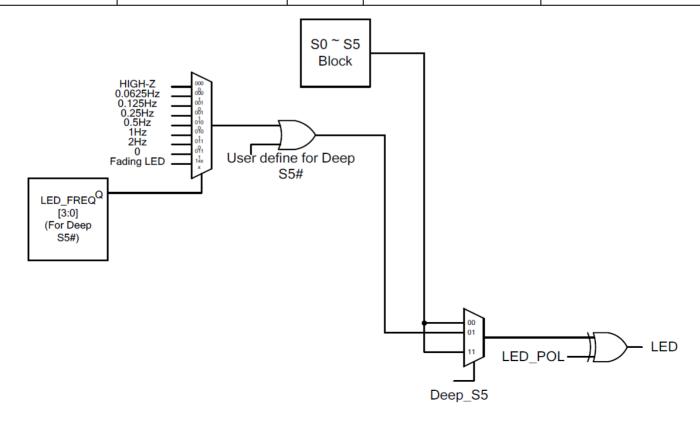



Figure 6-11 Illustration of LED polarity

6.7.5 Deeper Sleeping State Detect Function

These two LED pins could also be used to indicate if the system is in Deeper Sleeping State. For more detail, please refer to the section of Advanced Sleep State Control Function.

Enable_DEEP_S5	GRN_DEEPS#_Disable (YLW_DEEPS#_Disable)	Power State	GRN_LED	YLW_LED	
1	0	DEEP_S5	DeepS5_GRN_BLK_FREQ	DeepS5_YLW_BLK_FREQ	
1	1	DEEP_S5	HIGH-Z	HIGH-Z	
0	X	S0~S5	S0~S5 behavior	S0~S5 behavior	

6.8 Advanced Sleep State Control (ASSC) Function

Advanced Sleep State Control (ASSC) Function is used to control the system power at S5 state. The purpose of this function is to provide a method to reduce power consumption at S5 state. This function is disabled by default. When VCC power is first supplied, BIOS can program the register to enable ASSC Function. The register is powered by 3VSB_IO and some is powered by VBAT. The related registers are located at Logical Device 16 CRE0h ~ CRE3h.

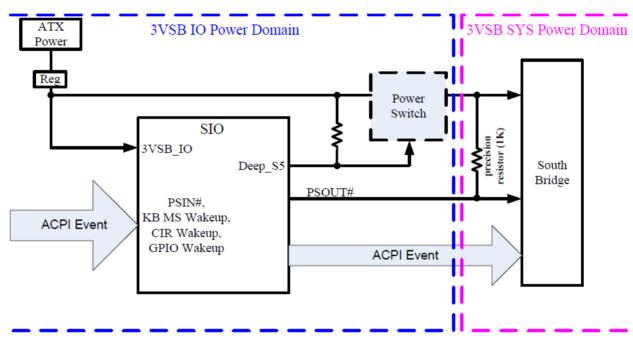
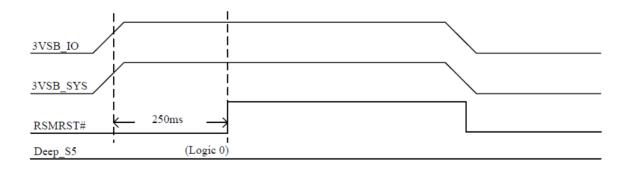
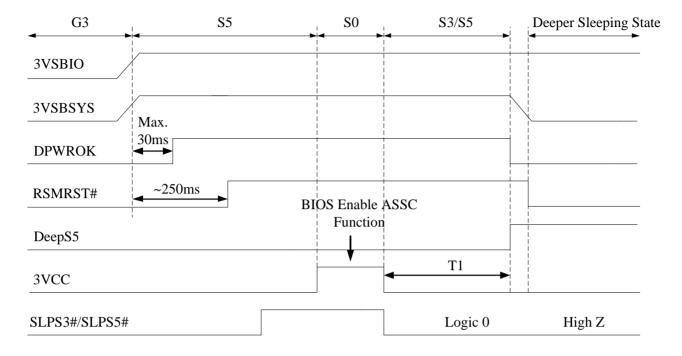
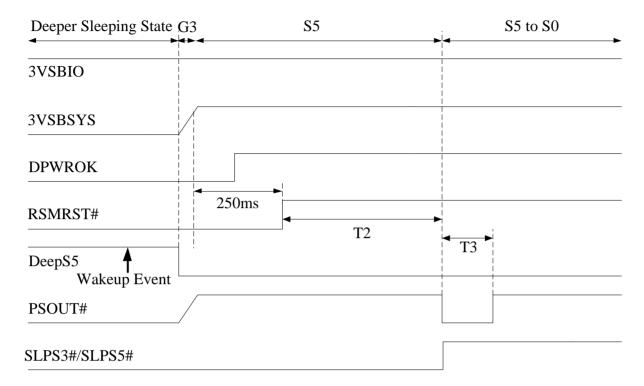



Figure 6-12 ASSC Application Diagram

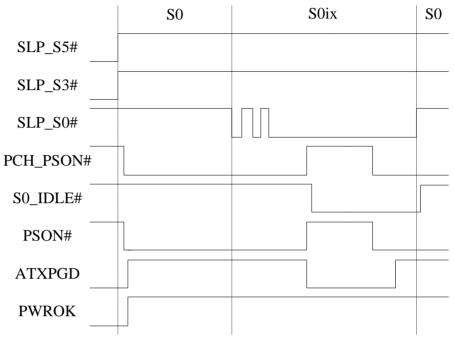

6.8.1 When ASSC is disabled

When ASSC is disabled, ACPI function is as same as the normal ACPI behavior.

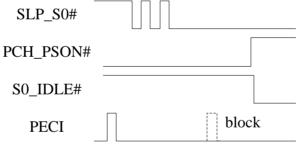

6.8.2 When ASSC is enabled (Enter into Deeper Sleeping State)

When the first time AC plug in and enter into S0 State, BIOS can enable ASSC Function (DeepS5), when the system enters S5 state, the pin DEEP_S5 will be asserted after pre configuration delay time (power_off_dly_time, LD16 CRE2) to make the system entering the "Deeper Sleeping State (DSS)" where system's VSB power is cut off. When pin DEEP_S5 asserts, the pin DPWROK will de-assert and the pin RSMRST# will de-assert by detecting PSOUT# signal (monitor 3VSBSYS Power).

6.8.3 When ASSC is enabled (Exit Deeper Sleeping State)

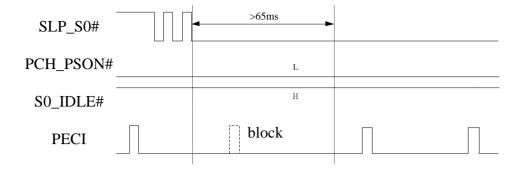


When any Wakeup Event (PSIN#, KB MS Wakeup, CIR wakeup, GPIO Wakeup) happened, pin DEEP_S5 will be de-asserted to turn on the VSB power to the system. The pin RSMRST# will de-assert when 3VSBSYS power reach valid voltage (by detecting PSOUT# signal). The pin DWROK will assert after leaving DeepS5. And then the pin PSOUT# will issue a low pulse (T3) turn on the system after T2 time (wakeup delay time, LD16 CRE0). The PSOUT# low pulse is also programmable (LD16 CRE1).

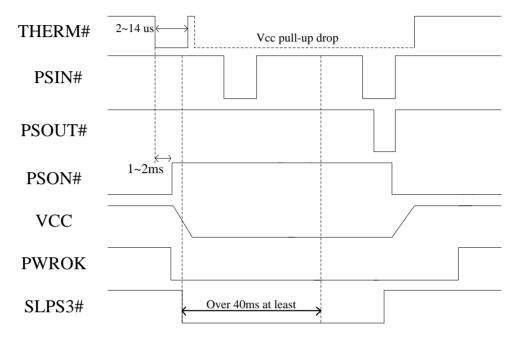


6.9 Modern Standby (S0ix)


NCT6122D / NCT6126D support Intel coffee lake new function "S0 idle power mode". User can enable S0ix during S0 mode through Logical Device E CRFA bit0.

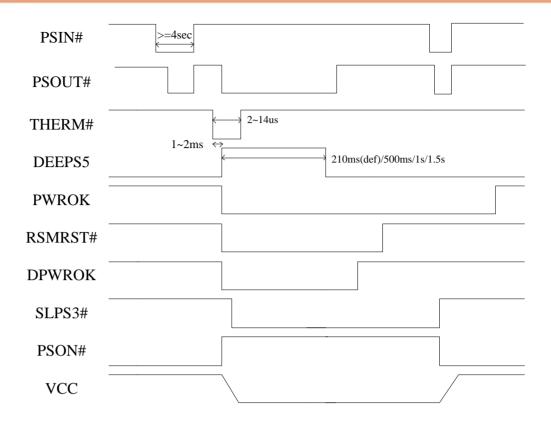

PCH_PSON# can be inverted by Logical Device E CRFA bit4 is asserted. Some associated functions are suspended during S0ix (ex: PECI) to avoid stop CPU can't get into S0ix (reference to LDE CRFB register).

NCT6122D / NCT6126D also support cancel S0ix by assert Logical Device E CRFA bit2. The cancel mechanism depends on time out counter about 65ms. SLPS0# keep high or low over 65ms, SIO will judge this is fail S0ix and release the associated suspend function. Notice that if cancel is judged by SLPS0# keep low too long. User need to pull SLPS0# back to high before next time entering S0ix.



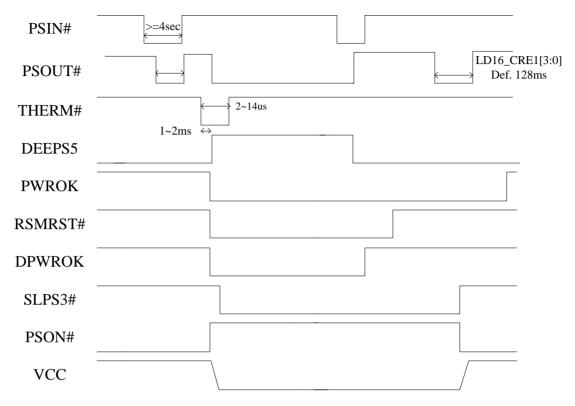
6.10 Thermtrip Function

NCT6126D supports thermtrip functions. Pin 107 THERMTRIP# asserts when PCH got overheat issue or global reset fail issue. NCT6126D will control ACPI associate pins, within 40ms after SLPS3# drop, to the corresponding situation.



Strap Pin107 PLAT_SEL to **3VSB** make NCT6122D / NCT6126D support 4 second PSIN# with Thermtrip mode. Logical Device 9 CR30 Bit6-5 control DEEPS5 timing (default as 210ms).

-49-


Version: 2.4

Enable Logical Device 9 CR30 Bit7 makes NCT6122D / NCT6126D change from 210ms DeepS5 mode to stay at DeepS5 mode while event occurred.

7. CONFIGURATION REGISTER ACCESS PROTOCOL

The NCT6122D / NCT6126D uses a special protocol to access configuration registers to set up different types of configurations. The NCT6122D / NCT6126D has a total of 17 Logical Devices (from Logical Device 0 to Logical Device 16 with the exception of Logical Device 4 & C for backward compatibility) corresponding to fourteen individual functions: PRT (Logical Device 1), UARTA (Logical Device 2), UARTB (Logical Device 3), KBC (Logical Device 5), CIR (Logical Device 6), GPIO (Logical Device 7), GPIO & WDT1 (Logical Device 8), GPIO (Logical Device 9), ACPI (Logical Device A), HM & LED (Logical Device B), WDT2 (Logical Device D), CIR WAKE-UP (Logical Device E), GPIO (Logical Device F), UARTC (Logical Device 10), UARTD (Logical Device 11), UARTE (Logical Device 12), UARTF (Logical Device 13), PORT80 & IR (Logical Device 14), FADING LED (Logical Device 15) and DEEP SLEEP (Logical Device 16).

It would require a large address space to access all of the logical device configuration registers if they were mapped into the normal PC address space. The NCT6122D / NCT6126D, then, maps all the configuration registers through two I/O addresses (2Eh/2Fh or 4Eh/4Fh) set at power on by the strap pin 2E_4E_SEL. The two I/O addresses act as an index/data pair to read or write data to the Super I/O. One must write an index to the first I/O address which points to the register and read or write to the second address which acts as a data register.

An extra level of security is added by only allowing data updates when the Super I/O is in a special mode, called the Extended Function Mode. This mode is entered by two successive writes of 87h data to the first I/O address. This special mode ensures no false data can corrupt the Super I/O configuration during a program runaway.

There are a set of global registers located at index 0h - 2Fh, containing information and configuration for the entire chip.

The method to access the control registers of the individual logical devices is straightforward. Simply write the desired logical device number into the global register 07h. Subsequent accesses with indexes of 30h or higher are directly to the logical device registers.

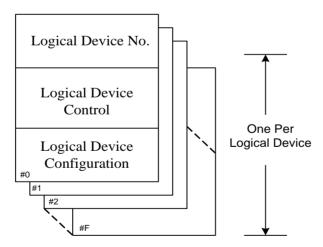


Figure 7-1 Structure of the Configuration Register

Table 7-1 Devices of I/O Base Address

LOGICAL DEVICE NUMBER	FUNCTION	I/O BASE ADDRESS	
0	Reserved		
1	PRT	100h ~ FF8h	
2	UARTA	100h ~ FF8h	
3	UARTB	100h ~ FF8h	
4	Reserve	ed	
5	KBC	100h ~ FFFh	
6	CIR	100h ~ FF8h	
7	GPIO	Reserved	
8	GPIO, WDT1	Reserved	
9	GPIO	Reserved	
A	ACPI	Reserved	
В	HM, LED	100h ~ FFEh	
С	Reserve	ed	
D	WDT2	Reserved	
Е	CIR WAKE-UP	100h ~ FF8h	
F	GPIO	Reserved	
10	UARTC	100h ~ FF8h	
11	UARTD	100h ~ FF8h	
12	UARTE	100h ~ FF8h	
13	UARTF	100h ~ FF8h	
14	PORT80, IR	100h ~ FF8h	
15	FADING LED	Reserved	
16	DEEP SLEEP	Reserved	

7.1 Configuration Sequence

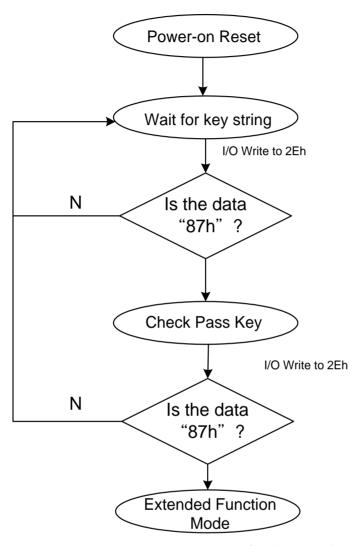


Figure 7-2 Configuration Register

To program the NCT6122D / NCT6126D configuration registers, the following configuration procedures must be followed in sequence:

- (1). Enter the Extended Function Mode.
- (2). Configure the configuration registers.
- (3). Exit the Extended Function Mode.
- (4). Read the **Extended Function Data Register (EFDR)** when the interface is eSPI.

7.1.1 Enter the Extended Function Mode

To place the chip into the Extended Function Mode, two successive writes of 0x87 must be applied to Extended Function Enable Registers (EFERs, i.e. 2Eh or 4Eh).

Publication Release Date: September 12, 2023

Version: 2.4

7.1.2 Configure the Configuration Registers

The chip selects the Logical Device and activates the desired Logical Devices through Extended Function Index Register (EFIR) and Extended Function Data Register (EFDR). The EFIR is located at the same address as the EFER, and the EFDR is located at address (EFIR+1).

First, write the Logical Device Number (i.e. 0x07) to the EFIR and then write the number of the desired Logical Device to the EFDR. If accessing the Chip (Global) Control Registers, this step is not required.

Secondly, write the address of the desired configuration register within the Logical Device to the EFIR and then write (or read) the desired configuration register through the EFDR.

7.1.3 Exit the Extended Function Mode

To exit the Extended Function Mode, writing 0xAA when entry key is 0x87 or 0xBB when entry key is 0x88 to the EFER is required. Once the chip exits the Extended Function Mode, it is in the normal running mode and is ready to enter the configuration mode.

7.1.4 Read the Extended Function Data Register (EFDR) when the interface is eSPI

When the interface is eSPI, read the **Extended Function Data Register (EFDR)** (i.e. 2Fh or 4Fh) at the end programming of SIO. This step restores all IO resource port data to 0xFF.

7.1.5 Software Programming Example

The following example is written in Intel 8086 assembly language. It assumes that the EFER is located at 2Eh, so the EFIR is located at 2Eh and the EFDR is located at 2Fh. If the HEFRAS (CR [26h] bit 6 showing the value of the strap pin at power on) is set, 2Eh can be directly replaced by 4Eh and 2Fh replaced by 4Fh.

This example programs the configuration register F0h (clock source) of Logical Device 2 (UART A) to the value of 02h (24MHz). First, one must enter the Extended Function Mode, then setting the Logical Device Number (Index 07h) to 02h. Then program Index F0h to 02h. Finally, exit the Extended Function Mode. When the interface is eSPI, read the EFDR to restore all IO resource port data be 0xFF.

```
;-----
; Enter the Extended Function Mode
MOV
     DX, 2EH
MOV
     AL, 87H
OUT
     DX, AL
OUT
     DX, AL
; Configure Logical Device 2, Configuration Register CRF0
MOV
     DX, 2EH
     AL, 07H
MOV
OUT
     DX, AL
                 ; point to Logical Device Number Reg.
MOV
     DX, 2FH
MOV
     AL, 02H
OUT
     DX. AL
                 ; select Logical Device 2
MOV
     DX, 2EH
MOV
     AL, F0H
OUT
     DX, AL
                 : select CRF0
```

Publication Release Date: September 12, 2023

Version: 2.4

IN

DX

MOV DX, 2FH MOV AL, 02H OUT DX, AL ; update CRF0 with value 02H ; Exit the Extended Function Mode DX, 2EH MOV MOV AL, AAH DX, AL OUT ; Read the Extended Function Data Register (EFDR) MOV DX, 2FH

-56-

8. HARDWARE MONITOR

8.1 General Description

The NCT6122D / NCT6126D monitors several critical parameters in PC hardware, including power supply voltages, fan speeds, and temperatures, all of which are very important for a high-end computer system to work stably and properly. In addition, proprietary hardware reduces the amount of programming and processor intervention to control cooling fan speeds, minimizing ambient noise and maximizing system temperature and reliability.

The NCT6122D / NCT6126D can simultaneously monitor all of the following inputs:

- Nine analog voltage inputs (six internal voltages CPUVCORE, VTT, VBAT, 3VSB, 3VCC and AVSB; three
 external voltage inputs)
- · Five fan tachometer inputs
- Three remote temperatures, using either a thermistor or from the CPU thermal diode (voltage or Current Mode measurement method)
- · One case-open detection signal.

These inputs are converted to digital values using the integrated, eight-bit analog-to-digital converter (ADC).

In response to these inputs, the NCT6122D / NCT6126D can generate the following outputs:

- Three PWM (pulse width modulation) or DC fan outputs for the fan speed control
- SMI#
- OVT# signals for system protection events

The NCT6122D / NCT6126D provides hardware access to all monitored parameters through the LPC or I²C interface and software access through application software, such as Nuvoton's Hardware Doctor[™], or BIOS.

The rest of this section introduces the various features of the NCT6122D / NCT6126D hardware-monitor capability. These features are divided into the following sections:

- Access Interfaces
- Analog Inputs
- Fan Speed Measurement and Control
- Smart Fan Control
- SMI# interrupt mode
- OVT# interrupt mode
- · Registers and Value RAM

8.2 Access Interfaces

The NCT6122D / NCT6126D provides two interfaces, LPC and I²C, for the microprocessor to read or write the internal registers of the hardware monitor.

8.3 LPC Interface

The internal registers of the hardware monitor block are accessible through two separate methods on the LPC bus. The first set of registers, which primarily enable the block and set its address in the CPU I/O address space are accessed by the Super I/O protocol described in Chapter 7 at address 2Eh/2Fh or 4Eh/4Fh. The bulk of the functionality and internal registers of this block are accessed form an index/data pair of CPU I/O addresses. The standard locations are usually 295h/296h and are set by CR[60h]&CR[61h] accessed using the Super I/O protocol as described in Chapter 7.

Due to the number of internal register, it is necessary to separate the register sets into "banks" specified by register 4Eh. The structure of the internal registers is shown in the following figure.

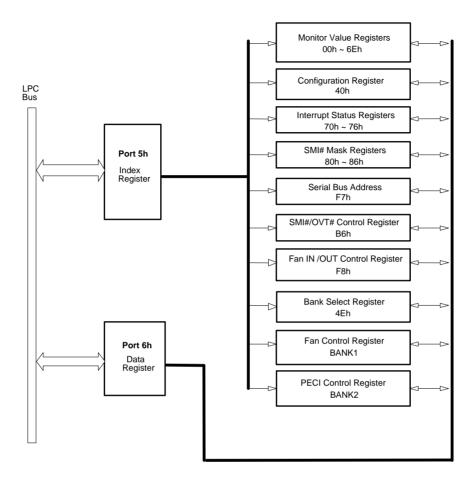


Figure 8-1 LPC Bus' Reads from / Write to Internal Registers

8.4 ESPI interface

The Enhanced Serial Peripheral Interface (ESPI) operates in master/slave mode of operation where the eSPI master dictates the flow of command and data between itself and the eSPI slave by controlling the Chip Select# pins for each of the eSPI slaves. At any one time, the eSPI must ensure that only one of the Chip Select# pins is asserted based on source code, thus allowing transactions to flow between the eSPI master and the corresponding eSPI slave associated with the Chip Select# pin. The eSPI master is the only component that is allowed to drive Chip Select# when eSPI Reset# is de-asserted.

For an eSPI bus, there is only the eSPI master and one or more eSPI slaves. In single Master-Single Slave configuration, a single eSPI master will be connected to a single eSPI slave.

The eSPI provided an alternative for connecting an SIO to the platform (besides the LPC interface). Note the LPC and eSPI co-exist on the platform but only one interface can be enabled at a time via a hardware strap.

The first set of registers, which primarily enable the block and set its address in the CPU I/O address space are accessed by the Super I/O protocol at address 2Eh/2Fh or 4Eh/4Fh. The bulk of the functionality and internal registers of this block are accessed form an index/data pair of CPU I/O addresses The NCT6122D / NCT6126D's eSPI is only support IO Read and Write, Get PCH temperature by OOB, and virtual wire. The OOB setting register at Logical Device E CRF2. The OOB polling is blocked when system in S0ix state, it can set register (Logical Device E CRF3 [4]) to unblocked.

Because the limitation for internal clock frequence, NCT6126D & NCT6122D eSPI only support the eSPI_CLK 20~33MHz.

The basic protocol is shown as below. For the detail eSPI specification, please refer to <u>Enhanced Serial Peripheral</u> Interface Base Specification (for Client and Server Platform) Rev 0.75

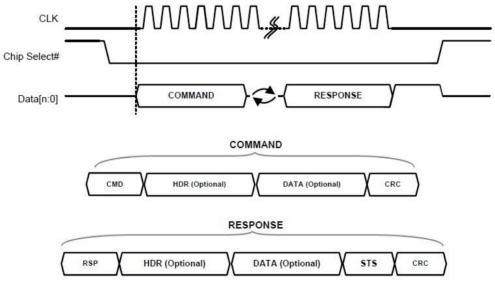


Figure 8-2 eSPI Protocol Transaction

8.5 I²C interface

The I²C interface is a second, serial port into the internal registers of the hardware monitor function block. The interface is totally compatible with the industry-standard I²C specification, allowing external components that are also compatible to read the internal registers of the NCT6122D / NCT6126D hardware monitor and control fan speeds.

The address of the I²C peripheral is set by the register located at Index F7h (which is accessed by the index/data pair at I/O address typically at 295h/296h)

The two timing diagrams below illustrate how to use the I²C interface to write to an internal register and how to read the value in an internal register, respectively.

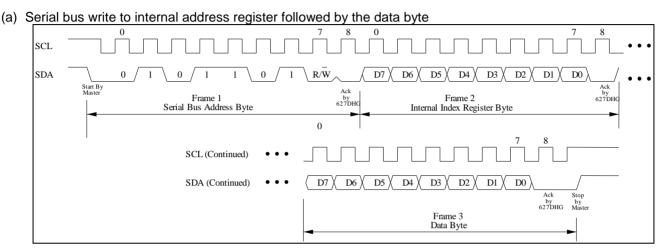


Figure 8-3 Serial Bus Write to Internal Address Register Followed by the Data Byte

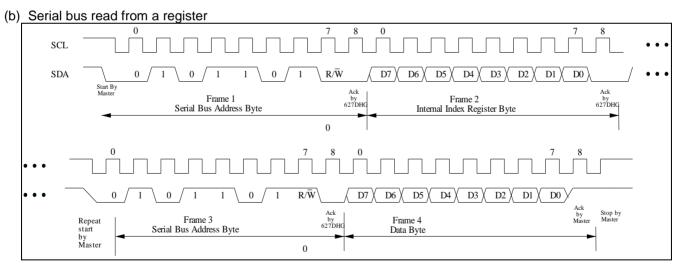


Figure 8-4 Serial Bus Read from Internal Address Register

8.6 Analog Inputs

The nine analog inputs of the hardware monitor block connect to an 8-bit Analog to Digital Converter (ADC) and consist of 4 general-purpose inputs connected to external device pins (VIN0 – VIN2) and five internal signals connected to the power supplies (CPUVCORE, AVSB, VBAT, 3VSB and 3VCC). All inputs are limited to a maximum voltage of 2.048V due to an internal setting of 8mV LSB (256 steps x 8mV = 2.048V). All inputs to the ADC must limit the maximum voltage by using a voltage divider. The power supplies have internal resistors, while the external pins require outside limiting resistors as described below.

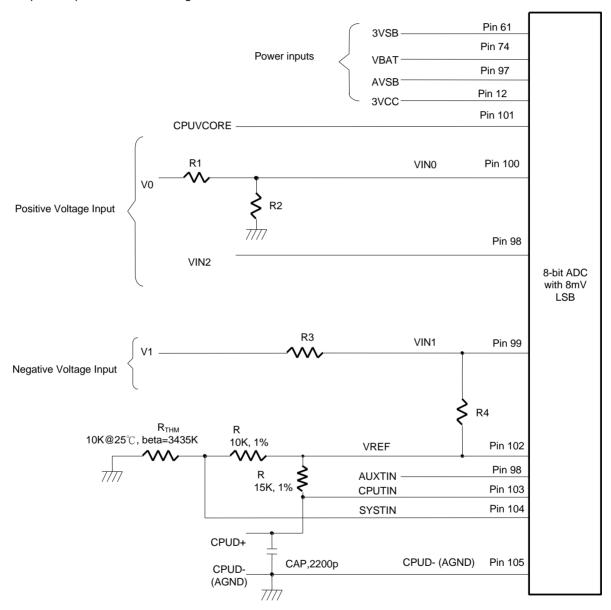


Figure 8-5 Analog Inputs and Application Circuit of the NCT6122D / NCT6126D

As illustrated in the figure above, other connections may require some external circuits. The rest of this section provides more information about voltages outside the range of the 8-bit ADC, CPU Vcore voltage detection, and temperature sensing.

8.6.1 Voltages Over 2.048 V or Less Than 0 V

Input voltages greater than 2.048 V should be reduced by an external resistor divider to keep the input voltages in the proper range. For example, input voltage V₀ (+12 V) should be reduced before it is connected to VIN0 according to the following equation:

$$VIN0 = V_0 \times \frac{R_2}{R_1 + R_2}$$

R1 and R2 can be set to 56 K Ω and 10 K Ω , respectively, to reduce V₀ from +12 V to less than 2.048 V.

All the internal inputs of the ADC, AVSB, VBAT, 3VSB and 3VCC utilize an integrated voltage divider with both resistors equal to $34K\Omega$, yielding a voltage one half of the power supply. Since one would expect a worst-case 10% variation or a 3.63V maximum voltage, the input to the ADC will be 1.815V, well within the maximum range.

$$V_{\rm in} = VCC imes rac{34 K\Omega}{34 K\Omega + 34 K\Omega} \cong 1.65 V$$
 , where VCC is set to 3.3V

The CPUVCORE pin feeds directly into the ADC with no voltage divider since the nominal voltage on this pin is only 1.2V.

Negative voltages are handled similarly, though the equation looks a little more complicated. For example, negative voltage V1 (-12V) can be reduced according to the following equation:

$$VIN1 = (V_1 - 2.048) \times \frac{R_4}{R_3 + R_4} + 2.048, where V_1 = -12$$

R3 and R4 can be set to 232 K Ω and 10 K Ω , respectively, to reduce negative input voltage V₁ from –12 V to less than 2.048 V. Note that R4 is referenced to VREF, or 2.048V instead of 0V to allow for more dynamic range. This is simply good analog practice to yield the most precise measurements.

Both of these solutions are illustrated in the figure above.

8.6.2 Voltage Data Format

CPUVCORE, VIN1, VIN0, VIN2, and VTT, the data format for voltage detection is an eight-bit value, and each unit represents an interval of 8 mV.

The data format for voltage detection is an eight-bit value, and each unit represents an interval of 8 mV.

AVSB, 3VCC, 3VSB, VBAT, and VHIF, the data format for voltage detection is an eight-bit value, and each unit represents an interval of 16 mV.

If the source voltage was reduced by a voltage divider, the detected voltage value must be scaled accordingly.

8.6.2.1. Voltage Reading

NCT6122D / NCT6126D has 10 voltage reading:

	3VCC	AVSB	3VSB	VBAT	VHIF
Voltage reading	Bank0,	Bank0,	Bank0,	Bank0,	Bank0,
	Index 03h	Index 02h	Index 07h	Index 08h	Index 06h
	CPUVCORE	VIN0	VIN1	VIN2	VTT
Voltage reading	Bank0,	Bank0,	Bank0,	Bank0,	Bank0,
	Index 00h	Index 01h	Index 04h	Index 05h	Index 09h

8.6.3 Temperature Data Format

The data format for sensors SYSTIN, CPUTIN and AUXTIN is 9-bit, two's-complement. This is illustrated in the table below. There are two sources of temperature data: external thermistors or thermal diodes.

TEMPERATURE	8-BIT DIGITA	AL OUTPUT	9-BIT DIGITA	AL OUTPUT
TEMPERATURE	8-BIT BINARY	8-BIT HEX	9-BIT BINARY	9-BIT HEX
+125°C	0111,1101	7Dh	0,1111,1010	0Fah
+25°C	0001,1001	19h	0,0011,0010	032h
+1°C	0000,0001	01h	0,0000,0010	002h
+0.5°C	-	-	0,0000,0001	001h
+0°C	0000,0000	00h	0,0000,0000	000h
-0.5°C	-	-	1,1111,1111	1FFh
-1°C	1111,1111	FFh	1,1111,1110	1FFh
-25°C	1110,0111	E7h	1,1100,1110	1Ceh
-55°C	1100,1001	C9h	1,1001,0010	192h

Table 8-1 Temperature Data Format

8.6.3.1. Monitor Temperature from Thermistor

External thermistors should have a β value of 3435K and a resistance of 10 K Ω at 25°C. As illustrated in the schematic above, the thermistor is connected in series with a 10-K Ω resistor and then connects to VREF. The configuration registers to select a thermistor temperature sensor and the measurement method are found at Bank 3, 18h, and 19h.

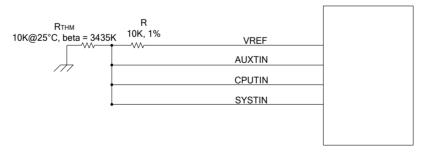


Figure 8-6 Monitoring Temperature from Thermistor

8.6.3.2. Monitor Temperature from Thermal Diode (Voltage Mode)

The thermal diode D- pin is connected to AGND, and the D+ pin is connected to the temperature sensor pin in the NCT6122D / NCT6126D. A 15-K Ω resistor is connected to VREF to supply the bias current for the diode, and the 2200-pF, bypass capacitor is added to filter high-frequency noise. The configuration registers to select a thermal diode temperature sensor and the measurement method are found at Bank 3, Index 18h, and 19h.

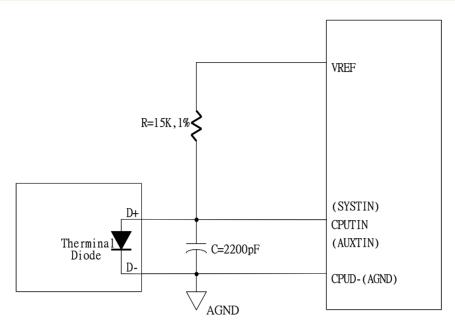


Figure 8-7 Monitoring Temperature from Thermal Diode (Voltage Mode)

8.6.3.3. Monitor Temperature from Thermal Diode (Current Mode)

The NCT6122D / NCT6126D can also sense the diode temperature through Current Mode and the circuit is shown in the following figure.

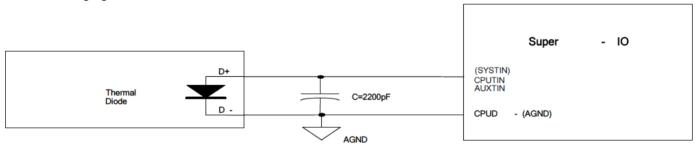


Figure 8-8 Monitoring Temperature from Thermal Diode (Current Mode)

The pin of processor D- is connected to CPUD- and the pin D+ is connected to temperature sensor pin in the NCT6122D / NCT6126D. A bypass capacitor C=2200pF should be added to filter the high frequency noise. The configuration registers to select a thermal diode temperature sensor and the measurement method are found at Bank 3, 18h, and 19h.

8.6.3.4. Temperature Reading

NCT6122D / NCT6126D has 6 temperature reading can monitor different temperature sources (ex. SYSTIN, CPUTIN, AUXTIN, PECI...etc).

	SMIOVT1	SMIOVT2	SMIOVT3
Temperature source select	Bank0,	Bank0,	Bank0,
	IndexB0	IndexB1	IndexB2
	bit[4:0]	bit[4:0]	bit[4:0]

-64-

Publication Release Date: September 12, 2023

	default:	default:	default:
	SYSTIN	CPUTIN	AUXTIN
Temperature reading (2's complement)	Bank0,	Bank0,	Bank0,
	Index10 &	Index11 &	Index12 &
	Index16 bit0	Index16 bit1	Index16 bit2

8.7 PECI

PECI (Platform Environment Control Interface) is a new digital interface to read the CPU temperature of Intel® CPUs. With a bandwidth ranging from 2 Kbps to 2 Mbps, PECI uses a single wire for self-clocking and data transfer. By interfacing to the Digital Thermal Sensor (DTS) in the Intel® CPU, PECI reports a negative temperature (in counts) relative to the processor's temperature at which the thermal control circuit (TCC) is activated. At the TCC Activation temperature, the Intel CPU will operate at reduced performance to prevent the device from thermal damage.

PECI is one of the temperature sensing methods that the NCT6122D / NCT6126D supports. The NCT6122D / NCT6126D contains a PECI master and reads the CPU PECI temperature. The CPU is a PECI client.

The PECI temperature values returning from the CPU are in "counts" which are approximately linear in relation to changes in temperature in degrees centigrade. However, this linearity is approximate and cannot be guaranteed over the entire range of PECI temperatures. For further information, refer to the PECI specification. All references to "temperature" in this section are in "counts" instead of "°C".

Figure 8-9 PECI Temperature shows a typical fan speed (PWM duty cycle) and PECI temperature relationship.

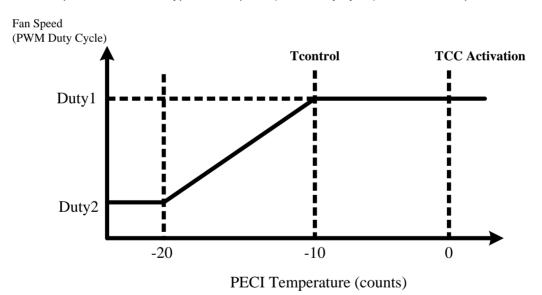
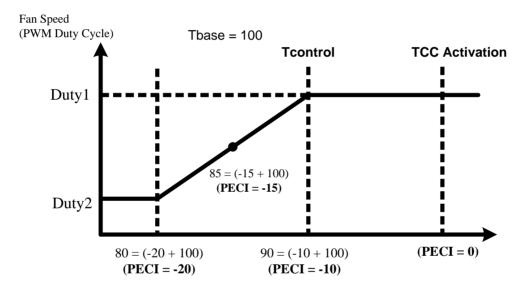


Figure 8-9 PECI Temperature

In this illustration, when PECI temperature is -20, the PWM duty cycle for fan control is at Duty2. When CPU is getting hotter and the PECI temperature is -10, the PWM duty cycle is at Duty1.


At Tcontrol PECI temperature, the recommendation from Intel is to operate the CPU fan at full speed. Therefore, Duty1 is 100% if this recommendation is followed. The value of Tcontrol can be obtained by reading the related Machine Specific Register (MSR) in the Intel CPU. The Tcontrol MSR address is usually in the BIOS Writer's guide for the CPU family in question. Refer to the relevant CPU documentation from Intel for more information. In this example, Tcontrol is -10.

When the PECI temperature is below -20, the duty cycle is fixed at Duty2 to maintain a minimum (and constant) RPM for the CPU fan.

NCT6122D / NCT6126D's fan control circuit can only accept positive real-time temperature inputs and limits setting (in Smart Fan ™ mode). The device provides offset registers to 'shift' the negative PECI readings to positive values otherwise the fan control circuit will not function properly. The offset registers are the Tbase registers located at Bank2, Index04h for PECI_BASE0; Bank2, Index05h for PECI_BASE1; separately. All default values of these Tbase registers are 8'h00.These registers should be programmed with (positive) values so that the resultant value (Tbase + PECI) is always positive. The unit of the Tbase register contents is "count" to match that of PECI values. The resultant value (Tbase + PECI) should not be interpreted as the "temperature" (whether in count or °C) of the PECI client (CPU).

Figure 8-11 shows the temperature/fan speed relationship after Tbase offsets are applied (based on Figure 8-9 PECI Temperature). This view is from the perspective of the NCT6122D / NCT6126D fan control circuit.

Temperature (as seen by the W83677HG-I fan control circuit)

Figure 8-10 Temperature and Fan Speed Relation after Tbase Offsets

Assuming Tbase is set to 100 and the PECI temperature is -15, the real-time temperature value to the fan control circuit will be 85 (-15 + 100). The value of 55 (hex) will appear in the relevant real-time temperature register.

While using Smart Fan control function of NCT6122D / NCT6126D, BIOS/software must include Tbase in determining the thresholds (limits). In this example, assuming Tcontrol is -10 and Tbase is set to 100 ⁽¹⁾, the threshold temperature value corresponding to the "100% fan duty cycle" event is 90 (-10+100). The value of 5A (hex) should be written to the relevant threshold register.

Tcontrol is typically -10 to -20 for PECI-enabled CPUs. Base on that, a value of 85 ~100 for Tbase could be set for proper operation of the fan control circuit. This recommendation is applicable for most designs. In general, the concept presented in this section could be used to determine the optimum value of Tcontrol to match the specific application.

8.8 Fan Speed Measurement and Control

This section is divided into two parts, one to measure the speed and one to control the speed.

8.8.1 Fan Speed Reading

The fan speed reading is at

	FAN CO	FAN COUNT READING		PM READING
		13-bit		16-bit
	[12:5]	[4:0]	[15:8]	[7:0]
SYSFANIN	Bank0,	Bank0,	Bank0,	Bank0,
	Index20	Index21	Index30	Index31
CPUFANIN	Bank0,	Bank0,	Bank0,	Bank0,
	Index22	Index23	Index32	Index33
AUXFANIN0	Bank0,	Bank0,	Bank0,	Bank0,
	Index24	Index25	Index34	Index35
AUXFANIN1	Bank0,	Bank0,	Bank0,	Bank0,
	Index26	Index27	Index36	Index37
AUXFANIN2	Bank0,	Bank0,	Bank0,	Bank0,
	Index28	Index29	Index38	Index39

8.8.2 Fan Speed Calculation by Fan Count Reading

In 13-bit fan count reading, please read high byte first then low byte.

Fan speed RPM can be evaluated by the following equation:

$$RPM = \frac{1.35 \times 10^6}{Count}$$

8.8.3 Fan Speed Calculation by Fan RPM Reading

In 16-bit fan RPM reading, please read high byte first then low byte.

Fan speed RPM can be evaluated by translating 16-bit RPM reading from hexadecimal to decimal.

Register reading 0x09C4h = 2500 RPM

8.8.4 Fan Speed Control

The NCT6122D / NCT6126D has five output pins for fan control, each of which offers PWM duty cycle and DC voltage to control the fan speed. The output type (PWM or DC) of each pin is configured by Bank0 Index F3h, bits 0 for SYSFANOUT, bits 1 for CPUFANOUT and bit 2 for AUXFANOUT.

Pin14 AUXFANOUT0 Function Output Enable controls by CR24 bit3 default disable.

	SYSFANOUT	CPUFANOUT	AUXFANOUT0	AUXFANOUT1	AUXFANOUT2
Output Type Select	Bank0, IndexF3 bit0	Bank0, IndexF3 bit1	Bank0, IndexF3 bit2		
Select	Indexes bito	Indexes bit i	Indexes bitz	PWM output	PWM output
	0: PWM output(default) 1: DC output	0: PWM output (default) 1: DC output	0: PWM output (default) 1: DC output		

Publication Release Date: September 12, 2023

Output Ty	/ре	CR24 bit6	CR24 bit5	CR24 bit4	CR22 bit1	CR22 bit2
Select						
(in PWM c	output)	0: open-drain	0: open-drain	0: open-drain	0: open-drain	0: open-drain
		(default)	(default)	(default)	(default)	(default)
		1: push-pull	1: push-pull	1: push-pull	1: push-pull	1: push-pull
PWM Out		Bank0,	Bank0,	Bank0,	Bank0,	Bank0,
Frequenc	y	IndexF0	IndexF1	IndexF2	IndexF9	IndexFA
Fan Contr	rol Mode	Bank1,	Bank1,	Bank1,	Bank1,	Bank1,
Select		Index13, bit[7:4]	Index23,	Index33,	Index93,	IndexA3,
			bit[7:4]	bit[7:4]	bit[7:4]	bit[7:4]
		0h: Manual mode				
		(def.)	0h: Manual	0h: Manual	0h: Manual	0h: Manual
		1h: Thermal Cruise	mode(def.)	mode (def.)	mode (def.)	mode (def.)
		2h: Speed Cruise	1h: Thermal	1h: Thermal	1h: Thermal	1h: Thermal
		4h: SMART FAN IV	Cruise	Cruise	Cruise	Cruise
			2h: Speed	2h: Speed	2h: Speed	2h: Speed
			Cruise	Cruise	Cruise	Cruise
			4h: SMART	4h: SMART	4h: SMART	4h: SMART
			FAN IV	FAN IV	FAN IV	FAN IV
Output	PWM	Bank1,	Bank1,	Bank1,	Bank1,	Bank1,
Value	output	Index19 bit[7:0]	Index29	Index39	Index99 bit[7:0]	IndexA9 bit[7:0]
(write)	(Duty)		bit[7:0]	bit[7:0]		
	DC	Bank1,	Bank1,	Bank1,	Bank1,	Bank1,
	output	Index19 bit[7:2]	Index29	Index39	Index99 bit[7:2]	IndexA9 bit[7:2]
	(Voltage)		bit[7:2]	bit[7:2]		
Current O	Output	Bank0,	Bank0,	Bank0,	Bank0,	Bank0,
Value	-	Index4A	Index4B	Index4C	IndexD8	IndexD9
(read)						

For PWM, the duty cycle is programmed by eight-bit registers at Bank1 Index 19h for SYSFANOUT, Bank1 Index 29h for CPUFANOUT, Bank1 Index 39h for AUXFANOUT, Bank1 Index A9h for AUXFANOUT1 and Bank1 Index A9h for AUXFANOUT2. The duty cycle can be calculated using the following equation:

$$Dutycycle(\%) = \frac{Programmed 8 - bit Register Value}{255} \times 100\%$$

The default duty cycle is FFh, or 100%. The PWM clock frequency is programmed at Bank0 Index 4Ah, Index 4Bh, and Index 4Ch.

For DC, the NCT6122D / NCT6126D has a six bit digital-to-analog converter (DAC) that produces 0 to 2.048 Volts DC. The analog output is programmed at Bank1 Index 19h bit[7:2] for SYSFANOUT, Bank1 Index 29h bit[7:2] for CPUFANOUT and Bank1 Index 39h bit[7:2] for AUXFANOUT. The analog output can be calculated using the following equation:

OUTPUT Voltage (V) =
$$Vref \times \frac{Programmed 6 - bit Register Value}{64}$$

The default value is 111111YY, or nearly 2.048 V, and Y is a reserved bit.

8.8.5 SMART FAN™ Control

The NCT6122D / NCT6126D supports various different fan control features:

- SMART FAN™ I (Thermal Cruise & Speed Cruise)
- SMART FAN™ IV
- Close-Loop Fan Control RPM mode

	SYSFANOUT	CPUFANOUT	AUXFANOUT0
Fan Control Mode	Bank1,	Bank1,	Bank1,
Select	Index13, bit[7:4]	Index23, bit[7:4]	Index33, bit[7:4]
	0h: Manual mode (def.) 1h: Thermal Cruise 2h: Speed Cruise	0h: Manual mode(def.) 1h: Thermal Cruise 2h: Speed Cruise	0h: Manual mode (def.) 1h: Thermal Cruise 2h: Speed Cruise
	4h: SMART FAN TM IV	4h: SMART FAN TM IV	4h: SMART FAN™ IV
	AUXFANOUT1	AUXFANOUT2	
Fan Control Mode Select	Bank1, Index93, bit[7:4]	Bank1, IndexA3, bit[7:4]	
	0h: Manual mode (def.) 1h: Thermal Cruise 2h: Speed Cruise 4h: SMART FAN TM IV	0h: Manual mode (def.) 1h: Thermal Cruise 2h: Speed Cruise 4h: SMART FAN™ IV	

8.8.6 Temperature Source & Reading for Fan Control

Select temperature source for each fan control output:

	SYSFANOUT	CPUFANOUT	AUXFANOUT
Fan Control	Bank1,	Bank1,	Bank1,
Temperature Source	Index10 bit[4:0]	Index20 bit[4:0]	Index30 bit[4:0]
Select			
	Default: SYSTIN	Default: CPUTIN	Default: AUXTIN
Fan Control	Bank0, Index18 &	Bank0, Index19 &	Bank0, Index1A &
Temperature Reading	Bank0, Index1B bit0	Bank0, Index1B bit1	Bank0, Index1B bit2
Close-Loop Fan			
Control RPM mode	Bank1, Index1E bit0	Bank1, Index2E bit0	Bank1, Index3E bit0
	AUXFANOUT1	AUXFANOUT2	
Fan Control	Bank1,	Bank1,	
Temperature Source	Index90 bit[4:0]	IndexA0 bit[4:0]	
Select			
	Default: AUXTIN	Default: AUXTIN	
Fan Control	Bank0, IndexDB &	Bank0, IndexDC &	
Temperature Reading	Bank0, Index1B bit3	Bank0, Index1B bit4	
Close-Loop Fan			
Control RPM mode	Bank1, Index9E bit0	Bank1, IndexAE bit0	

8.9 SMART FAN™I

8.9.1 Thermal Cruise Mode

Thermal Cruise mode controls the fan speed to keep the temperature in a specified range. First, this range is defined in BIOS by a temperature and the interval (e.g., 55 °C \pm 3 °C). As long as the current temperature remains

below the low end of this range (i.e., 52 °C), the fan is off. Once the temperature exceeds the low end, the fan turns on at a speed defined in BIOS (e.g., 20% output). Thermal Cruise mode then controls the fan output according to the current temperature. Three conditions may occur:

- (1) If the temperature still exceeds the high end, fan output increases slowly. If the fan is operating at full speed but the temperature still exceeds the high end, a warning message is issued to protect the system.
- (2) If the temperature falls below the high end (e.g., 58° C) but remains above the low end (e.g., 52° C), fan output remains the same.
- (3) If the temperature falls below the low end (e.g., 52 °C), fan output decreases slowly to zero or to a specified "stop value".

This "stop value enable" is enabled by the Bank1, Index10h, Bit7 for SYSFANOUT; Bank1, Index20h, Bit7 for CPUFANOUT and Bank1, Index30h, Bit7 for AUXFANOUT. Index90h, Bit7 for AUXFANOUT1 and IndexA0h, Bit7 for AUXFANOUT2.

The "stop value" itself is separately specified in Bank1 Index16h, Bank1 Index26h and Bank1 Index36h, Bank1 Index96h and Bank1 IndexA6h.

The "stop time" means fan remains at the stop value for the period of time also separately defined in Bank1 Index18h, Bank1 Index28h and Bank1 Index38h, Bank1 Index48h

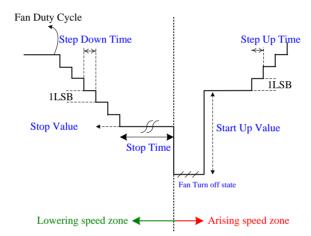


Figure 8-11 Thermal Cruise™ Mode Parameters Figure

-70-

In general, Thermal Cruise mode means

- If the current temperature is higher than the high end, increase the fan speed.
- If the current temperature is lower than the low end, decrease the fan speed.
- Otherwise, keep the fan speed the same.

The following figures illustrate two examples of Thermal Cruise mode.

Version: 2.4

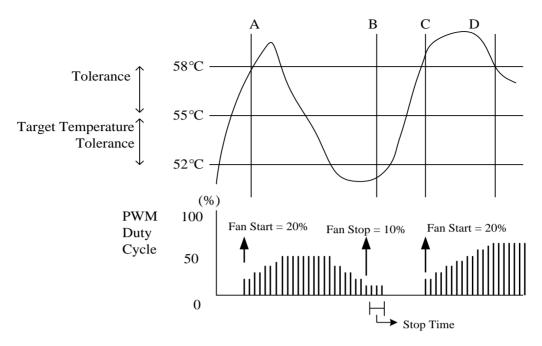


Figure 8-12 Mechanism of Thermal Cruise™ Mode (PWN Duty Cycle)

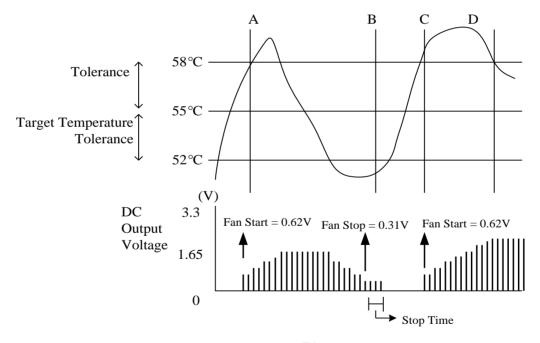


Figure 8-13 Mechanism of Thermal Cruise™ Mode (DC Output Voltage)

8.9.2 Speed Cruise Mode

Speed Cruise mode keeps the fan speed in a specified range. First, this range is defined in BIOS by a fan speed count (the amount of time between clock input signals, not the number of clock input signals in a period of time) and an interval (e.g., 160 ± 10). As long as the fan speed count is in the specified range, fan output remains the same. If the fan speed count is higher than the high end (e.g., 170), fan output increases to make the count lower. If the fan speed count is lower than the low end (e.g., 150), fan output decreases to make the count higher. One example is illustrated in this figure.

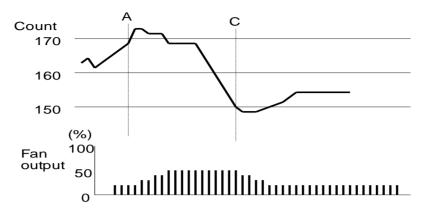


Figure 8-14 Mechanism of Fan Speed Cruise™ Mode

The following tables show current temperatures, fan output values and the relative control registers at Thermal Cruise and Fan Speed mode.

Table 8-2 Display Registers – at SMART FAN™ I Mode

DESCRIPTION	REGISTER ADDRESS	REGISTER NAME	ATTRIBUTE	BIT DATA
Current SYSFANOUT Temperature	Bank0, Index18h, Index1Bh bit0	SYSFAN MUX Temperature Sensor (default: SYSTIN)	Read only	Index 18h, unit 1°C Index 1Bh, bit 0, unit 0.5 °C
Current CPUFANOUT Temperature	Bank0, Index19h, Index1Bh bit1	CPUFAN MUX Temperature Sensor (default: CPUTIN)	Read only	Index 19h, unit 1°C Index 1Bh, bit 1, unit 0.5 °C
Current AUXFANOUT Temperature	Bank0, Index1Ah, Index1Bh bit2	AUXFAN MUX Temperature Sensor (default: AUXTIN)	Read only	Index 1Ah, unit 1°C Index 1Bh, bit 2, unit 0.5 °C
Current AUXFANOUT1 Temperature	Bank0, IndexDBh, Index1Bh bit3	AUXFAN1 MUX Temperature Sensor (default: AUXTIN)	Read only	Index DBh, unit 1°C Index 1Bh, bit 3, unit 0.5 °C
Current AUXFANOUT2 Temperature	Bank0, IndexDCh, Index1Bh bit4	AUXFAN2 MUX Temperature Sensor (default: AUXTIN)	Read only	Index DCh, unit 1°C Index 1Bh, bit 4, unit 0.5 °C
Current SYSFANOUT Output Value	Bank0, Index 4Ah	SYSFANOUT Output Value Select	Read only	
Current CPUFANOUT Output Value	Bank0, Index 4Bh	CPUFANOUT Output Value Select	Read only	
Current AUXFANOUT Output Value	Bank0, Index 4Ch	AUXFANOUT Output Value Select	Read only	
Current	Bank0,	AUXFANOUT1 Output Value Select	Read only	

DESCRIPTION	REGISTER ADDRESS	REGISTER NAME	ATTRIBUTE	BIT DATA
AUXFANOUT1	Index D8h			
Output Value				
Current AUXFANOUT2 Output Value	Bank0, Index D9h	AUXFANOUT2 Output Value Select	Read only	

Table 8-3 Relative Registers – at Thermal Cruise™ Mode

THERMAL CRUISE MODE	CRITICAL TEMPERATURE	STEP- UP TIME	STEP- DOWN TIME	ENABLE THERMAL CRUISE MODE	ENABLE CRITICAL DUTY	CRITICAL DUTY
SYSFANOUT	Bank 1, Index 1Ah	Bank 1, Index 14h	Bank 1, Index 15h	Bank 1, Index 13h,bit[7:4] = 01h	Bank 1, Index 1Ch, bit4	Bank 1, Index 1Dh
CPUFANOUT	Bank 1, Index 2Ah	Bank 1, Index 24h	Bank 1, Index 25h	Bank 1, Index 23h,bit[7:4] = 01h	Bank 1, Index 2Ch, bit4	Bank 1, Index 2Dh
AUXFANOUT0	Bank 1, Index 3Ah	Bank 1, Index 34h	Bank 1, Index 35h	Bank 1, Index 33h,bit[7:4] = 01h	Bank 1, Index 3Ch, bit4	Bank 1, Index 3Dh
AUXFANOUT1	Bank 1, Index 9Ah	Bank 1, Index 94h	Bank 1, Index 95h	Bank 1, Index 93h,bit[7:4] = 02h	Bank 1, Index 9Ch, bit4	Bank 1, Index 9Dh
AUXFANOUT2	Bank 1, Index Aah	Bank 1, Index A4h	Bank 1, Index A5h	Bank 1, Index A3h,bit[7:4] = 02h	Bank 1, Index Ach, bit4	Bank 1, Index Adh

THERMAL CRUISE MODE	TARGET TEMPERATURE	TOLERANCE	KEEP MIN. FAN OUTPUT VALUE	STOP VALUE	START-UP VALUE	STOP TIME
SYSFANOUT	Bank 1, Index 11h	Bank 1, Index 13h,Bit[2:0]	Bank 1, Index 10h, bit7	Bank 1, Index 16h	Bank 1, Index 17h	Bank 1, Index 18h
CPUFANOUT	Bank 1, Index 21h	Bank 1, Index 23h,Bit[2:0]	Bank 1, Index 20h, bit7	Bank 1, Index 26h	Bank 1, Index 27h	Bank 1, Index 28h
AUXFANOUT0	Bank 1, Index 31h	Bank 1, Index 33h,Bit[2:0]	Bank 1, Index 30h, bit7	Bank 1, Index 36h	Bank 1, Index 37h	Bank 1, Index 38h
AUXFANOUT1	Bank 1, Index 91h	Bank 1, Index 93h,Bit[2:0]	Bank 1, Index 90h, bit7	Bank 1, Index 96h	Bank 1, Index 97h	Bank 1, Index 98h

THERMAL CRUISE MODE	TARGET TEMPERATURE	TOLERANCE	KEEP MIN. FAN OUTPUT VALUE	STOP VALUE	START-UP VALUE	STOP TIME
AUXFANOUT2	Bank 1, Index A1h	Bank 1, Index A3h,Bit[2:0]	Bank 1, Index A0h, bit7	Bank 1, Index A6h	Bank 1, Index A7h	Bank 1, Index A8h

Table 8-4 Relative Registers − at Speed CruiseTM Mode

SPEED CRUISE MODE	STEP- UP TIME	STEP- DOWN TIME	ENABLE THERMAL CRUISE MODE	STEP UP VALUE	STEP DOWN VALUE
SYSFANOUT	Bank 1, Index 14h	Bank 1, Index 15h	Bank 1, Index 13h,bit[7:4] = 02h	Bank 3, Index D8h, Bit[7:4]	Bank 3, Index D8h, Bit[3:0]
CPUFANOUT	Bank 1, Index 24h	Bank 1, Index 25h	Bank 1, Index 23h,bit[7:4] = 02h	Bank 3, Index D9h, Bit[7:4]	Bank 3, Index D9h, Bit[3:0]
AUXFANOUT0	Bank 1, Index 34h	Bank 1, Index 35h	Bank 1, Index 33h,bit[7:4] = 02h	Bank 3, Index Dah, Bit[7:4]	Bank 3, Index Dah, Bit[3:0]
AUXFANOUT1	Bank 1, Index 94h	Bank 1, Index 95h	Bank 1, Index 93h,bit[7:4] =02h	Bank 3, Index DBh, Bit[7:4]	Bank 3, Index DBh, Bit[3:0]
AUXFANOUT2	Bank 1, Index A4h	Bank 1, Index A5h	Bank 1, Index A3,bit[7:4] =02h	Bank 3, Index DCh, Bit[7:4]	Bank 3, Index DCh, Bit[3:0]

SPEED CRUISE MODE	TARGET-SPEED COUNT_L	TARGET-SPEED COUNT_H	TOLERANCE_L	TOLERANCE_H
SYSFANOUT	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index 11h	Index 12,bit[3:0]	Index 13h,Bit[2:0]	Index 12, bit[7:5]
CPUFANOUT	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index 21h	Index 22,bit[3:0]	Index 23h,Bit[2:0]	Index 22, bit[7:5]
AUXFANOUT0	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index 31h	Index 32,bit[3:0]	Index 33h,Bit[2:0]	Index 32, bit[7:5]
AUXFANOUT1	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index 91h	Index 92,bit[3:0]	Index 93h,Bit[2:0]	Index 92, bit[7:5]
AUXFANOUT2	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index A1h	Index A2,bit[3:0]	Index A3h,Bit[2:0]	Index A2, bit[7:5]

8.10 SMART FANTM IV & Close Loop Fan Control RPM Mode

SMART FANTM IV and Close Loop Fan Control RPM Mode offer 3 slopes to control the fan speed.

Set Critical Temperature, Bank1 Address 1AHEX, Bank1 Address 2AHEX, Bank1 Address 3AHEX

• Set the Relative Register-at SMART FAN[™] IV Control Mode Table

If fan control mode is set as Close Loop Fan Control, the unit step is 50 RPM. So the maximum controllable RPM is 50*255=12,750 rpm.

If for High Speed Fan Control at RPM Mode, Set RPM_High of Bank1 Address 1F_{HEX} bit[7]. Address 2F_{HEX} bit[7]. Address 3F_{HEX} bit[7].

The unit is 100 RPM, Support 100 rpm ~ 25500 rpm.

Set Hysteresis of Temperature, Bank1 Address 13_{HEX} bit[2:0]. Bank1 Address 23_{HEX} bit[2:0]. Bank1 Address 33_{HEX} bit[2:0].

The 3 slopes can be obtained by setting FanDuty1/RPM1~FanDuty4/RPM4 and T1~T4 through the registers. When the temperature rises, FAN Output will calculate the target FanDuty/RPM based on the current slope. For example, assuming Tx is the current temperature and Ty is the target, then The slope:

$$X2 = \frac{\left(FanDuty3 / RPM3\right) - \left(FanDuty2 / RPM2\right)}{\left(T3 - T2\right)}$$

Fan Output:

Target FanDuty or RPM =
$$(FanDuty\ 2 \ or \ RPM\ 2) + (Tx - T2) \cdot X2$$

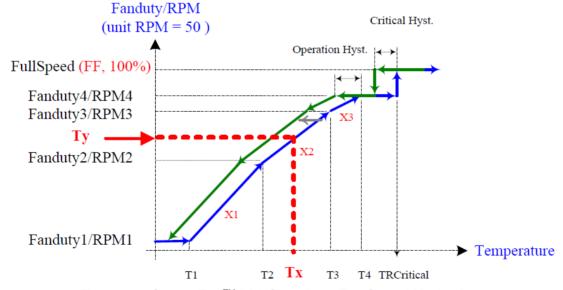


Figure 8-15 SMART FANTM IV & Close Loop Fan Control Mechanism

Table 8-5 Relative Register-at SMART FANTM IV Control Mode

DESCRIPTION	T1	T2	Т3	T4
SYSFANOUT	Bank 1, Index 60h	Bank 1, Index 61h	Bank 1, Index 62h	Bank 1, Index 63h
CPUFANOUT	Bank 1, Index 70h	Bank 1, Index 71h	Bank 1, Index 72h	Bank 1, Index 73h
AUXFANOUT	AUXFANOUT Bank 1, Index 80h		Bank 1, Index 82h	Bank 1, Index 83h
AUXFANOUT1	Bank 1,	Bank 1,	Bank 1,	Bank 1,

DESCRIPTION	T1	T2	Т3	T4
	Index D0h	Index D1h	Index D2h	Index D3h
AUXFANOUT2	Bank 1, Index E0h	Bank 1, Index E1h	Bank 1, Index E2h	Bank 1, Index E3h

DESCRIPTION	FD1/RPM1	FD2/RPM2	FD3/RPM3	FD4/RPM4
SYSFANOUT	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index 64h	Index 65h	Index 66h	Index 67h
CPUFANOUT	Bank 1, Index 74h	,		Bank 1, Index 77h
AUXFANOUT	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index 84h	Index 85h	Index 86h	Index 87h
AUXFANOUT1	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index D4h	Index D5h	Index D6h	Index D7h
AUXFANOUT2	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index E4h	Index E5h	Index E6h	Index E7h

DESCRIPTION	STEP- UP TIME	STEP- DOWN TIME	ENABLE SMART IV MODE	STEP UP VALUE	STEP DOWN VALUE	ENABLE CRITICAL DUTY	CRITICAL DUTY
SYSFANOUT	Bank 1, Index 14h	Bank 1, Index 15h	Bank 1, Index 13h,bit[7:4] = 04h	Bank 3, Index D8h, Bit[7:4]	Bank 3, Index D8h, Bit[3:0]	Bank 1, Index 1Ch, bit4	Bank 1, Index 1Dh
CPUFANOUT	Bank 1, Index 24h	Bank 1, Index 25h	Bank 1, Index 23h,bit[7:4] = 04h	Bank 3, Index D9h, Bit[7:4]	Bank 3, Index D9h, Bit[3:0]	Bank 1, Index 2Ch, bit4	Bank 1, Index 2Dh
AUXFANOUT	Bank 1, Index 34h	Bank 1, Index 35h	Bank 1, Index 33h,bit[7:4] = 04h	Bank 3, Index Dah, Bit[7:4]	Bank 3, Index Dah, Bit[3:0]	Bank 1, Index 3Ch, bit4	Bank 1, Index 3Dh
AUXFANOUT1	Bank 1, Index 94h	Bank 1, Index 95h	Bank 1, Index 93h,bit[7:4] = 04h	Bank 3, Index DBh, Bit[7:4]	Bank 3, Index DBh, Bit[3:0]	Bank 1, Index 9Ch, bit4	Bank 1, Index 9Dh
AUXFANOUT2	Bank 1, Index A4h	Bank 1, Index A5h	Bank 1, Index A3h,bit[7:4] = 04h	Bank 3, Index DCh, Bit[7:4]	Bank 3, Index DCh, Bit[3:0]	Bank 1, Index Ach, bit4	Bank 1, Index Adh

DESCRIPTION	CRITICAL TEMPERATURE	CRITICAL TOLERANCE	TEMPERATURE TOLERANCE	ENABLE RPM MODE	RPM TOLERANCE	ENABLE RPM HIGH MODE
SYSFANOUT	Bank 1, Index 1Ah	Bank 1, Index 1Bh, bit[2:0]	Bank1, Index 13h, bit[2:0]	Bank 1, Index 1Eh, bit0	Bank1, Index 1Fh, bit[3:0]	Bank 1, Index 1Fh, bit7

CPUFANOUT	Bank 1, Index 2Ah	Bank 1, Index 2Bh, bit[2:0]	Bank1, Index 23h, bit[2:0]	Bank 1, Index 2Eh, bit0	Bank1, Index 2Fh, bit[3:0]	Bank 1, Index 2Fh, bit7
AUXFANOUT	Bank 1, Index 3Ah	Bank 1, Index 3Bh, bit[2:0]	Bank1, Index 33h, bit[2:0]	Bank 1, Index 3Eh, bit0	Bank1, Index 3Fh, bit[3:0]	Bank 1, Index 3Fh, bit7
AUXFANOUT1	Bank 1, Index 9Ah	Bank 1, Index 9Bh, bit[2:0]	Bank1, Index 93h, bit[2:0]	Bank 1, Index 9Eh, bit0	Bank1, Index 9Fh, bit[3:0]	Bank 1, Index 9Fh, bit7
AUXFANOUT2	Bank 1, Index Aah	Bank 1, Index Abh, bit[2:0]	Bank1, Index A3h, bit[2:0]	Bank 1, Index Aeh, bit0	Bank1, Index Afh, bit[3:0]	Bank 1, Index Afh, bit7

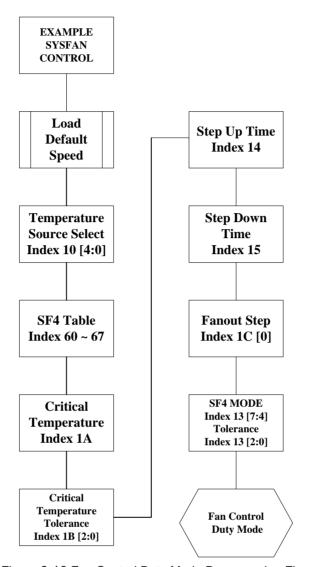


Figure 8-16 Fan Control Duty Mode Programming Flow

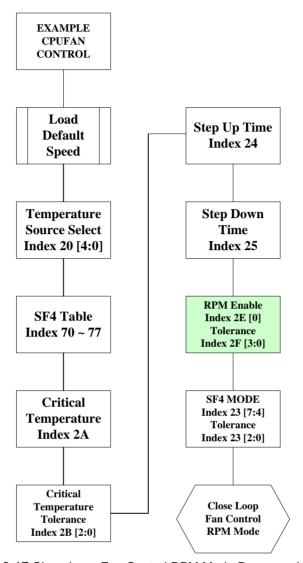


Figure 8-17 Close-Loop Fan Control RPM Mode Programming Flow

8.10.1 Step Up Time / Step Down Time

SMART FANTM IV is designed for the smooth operation of the fan. The Up Time / Down Time register defines the time interval between successive duty increases or decreases. If this value is set too small, the fan will not have enough time to speed up after tuning the duty and sometimes may result in unstable fan speed. On the other hand, if Up Time / Down Time is set too large, the fan may not work fast enough to dissipate the heat. This register should never be set to 0, otherwise, the fan duty will be abnormal.

8.10.2 Fan Output Step

The "Fanout Step" itself is separately specified in Bank1 Index1Ch bit0 for SYSFANOUT, Index2Ch bit0 for CPUFANOUT and Index3Ch bit0 for AUXFANOUT.

This example for Fanout Step exposition:

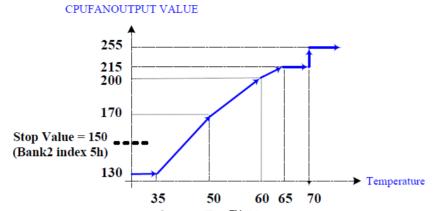


Figure 8-18 CPUFAN SMART FANTM IV Table Parameters Figure

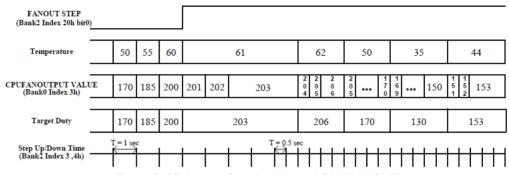


Figure 8-19 Fanout Step Relation of CPUFANOUT

8.10.3 Revolution Pulse Selection

The NCT6122D / NCT6126D supports four RPM output of the pulses selection function for different type of FAN which has the character of different pulses per revolution. The others could be set by HM register at Bank0, IndexF6, Bit1-0 for SYSFANIN; Bank0, IndexF6, Bit3-2 for CPUFANIN and Bank0, IndexF6, Bit5-4 for AUXFANIN, IndexF6, Bit7-6 for AUXFANIN1 and IndexF5, Bit7-6 for AUXFANIN2. All default value of pulse selection registers are 2 pulses of one revolution.

Setting description for "Pulse Selections Bits":

00: 4 pulses per revolution

01: 1 pulse per revolution

10: 2 pulses per revolution (default)

11: 3 pulses per revolution

8.10.4 Weight Value Control

The NCT6122D / NCT6126D supports weight value control for fan duty output. By register configuration, the results of weight value circuit can be added to the fan duty of Thermal Cruise Mode or SMART FANTM IV Duty Mode and output to the fan. Take CPUFANOUT for example, if SMART FANTM IV is selected, CPUTIN is the temperature source, and weight value control is enabled, SMART FANTM IV will calculate the output duty, and weight value circuit will calculate the corresponding weight value based on SYSTIN. As the SYSTIN temperature rises, its corresponding weight value increases. Then, the two values will be summed up and output to CPU fan. In other words, the CPU fan duty is affected not only by the CPUTIN but also the SYSTIN temperature.

Figure 8-21 SYS TEMP and Weight Value Relations shows the relation between the SYSTIN temperature and the weight value. Tolerance setup is offered on each change point to avoid weight value fluctuation resulted from SYSTIN temperature change. The weight value will increase by one weight value step only when the SYSTIN temperature is higher than the point value plus tolerance. Likewise, the weight value decreases by one weight value step only when the SYSTIN temperature is lower than the point value minus tolerance.

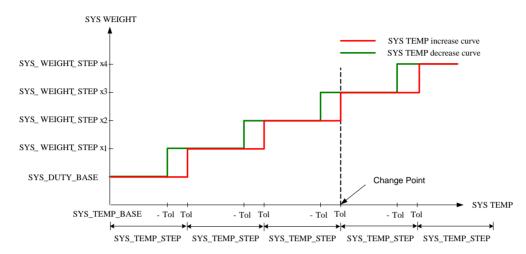


Figure 8-20 SYS TEMP and Weight Value Relations

Table 8-6 Relative Register-at Weight Value Control

DESCRIPTION	ENABLE WEIGHT MODE	WEIGHT TEMPERATURE SOURCE SELECT
	Bank 1,	Bank 1,
SYSFANOUT	Index 68h,	Index 68h,
	bit7	bit[4:0]
	Bank 1,	Bank 1,
CPUFANOUT	Index 78h,	Index 78h,
	bit7	bit[4:0]
	Bank 1,	Bank 1,
AUXFANOUT0	Index 88h,	Index 88h,
	bit7	bit[4:0]

DESCRIPTION	TEMP STEP	TEMP STEP TOLERANCE	WEIGHT STEP	TEMP BASE	DUTY BASE
SYSFANOUT	Bank 1,	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index 69h	Index 6Ah	Index 6Bh	Index 6Ch	Index 6Dh
CPUFANOUT	Bank 1,	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index 79h	Index 7Ah	Index 7Bh	Index 7Ch	Index 7Dh
AUXFANOUT0	Bank 1,	Bank 1,	Bank 1,	Bank 1,	Bank 1,
	Index 89h	Index 8Ah	Index 8Bh	Index 8Ch	Index 8Dh

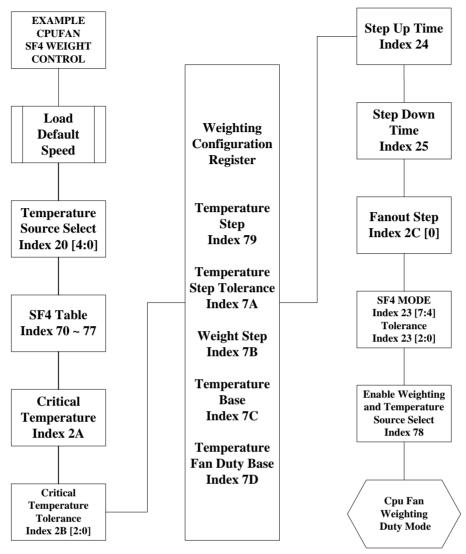


Figure 8-21 Weighting Duty Mode Programming Flow

8.10.5 Max Duty Compare Source

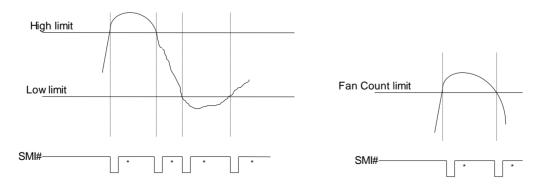
The NCT6126D supports the max duty compare source. The function can be enabled by selected one of the bit in Index BAh bit[7:4], Index BBh, Index BCh of Bank 3. When the function is enabled, the fan will compare the duty and the fan will output the max duty.

DESCRIPTION	Bank	Bit7/Bit3	Bit6/Bit2	Bit5/Bit1	Bit4/Bit0
SYSFANOUT	Bank 3, Index BBh, bit[3:0]	AUXFAN2	AUXFAN1	AUXFAN0	CPUFAN
CPUFANOUT	Bank 3, Index BBh, bit[7:4]	AUXFAN2	AUXFAN1	AUXFAN0	SYSFAN
AUXFANOUT0	Bank 3, Index BCh, bit[3:0]	AUXFAN2	AUXFAN1	CPUFAN	SYSFAN
AUXFANOUT1	Bank 3, Index BCh, bit[7:4]	AUXFAN2	AUXFAN0	CPUFAN	SYSFAN
AUXFANOUT2	Bank 3, Index BAh, bit[7:4]	AUXFAN1	AUXFAN0	CPUFAN	SYSFAN

8.11 Alert and Interrupt

NCT6122D / NCT6126D supports 6 Temperature Sensors for interrupt detection depending on selective monitor temperature source.

	SMIOVT1	SMIOVT2	SMIOVT3	
Temperature source select	Bank 0,	Bank 0	Bank 0,	
	IndexB0h bit[4:0]	IndexB1h bit[4:0]	IndexB2h bit[4:0]	
	default: SYSTIN	default: CPUTIN	default: AUXTIN	
Temperature reading (2's complement)	Bank 0, Index 10h & Index 16h bit0	Bank 0, Index 11h & Index 16h bit1	Bank 0, Index 12h & Index 16h bit2	
Temperature	Bank0, IndexC2h	Bank0, Index C6h	Bank 0, Index CAh	
High Limit	& Index B7h bit6	& Index B8h bit6	& Index B9h bit6	
Temperature	Bank0, IndexC3h	Bank 1, IndexC7h	Bank 2, Index CBh	
Low Limit	& Index B7h bit7	& Index B8h bit7	& Index B9h bit7	


SMIOVT Relative Temperature Registers

8.11.1 SMI# Interrupt Mode

The SMI#/OVT# pin (pin95) is a multi-function pin. It can be in HM_SMI# mode or in OVT# mode by setting Configuration Register Logical Device E, CR FA, bit6 and CR1Dh, bit [3:2]. In HM_SMI# mode, it can monitor voltages, fan counts, or temperatures.

8.11.2 Voltage SMI# Mode

The SMI# pin can create an interrupt if a voltage exceeds a specified high limit or falls below a specified low limit. This interrupt must be reset by reading all the interrupt status registers, or subsequent events do not generate interrupts. This mode is illustrated in the following figure.

*Interrupt Reset when Interrupt Status Registers are read

Figure 8-22 SMI Mode of Voltage and Fan Inputs

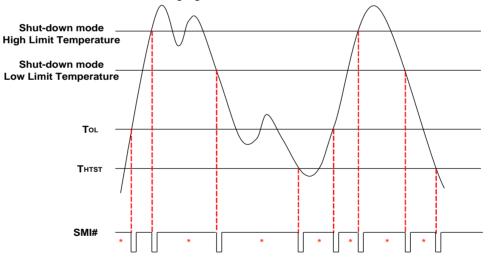
Publication Release Date: September 12, 2023

8.11.3 Fan SMI# Mode

The SMI# pin can create an interrupt if a fan count crosses a specified fan limit (rises above it or falls below it). This interrupt must be reset by reading all the interrupt status registers, or subsequent events do not generate interrupts. This mode is illustrated in the figure above.

8.11.4 Temperature SMI# Mode

The SMI# pin can create interrupts that depend on the temperatures measured by SYSTIN, CPUTIN, and AUXTIN. These interrupts are divided into two parts, one for SYSTIN and the other for CPUTIN / AUXTIN.


8.11.4.1. Temperature Sensor 1 SMI# Interrupt (Default: SYSTIN)

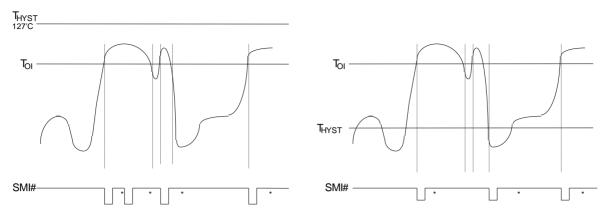
The SMI# pin has five interrupt modes with Temperature Sensor 1.

(1) Shut-down Interrupt Mode

This mode is enabled by setting T_{HYST} (Temperature Hysteresis) lower than T_{OL} and setting Bank0 Index 40h, bit 4 to one.

In this mode, the SMI# pin can create an interrupt when the current temperature rises above T_{OL} or Shut-down mode high limit temperature, and when the current temperature falls below T_{HYST} or Shut-down mode low limit temperature. Once the temperature rises above T_{OL} , however, and generates an interrupt, this mode does not generate additional interrupts, even if the temperature remains above T_{OL} , until the temperature falls below T_{HYST} . This interrupt must be reset by reading all the interrupt status registers, or subsequent events do not generate interrupts, except the first time current temperature rises above Shut-down mode high limit temperature. This is illustrated in the following figure.

* Interrupt Reset when Interrupt Status Registers are read


Figure 8-23 Shut-down Interrupt Mode

(2) Comparator Interrupt Mode

This mode is enabled by setting THYST (Temperature Hysteresis) to 127°C.

In this mode, the SMI# pin can create an interrupt as long as the current temperature exceeds $T_{\rm O}$ (Over Temperature). This interrupt can be reset by reading all the interrupt status registers, or subsequent events do not generate interrupts. If the interrupt is reset, the SMI# pin continues to create interrupts until the temperature goes below $T_{\rm O}$. This is illustrated in the figure below.

*Interrupt Reset when Interrupt Status Registers are read

Comparator Interrupt Mode

Two-Times Interrupt Mode

Figure 8-24 SMI Mode of SYSTIN I

(3) Two-Times Interrupt Mode


This mode is enabled by setting T_{HYST} (Temperature Hysteresis) lower than T_O and setting Bank0 Index B6h, bit1 to zero.

In this mode, the SMI# pin can create an interrupt when the current temperature rises above T_O or when the current temperature falls below T_{HYST} . Once the temperature rises above T_O , however, and generates an interrupt, this mode does not generate additional interrupts, even if the temperature remains above T_O , until the temperature falls below T_{HYST} . This interrupt must be reset by reading all the interrupt status registers, or subsequent events do not generate interrupts. This is illustrated in the figure above.

(1) One-Time Interrupt Mode

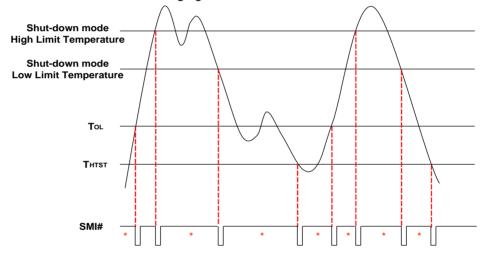
This mode is enabled by setting T_{HYST} (Temperature Hysteresis) lower than T_O and setting Bank0 Index B6h, bit1 to one.

In this mode, the SMI# pin can create an interrupt when the current temperature rises above T_0 . Once the temperature rises above T_0 , however, and generates an interrupt, this mode does not generate additional interrupts, even if the temperature remains above T_0 , until the temperature falls below T_{HYST} . This interrupt must be reset by reading all the interrupt status registers, or subsequent events do not generate interrupts. This is illustrated in the following figure.

*Interrupt Reset when Interrupt Status Registers are read

One-Time Interrupt Mode

Figure 8-25 SMI Mode of SYSTIN II


8.11.4.2. SMI# Interrupt of Temperature Sensor 2 (Default: CPUTIN) and Temperature Sensor 3 (Default: AUXTIN)

The SMI# pin has 5 interrupt modes with Temperature Sensor 2~3.

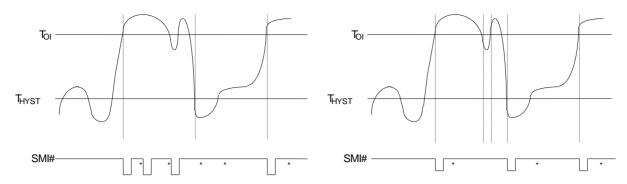
(1) Shut-down Interrupt Mode

This mode is enabled by setting Bank0 Index B6h, bit 2 to zero and Bank0 Index B8h, bit2 to one for Temperature Sensor 2; Bank0 Index B9h, bit2 to one for Temperature Sensor 3; Bank0 Index Bah, bit2 to one for Temperature Sensor 5 and Bank0 Index BCh, bit2 to one for Temperature Sensor 5 and Bank0 Index BCh, bit2 to one for Temperature Sensor 6.

In this mode, the SMI# pin can create an interrupt when the current temperature rises above T_{OL} or Shut-down mode high limit temperature, and when the current temperature falls below T_{HYST} or Shut-down mode low limit temperature. Once the temperature rises above T_{OL} , however, and generates an interrupt, this mode does not generate additional interrupts, even if the temperature remains above T_{OL} , until the temperature falls below T_{HYST} . This interrupt must be reset by reading all the interrupt status registers, or subsequent events do not generate interrupts, except the first time current temperature rises above Shut-down mode high limit temperature. This is illustrated in the following figure.

* Interrupt Reset when Interrupt Status Registers are read

Figure 8-26 Shut-down Interrupt Mode


(2) Comparator Interrupt Mode

This mode is enabled by setting Bank0 Index B6h, bit 2, to one.

In this mode, the SMI# pin can create an interrupt when the current temperature exceeds T_O (Over Temperature) and continues to create interrupts until the temperature falls below T_{HYST} . This interrupt can be reset by reading all the interrupt status registers, or subsequent events do not generate interrupts. This is illustrated in the figure below.

-86-

*Interrupt Reset when Interrupt Status Registers are read

Comparator Interrupt Mode

Two-Times Interrupt Mode

Figure 8-27 SMI Mode of CPUTIN

(3) Two-Times Interrupt Mode

This mode is enabled by setting Bank0 Index B6h, bit 2, to zero.

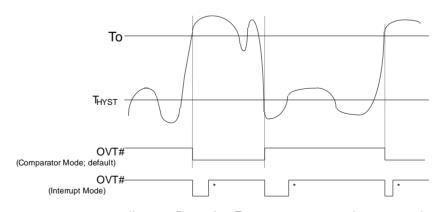
In this mode, the SMI# pin can create an interrupt when the current temperature rises above T_O or when the current temperature falls below T_{HYST} . Once the temperature rises above T_O , however, and generates an interrupt, this mode does not generate additional interrupts, even if the temperature remains above T_O , until the temperature falls below T_{HYST} . This interrupt must be reset by reading all the interrupt status registers, or subsequent events do not generate interrupts. This is illustrated in the figure above.

Table 8-7 Relative Register of SMI functions

	SHUTDOWN MODE	COMPARATOR MODE	TWO-TIME INTERRUPT MODE	ONE-TIME INTERRUPT MODE
SMIOVT1	Bank0,IndexB7_Bit2 (EN_WS=1) Bank0,Index82 _Bit0(TIN=0) Bank0,Index83 _Bit0 (Shut = 0)	Bank0,Index82_Bit0 (TIN=0) Bank0,IndexC3 (Thyst = 8'h7F)	Bank0,Index82_Bit0 (TIN=0) Bank0,IndexB6_Bit1 (EN_T1_One = 0)	Bank0,Index82_ Bit0 (TIN=0) Bank0,IndexB6_ Bit1 (EN_T1_One= 1)
SMIOVT2	Bank0,IndexB8_Bit2 (EN_WS=1) Bank0,Index82_ Bit1(TIN=0) Bank0,Index83_ Bit1 (Shut = 0)	Bank0,Index82_Bit1 (TIN=0) Bank0,IndexB6_ Bit2 (T2T3_INT=1)	Bank0,Index82_Bit1 (TIN=0) Bank0,IndexB6_ Bit2 (T2T3_INT=0)	
SMIOVT3	Bank0,IndexB9_Bit2 (EN_WS=1) Bank0,Index82_ Bit2(TIN=0) Bank0,Index83_ Bit2 (Shut = 0)	Bank0,Index82_Bit2 (TIN=0) Bank0,IndexB6_ Bit2 (T2T3_INT=1)	Bank0,Index82_Bit1 (TIN=0) Bank0,IndexB6_ Bit2 (T2T3_INT=0)	

-87-

Publication Release Date: September 12, 2023



SMIOVT1	SMIOVT2	SMIOVT3
Bank0, IndexB7_Bit0	Bank0, IndexB8_Bit0	Bank0, IndexB9_Bit0
0: Start to monitor the source of SMIOVT1 temperature.1: Stop to monitor the source of SMIOVT1 temperature.	0: Start to monitor the source of SMIOVT2 temperature.1: Stop to monitor the source of SMIOVT2 temperature.	0: Start to monitor the source of SMIOVT3 temperature.1: Stop to monitor the source of SMIOVT3 temperature.
Bank 0, IndexB7_Bit 1 0: Comparator Mode 1: Interrupt Mode	Bank 0, IndexB8_Bit 1 0: Comparator Mode 1: Interrupt Mode	Bank 0, IndexB9_Bit 1 0: Comparator Mode 1: Interrupt Mode
Bank 0, InedexB7_Bit 3 0: Enable SMIOVT1 temperature sensor over temperature output 1: Disable SMIOVT1 temperature sensor over temperature output	Bank 0, InedexB8_Bit 3 0: Enable SMIOVT2 temperature sensor over temperature output 1: Disable SMIOVT2 temperature sensor over temperature output	Bank 0, InedexB9_Bit 3 0: Enable SMIOVT3 temperature sensor over temperature output 1: Disable SMIOVT3 temperature sensor over temperature output

8.11.5 OVT# Interrupt Mode

The SMI#/OVT# pin is a multi-function pin. It can be in SMI# mode or in OVT# mode by setting Configuration Register Logical Device E, CR FA, bit6 and CR1Dh, bit [3:2]. In OVT# mode, it can monitor temperatures, and OVT pin could be enabled to OVT output by Bank0 Index B7h, bit 3 for Temperature Sensor 1(default: SYSTIN); Bank0 Index B8h, bit 3 for Temperature Sensor 2(default: CPUTIN); Bank0 Index B9h, bit3 for Temperature Sensor 3(default: AUXTIN).

The OVT# pin has two interrupt modes, comparator and interrupt. The modes are illustrated in this figure.

*Interrupt Reset when Temperature sensor registers are read

Figure 8-28 OVT# Modes of Temperature Inputs

If Bank0 Index B7h, bit 1, is set to zero, the OVT# pin is in comparator mode. In comparator mode, the OVT# pin can create an interrupt once the current temperature exceeds To and continues to create interrupts until the

temperature falls below T_{HYST} . The OVT# pin is asserted once the temperature has exceeded T_0 and has not yet fallen below T_{HYST} .

If Bank0 Index B7h, bit 1, is set to one, the OVT# pin is in interrupt mode. In interrupt mode, the OVT# pin can create an interrupt once the current temperature rises above To or when the temperature falls below Thyst. Once the temperature rises above To, however, and generates an interrupt, this mode does not generate additional interrupts, even if the temperature remains above To, until the temperature falls below Thyst. This interrupt must be reset by reading all the interrupt status registers. The OVT# pin is asserted when an interrupt is generated and remains asserted until the interrupt is reset.

8.11.6 Caseopen Detection

The purpose of Caseopen function is used to detect whether the computer case has been opened and possible tampered with. This feature must function even when there is no 3VSB power. Consequently, the power source for the circuit is from either Pin 74 (VBAT) or Pin 61 (3VSB). 3VSB is the default power source. If there is no 3VSB power, the power source is VBAT. This is designed to save power consumption of the battery.

When the case is closed, CASEOPEN# (pin 76) must be pulled high by an externally pulled-up $2M\Omega$ resistor that is connected to VBAT (pin 74). When the case is opened, CASEOPEN# will be switched from high to low. Meanwhile, the detection circuit inside the IC latches the signal. As a result, the interrupt status and the real-time status can be read at the registers next time when the computer is powered. The CASEOPEN# status will not be cleared unless CR[46h], bit 7, or CR[E6h] bit 5 at Logical Device A is set to "1" first and then to "0".

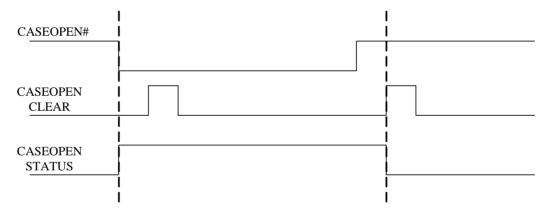


Figure 8-29 Caseopen Mechanism

9. HARDWARE MONITOR REGISTER SET

The base address of the Address Port and Data Port is specified in registers CR[60h] and CR[61h] of Logical Device B, the hardware monitor device. CR[60h] is the high byte, and CR[61h] is the low byte. The Address Port and Data Port are located at the base address, plus 5h and 6h, respectively. For example, if CR[60h] is 02h and CR[61h] is 90h, the Address Port is at 0x295h, and the Data Port is at 0x296h.

Remember that this access is from the host CPU I/O address range. To conserve space in the crowded CPU I/O addresses, many of the hardware monitor registers are "banked" with the bank number located at Index 04Eh. Indexes from 000h to 04Fh are "global" or accessible from all banks, while indexes 050h to 0FFh are specific to each bank.

9.1 Address Port (Port x5h)

Attribute: Bit 6:0 Read/Write, Bit 7: Reserved

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	DATA							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	Reserved.
6-0	READ/WRITE.

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Reserved	Address Pointer (Power On default 00h)						
(Power On default 0)	A6	A5	A4	A3	A2	A1	A0

9.2 Data Port (Port x6h)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	DATA							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Data to be read from or to be written to Value RAM and Register.

Publication Release Date: September 12, 2023

Version: 2.4

9.3 Value RAM — Index 00h ~ 6Fh (Bank 0)

ADDRESS 00-6F	DESCRIPTION
00h	CPUVCORE reading
01h	VIN0 reading
02h	AVSB reading
03h	3VCC reading
04h	VIN1 reading
05h	VIN2 reading
06h	VHIF reading
07h	3VSB reading.
08h	VBAT reading
09h	VTT reading
0Ah	Reserved
0Bh	Reserved
0Ch	Reserved
0Dh	Reserved
0Eh	Reserved
0Fh	Reserved
10h	SMIOVT1 temperature reading
11h	SMIOVT2 temperature reading
12h	SMIOVT3 temperature reading
16h	SMIOVT1~3 temperature reading LSB
17h	Reserved
18h	System fan control temperature reading
19h	CPU fan control temperature reading
1Ah	AUX fan0 control temperature reading
1Bh	Fan control temperature reading LSB
1Ch	System fan weighting temperature reading
1Dh	CPU fan weighting temperature reading
1Eh	AUX fan0 weighting temperature reading
1Fh	fan weighting temperature reading LSB
20h	SYS fan count reading [12:5]
21h	SYS fan count reading [4:0]
22h	CPU fan count reading [12:5]
23h	CPU fan count reading [4:0]
24h	AUX fan0 count reading [12:5]

ADDRESS 00-6F	DESCRIPTION
25h	AUX fan0 count reading [4:0]
26h	AUX fan1 count reading [12:5]
27h	AUX fan1 count reading [4:0]
28h	AUX fan2 count reading [12:5]
29h	AUX fan2 count reading [4:0]
2Ah	SYS fan target
2Bh	CPU fan target
2Ch	AUX fan0 target
2Dh	AUX fan1 target
2Eh	AUX fan2 target
2Fh	Reserved
30h	System fan RPM value reading high byte
31h	System fan RPM value reading low byte
32h	CPU fan RPM value reading high byte
33h	CPU fan RPM value reading low byte
34h	AUX fan0 RPM value reading high byte
35h	AUX fan0 RPM value reading low byte
36h	AUX fan1 RPM value reading high byte
37h	AUX fan1 RPM value reading low byte
38h	AUX fan2 RPM value reading high byte
39h	AUX fan2 RPM value reading low byte
3Ah	System FANIN RPM target (unit is 50 RPM)
3Bh	CPU FANIN RPM target (unit is 50 RPM)
3Ch	AUX FANIN0 RPM target (unit is 50 RPM)
3Dh	AUX FANIN1 RPM target (unit is 50 RPM)
3Eh	AUX FANIN2 RPM target (unit is 50 RPM)
3Fh	Reserved
40h	Reserved
41h	Reserved
42h	Reserved
43h	Reserved
44h	Reserved
45h	Reserved
46h	Port 80 data [7:0] input
47h	Port 80 data [15:8] input
48h	Port 80 data [23:16] input
49h	Port 80 data [31:24] input

ADDRESS 00-6F	DESCRIPTION
4Ah	System fan duty
4Bh	CPU fan duty
4Ch	AUX fan0 duty
4Dh	Reserved
4Eh	Bank select register
4Fh	Reserved
50h	PCH_CHIP_CPU_MAX_Temperature
51h	PCH_CHIP_Temperature
52h	PCH_CPU_TEMP_H
53h	PCH_CPU_TEMP_L
54h	PCH_MCH_TEMP
55h	PCH_DIM0_TEMP
56h	PCH_DIM1_TEMP
57h	PCH_DIM2_TEMP
58h	PCH_DIM3_TEMP
59h	TSI Agent 0 temperature high byte
5Ah	TSI Agent 0 temperature low byte
5Bh	TSI Agent 1 temperature high byte
5Ch	TSI Agent 1 temperature low byte
69h	Byte Temperature high byte
6Ah	Byte Temperature low byte
6Bh	Reserved
6Ch	Reserved
6Dh	Reserved
6Eh	Reserved
6Fh	Reserved

9.4 SMIOVT1 Temperature Source (High Byte) Register – Index 10h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	TEMP<8:1>							

BIT	DESCRIPTION
7-0	Temperature <8:1> (default: SYSTIN temperature source). The nine-bit value is in
	units of 0.5°C.

9.5 SMIOVT2 Temperature Source (High Byte) Register – Index 11h (Bank 0)

Attribute: Read Only Size: 8 bits

ŀ	BIT	7	6	5	4	3	2	1	0
	NAME		TEMP<8:1>						

BIT	DESCRIPTION
7-0	Temperature <8:1> (default: CPUTIN temperature source). The nine-bit value is in
	units of 0.5°C.

9.6 SMIOVT3 Temperature Source (High Byte) Register - Index 12h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME				TEMP	<8:1>			

BIT	DESCRIPTION						
7-0	Temperature <8:1> (default: AUXTIN temperature source). The nine-bit value is in						
	units of 0.5℃.						

9.7 SMIOVT1-3 Temperature Source (Low Byte) Register – Index 16h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			Reserved	I		SMIOVT3_ TEMP<0>	SMIOVT2_ TEMP<0>	SMIOVT1_ TEMP<0>

BIT	DESCRIPTION
7-3	Reserved.
2	SMIOVT3 Temperature <0> (default: AUXTIN temperature source). The nine-bit value is in units of 0.5°C.
1	SMIOVT2 Temperature <0> (default: CPUTIN temperature source). The nine-bit value is in units of 0.5°C.
0	SMIOVT1 Temperature <0> (default: SYSTIN temperature source). The nine-bit value is in units of 0.5°C.

9.8 System Fan Control Temperature Register (Integer Value)- Index 18h (Bank 0)

Attribute: Read/Write Size: 8 bits

٠.	0.01								
	BIT	7	6	5	4	3	2	1	0

NAME		SYSFANControlTemp [8:1]							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION					
7-0	SYSFANControlTemp [8:1]					
	SYSFANOUT fan control temperature reading.					

9.9 CPU Fan Control Temperature Register (Integer Value)- Index 19h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		CPUFANControlTemp [8:1]							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION					
7-0	CPUFANControlTemp [8:1]					
	CPUFANOUT fan control temperature reading.					

9.10 AUX Fan0 Control Temperature Register (Integer Value)- Index 1Ah (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN0ControlTemp [8:1]							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	AUXFAN0ControlTemp [8:1]
	AUXFANOUT0 fan control temperature reading.

9.11 Fan Temperature Register (Fractional Value)- Index 1Bh (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7-5	4	3	2	1	0
NAME	Reserved	AUXFAN2 ControlTemp[0]	AUXFAN1 ControlTemp[0]	AUXFAN0 ControlTemp[0]	CPUFAN ControlTemp[0]	SYSFAN ControlTemp[0]
DEFAULT	0	0	0	0	0	0

BIT	DESCRIPTION
	DEGOTAL FIGH

7-5	Reserved.
4	AUXFAN2ControlTemp[0]
	AUXFANOUT2 fan control temperature reading
3	AUXFAN1ControlTemp[0]
	AUXFANOUT1 fan control temperature reading
2	AUXFAN0ControlTemp[0]
	AUXFANOUT0 fan control temperature reading
1	CPUFANControlTemp[0]
	CPUFANOUT fan control temperature reading
0	SYSFANControlTemp[0]
	SYSFANOUT fan control temperature reading

9.12 (SYSFANIN) FANIN1 COUNT High-byte Register – Index 20h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		FANCNT1 [12:5]							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	FANCNT1_H: 13-bit SYSFANIN Fan Count, High Byte

9.13 (SYSFANIN) FANIN1 COUNT Low-byte Register – Index 21h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	RESERVED			FANCNT1 [4:0]					
DEFAULT	0			0					

BIT	DESCRIPTION
7-5	Reserved.
4-0	FANCNT1_L: 13-bit SYSFANIN Fan Count, Low Byte

9.14 (CPUFANIN) FANIN2 COUNT High-byte Register – Index 22h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		FANCNT2 [12:5]							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	FANCNT2_H: 13-bit CPUFANIN Fan Count, High Byte

9.15 (CPUFANIN) FANIN2 COUNT Low-byte Register – Index 23h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved				FANCNT2[4:0]				
DEFAULT	0			0					

BIT	DESCRIPTION
7-5	Reserved.
4-0	FANCNT2_L: 13-bit CPUFANIN Fan Count, Low Byte

9.16 (AUXFANINO) FANIN3 COUNT High-byte Register – Index 24h (Bank 0)

Attribute: Read 8 bits Size:

BIT	7	6	5	4	3	2	1	0	
NAME		FANCNT3 [12:5]							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	FANCNT3_H: 13-bit AUXFANIN Fan Count, High Byte

9.17 (AUXFANIN0) FANIN3 COUNT Low-byte Register - Index 25h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved			FANCNT3 [4:0]					
DEFAULT	0					0			

BIT	DESCRIPTION
7-5	Reserved.
4-0	FANCNT3_L: 13-bit AUXFANIN0 Fan Count, Low Byte

-97-

9.18 (AUXFANIN1) FANIN4 COUNT High-byte Register – Index 26h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	FANCNT4 [12:5]							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	FANCNT4_H: 13-bit AUXFANIN1 Fan Count, High Byte

9.19 (AUXFANIN1) FANIN4 COUNT Low-byte Register - Index 27h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved			FANCNT4 [4:0]					
DEFAULT	0			0					

BIT	DESCRIPTION
7-5	Reserved.
4-0	FANCNT4_L: 13-bit AUXFANIN1 Fan Count, Low Byte

9.20 (AUXFANIN2) FANIN5 COUNT High-byte Register – Index 28h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		FANCNT5 [12:5]							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION			
7-0	FANCNT5_H:	13-bit AUXFANIN2 Fan Count, High Byte		

9.21 (AUXFANIN2) FANIN5 COUNT Low-byte Register – Index 29h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved			FANCNT5 [4:0]					
DEFAULT	0					0			

BIT	DESCRIPTION
7-5	Reserved.
4-0	FANCNT5_L: 13-bit AUXFANIN2 Fan Count, Low Byte

9.22 (SYSFANIN) FANIN1 SYSFAN Duty Target Register - Index 2Ah (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFAN duty target							
DEFAULT		8'h00							

BIT	DESCRIPTION
7-0	SYSFAN duty target

9.23 (CPUFANIN) FANIN2 CPUFAN Duty Target Register – Index 2Bh (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		CPUFAN duty target								
DEFAULT		8'h00								

BIT	DESCRIPTION
7-0	CPUFAN duty target

9.24 (AUXFANINO) FANIN3 AUXFAN0 Duty Target Register – Index 2Ch (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFAN0 duty target								
DEFAULT		8'h00								

BIT	DESCRIPTION
7-0	AUXFAN0 duty target

9.25 (AUXFANIN1) FANIN4 AUXFAN1 Duty Target Register – Index 2Dh (Bank 0)

Attribute: Read Size: 8 bits

OIZE.	O DIIS								
BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN1 duty target							
DEFAULT		8'h00							

BIT	DESCRIPTION
7-0	AUXFAN1 duty target

9.26 (AUXFANIN2) FANIN4 AUXFAN2 Duty Target Register - Index 2Eh (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN2 duty target							
DEFAULT				8'h	00				

BIT	DESCRIPTION
7-0	AUXFAN2 duty target

9.27 SYSFANIN SPEED HIGH-BYTE VALUE (RPM) - Index 30h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		SYSFANIN SPEED HIGH-BYTE VALUE								
DEFAULT	0	0	0	0	0	0	0	0		

BIT	DESCRIPTION	
7-0	SYSFANIN SPEED HIGH-BYTE VALUE.	

9.28 SYSFANIN SPEED LOW-BYTE VALUE (RPM) - Index 31h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		SYSFANIN SPEED LOW-BYTE VALUE									
DEFAULT	0	0	0	0	0	0	0	0			

BIT		DESCRIPTION
7-0	SYSFANIN SPEED LOW-BYTE VALUE.	

9.29 CPUFANIN SPEED HIGH-BYTE VALUE (RPM) - Index 32h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		CPUFANIN SPEED HIGH-BYTE VALUE								
DEFAULT	0	0	0	0	0	0	0	0		

BIT	DESCRIPTION	
7-0	CPUFANIN SPEED HIGH-BYTE VALUE.	

9.30 CPUFANIN SPEED LOW-BYTE VALUE (RPM) - Index 33h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		CPUFANIN SPEED LOW-BYTE VALUE									
DEFAULT	0	0	0	0	0	0	0	0			

BIT	DESCRIPTION	
7-0	CPUFANIN SPEED LOW-BYTE VALUE.	

9.31 AUXFANINO SPEED HIGH-BYTE VALUE (RPM) - Index 34h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANINO SPEED HIGH-BYTE VALUE									
DEFAULT	0	0	0	0	0	0	0	0			

BIT	DESCRIPTION	
7-0	AUXFANINO SPEED HIGH-BYTE VALUE.	

9.32 AUXFANINO SPEED LOW-BYTE VALUE (RPM) - Index 35h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANINO SPEED LOW-BYTE VALUE									
DEFAULT	0	0	0	0	0	0	0	0			

BIT	DESCRIPTION	
7-0	AUXFANINO SPEED LOW-BYTE VALUE.	

9.33 AUXFANIN1 SPEED HIGH-BYTE VALUE (RPM) - Index 36h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			AUXFA	NIN1 SPEED	HIGH-BYTI	E VALUE		

DEFAULT	0	0	0	0	0	0	0	0
DEI MOEI	0	U	0	0	0	0	U	

BIT	DESCRIPTION
7-0	AUXFANIN1 SPEED HIGH-BYTE VALUE.

9.34 AUXFANIN1 SPEED LOW-BYTE VALUE (RPM) - Index 37h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFANIN1 SPEED LOW-BYTE VALUE								
DEFAULT	0	0	0	0	0	0	0	0		

BIT	DESCRIPTION
7-0	AUXFANIN1 SPEED LOW-BYTE VALUE.

9.35 AUXFANIN2 SPEED HIGH-BYTE VALUE (RPM) - Index 38h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANIN2 SPEED HIGH-BYTE VALUE									
DEFAULT	0	0	0	0	0	0	0	0			

BIT	DESCRIPTION	
7-0	AUXFANIN2 SPEED HIGH-BYTE VALUE.	

9.36 AUXFANIN2 SPEED LOW-BYTE VALUE (RPM) - Index 39h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFANIN2 SPEED LOW-BYTE VALUE								
DEFAULT	0	0	0	0	0	0	0	0		

BIT	DESCRIPTION
7-0	AUXFANIN2 SPEED LOW-BYTE VALUE.

9.37 (FANIN) FANIN1 SYSFAN RPM Target Register - Index 3Ah (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0

NAME	SYSFAN RPM target
DEFAULT	8'h00

BIT	DESCRIPTION
7-0	SYSFAN RPM target

9.38 (FANIN) FANIN2 CPUFAN RPM Target Register - Index 3Bh (Bank 0)

Attribute: Read Size: 8 bits

<u> </u>	0 10.10									
BIT	7	6	5	4	3	2	1	0		
NAME		CPUFAN RPM target								
DEFAULT		8'h00								

BIT	DESCRIPTION
7-0	CPUFAN RPM target

9.39 (FANIN) FANIN3 AUXFAN0 RPM Target Register - Index 3Ch (Bank 0)

Attribute: Read Size: 8 bits

<u> </u>	0 10.10								
BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN0 RPM target							
DEFAULT				8'h	100				

BIT	DESCRIPTION
7-0	AUXFAN0 RPM target

9.40 (FANIN) FANIN4 AUXFAN1 RPM Target Register – Index 3Dh (Bank 0)

Attribute: Read Size: 8 bits

0120.	0 5110							
BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN1 RPM target						
DEFAULT				8'h	00			

BIT	DESCRIPTION
7-0	AUXFAN1 RPM target

9.41 (FANIN) FANIN5 AUXFAN2 RPM Target Register - Index 3Eh (Bank 0)

Attribute: Read

Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFAN2 RPM target								
DEFAULT		8'h00								

BIT	DESCRIPTION
7-0	AUXFAN2 RPM target

9.42 PORT 80 DATA INPUT Register 1 - Index 46h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		Port 80 Data Input							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION	
7-0	Port 80 Data [7:0] Input	

9.43 PORT 80 DATA INPUT Register 2 - Index 47h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		Port 80 Data Input							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	Port 80 Data [15:8] Input for eSPI mode

9.44 PORT 80 DATA INPUT Register 3 - Index 48h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Port 80 Data Input							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Port 80 Data [23:16] Input for eSPI mode

9.45 PORT 80 DATA INPUT Register 4 - Index 49h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Port 80 Data Input							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Port 80 Data [31:24] Input for eSPI mode

9.46 SYSFAN Max Duty Output Register - Index 4Ah (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	SYSFAN Max Duty Output							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
0	SYSFAN Max Duty Output

9.47 CPUFAN Max Duty Output Register – Index 4Bh (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	CPUFAN Max Duty Output							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
0	CPUFAN Max Duty Output

9.48 AUXFAN0 Max Duty Output Register - Index 4Ch (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN0 Max Duty Output							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
0	AUXFAN0 Max Duty Output

9.49 Bank Select Register - Index 4Eh (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	HBACS			BANK	BANK			
				SEL1	SEL0			
DEFAULT	1	0	0	0	0	0	0	0

BIT	DESCRIPTION					
7	HBACS – High Byte Access. 1: Access Index 4Fh high-byte register. (Defa 0: Access Index 4Fh low-byte register.	1: Access Index 4Fh high-byte register. (Default)				
6-2	Reserved.					
1	BANKSEL1.	Bank Select for Bank0 to Bank3. The Two -bit binary value corresponds to the				
0	BANKSELO.	bank number. For example, "01" selects bank1.				

9.50 PCH_CHIP_CPU_MAX_TEMP Register - Index 50h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		PCH_CHIP_CPU_MAX_TEMP							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	PCH_CHIP_CPU_MAX_TEMP:
. •	The maximum temperature in absolute degree C, of the CPU and MCH.

9.51 PCH_CHIP_TEMP Register - Index 51h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		PCH_CHIP_TEMP								
DEFAULT	0	0	0	0	0	0	0	0		

BIT		DESCRIPTION
7-0	PCH_CHIP_TEMP	The IBX_CHIP temperature in degree C.

9.52 PCH_CPU_TEMP_H Register - Index 52h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		PCH_CPU_TEMP_H								
DEFAULT	0	0	0	0	0	0	0	0		

BIT		DESCRIPTION
7-0	PCH_CPU_TEMP_H	The CPU temperature in degree C. (Integer Part)

9.53 PCH_CPU_TEMP_L Register - Index 53h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			Reserved	Reading _Flag				
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-2	PCH_CPU_TEMP_L The CPU temperature in degree C. (Fractional Part)
1	Reserved.
0	Reading_Flag: If there is an error when the IBX read the data from the CPU, then Bit0 is set to '1'.

9.54 PCH_MCH_TEMP Register - Index 54h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		PCH_MCH_TEMP								
DEFAULT	0	0	0	0	0	0	0	0		

BIT		DESCRIPTION					
7-0	PCH_MCH_TEMP	The MCH temperature in degree C.					

9.55 PCH_TSI0_TEMP_H Register - Index 59h (Bank 0)

Attribute: Read Size: 8 bits

Reset by: PWROK (DEFAULT) OR LRESET# (LOGIC DEVICE A, CR[E7], BIT[0]=1)

 	· ·			•						
BIT	7	6	5	4	3	2	1	0		
NAME		PCH_TSI0_TEMP_H								
DEFAULT	0	0	0	0	0	0	0	0		

BIT		DESCRIPTION
7-0	PCH_TSI0_TEMP_H	The TSI0 High-Byte temperature in degree C. (Integer Part)

9.56 PCH_TSI0_TEMP_L Register - Index 5Ah (Bank 0)

Attribute: Read Size: 8 bits

Reset by: PWROK (DEFAULT) OR LRESET# (LOGIC DEVICE A, CR[E7], BIT[0]=1)

BIT	7	6	5	4	3	2	1	0	
NAME	PCH_TSI0_TEMP_L			Reserved					
DEFAULT	0	0	0	0	0	0	0	0	

BIT		DESCRIPTION
7-5	PCH_TSI0_TEMP_L	The TSI0 Low-Byte temperature in degree C. (Fractional Part)
4-0	Reserved.	

9.57 PCH_TSI1_TEMP_H Register - Index 5Bh (Bank 0)

Attribute: Read Size: 8 bits

Reset by: PWROK (DEFAULT) OR LRESET# (LOGIC DEVICE A, CR[E7], BIT[0]=1)

BIT	7	6	5	4	3	2	1	0			
NAME		PCH_TSI1_TEMP_H									
DEFAULT	0	0	0	0	0	0	0	0			

Ī	BIT		DESCRIPTION
	7-0	PCH_TSI1_TEMP_H	The TSI1 High-Byte temperature in degree C. (Integer Part)

9.58 PCH_TSI1_TEMP_L Register - Index 5Ch (Bank 0)

Attribute: Read Size: 8 bits

Reset by: PWROK (DEFAULT) OR LRESET# (LOGIC DEVICE A, CR[E7], BIT[0]=1)

BIT	7	6	5	4	3	2	1	0	
NAME	PCH_TSI1_TEMP_L			Reserved					
DEFAULT	0 0 0			0	0	0	0	0	

BIT		DESCRIPTION
7-5	PCH_TSI1_TEMP_L	The TSI1 Low-Byte temperature in degree C. (Fractional Part)
4-0	Reserved.	

9.59 ByteTemp_H Register - Index 69h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		ByteTemp_H							
DEFAULT	0	0	0	0	0	0	0	0	

BIT		DESCRIPTION
7-0	ByteTemp_H	The Byte format Device0 Byte temperature in degree C.

9.60 ByteTemp_L Register - Index 6Ah (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		ByteTemp_L								
DEFAULT	0	0	0	0	0	0	0	0		

BIT		DESCRIPTION
7-0	ByteTemp_L	The Byte format Device1 Byte temperature in degree C.

9.61 PECI Agent0 Temp Register - Index 6Bh (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		PECI Agent0 Temp								
DEFAULT	0	0	0	0	0	0	0	0		

BIT		DESCRIPTION
7-0	PECI Agent0 Temp	The PECI Agent0 temperature in degree C.

9.62 PECI Agent1 Temp Register - Index 6Dh (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		PECI Agent1 Temp								
DEFAULT	0	0	0	0	0	0	0	0		

BIT	DESCRIPTION

	BIT	DESCRIPTION				
Ī	7-0	PECI Agen1 Temp	The PECI Agent1 temperature in degree C.			

9.63 Interrupt Status Register 1 - Index 70h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	3VSB	VHIF	VIN2	VIN1	3VCC	AVSB	VIN0	CPUVCORE
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	3VSB. A one indicates the high or low limit of 3VSB has been exceeded.
6	VHIF. A one indicates the high or low limit of VHIF has been exceeded
5	VIN2. A one indicates the high or low limit of VIN2 has been exceeded
4	VIN1. A one indicates the high or low limit of VIN1 has been exceeded
3	3VCC. A one indicates the high or low limit of 3VCC has been exceeded.
2	AVSB. A one indicates the high or low limit of AVSB has been exceeded.
1	VIN0. A one indicates the high or low limit of VIN0 has been exceeded.
0	CPUVCORE. A one indicates the high or low limit of CPUVCORE has been exceeded.

9.64 Interrupt Status Register 2 – Index 71h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			Rese	erved			VTT	VBAT
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	Reserved.
6	Reserved.
5	Reserved.
4	Reserved.
3	Reserved.
2	Reserved.
1	VTT. A one indicates the high or low limit of VTT has been exceeded.
0	VBAT. A one indicates the high or low limit of VBAT has been exceeded.

9.65 Interrupt Status Register 3 - Index 72h (Bank 0)

Attribute: Read Only

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	SOURCE 3 _SMI	SOURCE 2 _SMI	SOURCE 1 _SMI
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-3	Reserved.
	SOURCE3_SMI.
2	A one indicates the high limit of SMIOVT SOURCE3 temperature has been exceeded. (AUXTIN is default temperature)
1	SOURCE2_SMI. A one indicates the high limit of SMIOVT SOURCE2 temperature has been exceeded. (CPUTIN is default temperature)
0	SOURCE1_SMI. A one indicates the high limit of SMIOVT SOURCE1 temperature has been exceeded. (SYSTIN is default temperature)

9.66 Interrupt Status Register 4 - Index 73h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	Shut_ SOURCE 3 _SMI	Shut_ SOURCE 2 _SMI	Shut_ SOURCE 1 _SMI
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-3	Reserved.
2	Shut_SOURCE3_SMI. "1" indicates the high limit of SMIOVT _SOURCE3 temperature of SMI# Shut-down mode has been exceeded. (AUXTIN is default temperature)
1	Shut_SOURCE2_SMI. "1" indicates the high limit of SMIOVT _SOURCE2 temperature of SMI# Shut-down mode has been exceeded. (CPUTIN is default temperature)
0	Shut_SOURCE1_SMI. "1" indicates the high limit of SMIOVT _SOURCE1 temperature of SMI# Shut-down mode has been exceeded. (SYSTIN is default temperature)

9.67 Interrupt Status Register 5 - Index 74h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	AUXFANIN2	AUXFANIN1	AUXFANIN0	CPUFANIN	SYSFANIN

DEFAULT	n	0	0	0	0	0	0	0
DEFAULT	U	U	U	l 0	0	0	U	U

BIT	DESCRIPTION
7	Reserved.
6	Reserved.
5	Reserved.
4	AUXFANIN2. A one indicates the fan count limit of AUXFANIN2 has been exceeded.
3	AUXFANIN1. A one indicates the fan count limit of AUXFANIN1 has been exceeded.
2	AUXFANINO. A one indicates the fan count limit of AUXFANINO has been exceeded.
1	CPUFANIN. A one indicates the fan count limit of CPUFANIN has been exceeded.
0	SYSFANIN. A one indicates the fan count limit of SYSFANIN has been exceeded.

9.68 Interrupt Status Register 6 - Index 75h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	AUX FANOUTO	CPU FANOUT	SYS FANOUT
						IANOUIU	IANOUI	IANOUI
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	Reserved.
6	Reserved.
5	Reserved.
4	Reserved.
3	Reserved.
2	AUXFANOUT0. "1" indicates that AUXFANOUT works for three minutes at the full fan speed.
1	CPUFANOUT. "1" indicates that CPUFANOUT works for three minutes at the full fan speed.
0	SYSFANOUT. "1" indicates that SYSFANOUT works for three minutes at the full fan speed.

9.69 Interrupt Status Register 7 - Index 76h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	CASEOPEN1						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	Reserved.
6	Reserved.
5	Reserved.
4	Reserved.
3	Reserved.
2	Reserved.
1	Reserved.
0	CASEOPEN1. A one indicates the case has been opened. 1: Caseopen is detected and latched. 0: Caseopen is not latched.

9.70 Real Time Status Register 1 - Index 77h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	3VSB _STS	VHIF _STS	VIN2 _STS	VIN1 _STS	3VCC _STS	AVSB _STS	VIN0 _STS	CPUVCORE _STS
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	3VSB_STS. 1: 3VSB voltage is over or under the allowed range. 0: 3VSB voltage is in the allowed range.
6	VHIF_STS. 1: VHIF voltage is over or under the allowed range. 0: VHIF voltage is in the allowed range.
5	VIN2_STS. 1: VIN2 voltage is over or under the allowed range. 0: VIN2 voltage is in the allowed range.
4	VIN1_STS. 1: VIN1 voltage is over or under the allowed range. 0: VIN1 voltage is in the allowed range.
3	3VCC_STS. 1: 3VCC voltage is over or under the allowed range. 0: 3VCC voltage is in the allowed range.
2	AVSB_STS. 1: AVSB voltage is over or under the allowed range. 0: AVSB voltage is in the allowed range.
1	VIN0_STS. 1: VIN0 voltage is over or under the allowed range. 0: VIN0 voltage is in the allowed range.

BIT	DESCRIPTION
0	CPUVCORE_STS. 1: CPUVCORE voltage is over or under the allowed range. 0: CPUVCORE voltage is in the allowed range.

9.71 Real Time Status Register 2 - Index 78h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		VBAT
							_STS	_STS
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	Reserved.
6	Reserved.
5	Reserved.
4	Reserved.
3	Reserved.
2	Reserved.
1	VTT_STS. 1: VTT voltage is over or under the allowed range. 0: VTT voltage is in the allowed range.
0	VBAT_STS. 1: VBAT voltage is over or under the allowed range. 0: VBAT voltage is in the allowed range.

9.72 Real Time Status Register 3 - Index 79h (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	SMIOVT3 _STS	SMIOVT2 _STS	SMIOVT1 _STS
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-3	Reserved.
2	SMIOVT3_STS. 1: SMIOVT3 Temperature exceeds the over-temperature value. 0: SMIOVT3 Temperature is under the hysteresis value.
1	SMIOVT2_STS.

BIT	DESCRIPTION
	1: SMIOVT2 Temperature exceeds the over-temperature value.
	0: SMIOVT2 Temperature is under the hysteresis value.
	SMIOVT1_STS.
0	1: SMIOVT1 Temperature exceeds the over-temperature value.
	0: SMIOVT1 Temperature is under the hysteresis value.

9.73 Real Time Status Register 4 - Index 7Ah (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	Shut_ SMIOVT3 _STS	Shut_ SMIOVT2 _STS	Shut_ SMIOVT1 _STS
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-3	Reserved.
2	Shut_SMIOVT3_STS. 1: SMIOVT3 Temperature exceeds the Shut –temperature value. 0: SMIOVT3 Temperature is under the Shut-hysteresis value.
1	Shut_SMIOVT2_STS. 1: SMIOVT2 Temperature exceeds the Shut –temperature value. 0: SMIOVT2 Temperature is under the Shut-hysteresis value.
0	Shut_SMIOVT1_STS. 1: SMIOVT1 Temperature exceeds the Shut –temperature value. 0: SMIOVT1 Temperature is under the Shut-hysteresis value.

9.74 Real Time Status Register 5 - Index 7Bh (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	AUX FANIN2 _STS	AUX FANIN1 _STS	AUX FANIN0 _STS	CPU FANIN _STS	SYS FANIN _STS
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	Reserved.
6	Reserved.
5	Reserved.
4	AUXFANIN2_STS.

BIT	DESCRIPTION
	1: Fan speed count is over the threshold value.
	0: Fan speed count is in the allowed range.
	AUXFANIN1_STS.
3	1: Fan speed count is over the threshold value.
	0: Fan speed count is in the allowed range.
	AUXFANIN0_STS.
2	1: Fan speed count is over the threshold value.
	0: Fan speed count is in the allowed range.
	CPUFANIN_STS.
1	1: Fan speed count is over the threshold value.
	0: Fan speed count is in the allowed range.
	SYSFANIN_STS.
0	1: Fan speed count is over the threshold value.
	0: Fan speed count is in the allowed range.

9.75 Real Time Status Register 6 - Index 7Ch (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	AUX FANOUT0 _STS	CPU FANOUT _STS	SYS FANOUT _STS
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	Reserved.
6	Reserved.
5	Reserved.
4	Reserved.
3	Reserved.
2	AUXFANOUT0_STS. 1: The selected temperature has been over the target temperature for three minutes at full fan speed in Thermal Cruise Mode. 0: The selected temperature has not reached the warning range.
1	CPUFANOUT_STS. 1: The selected temperature has been over the target temperature for three minutes at full fan speed in Thermal Cruise Mode. 0: The selected temperature has not reached the warning range.
0	SYSFANOUT_STS. 1: The selected temperature has been over the target temperature for three minutes at full fan speed in Thermal Cruise Mode. 0: The selected temperature has not reached the warning range.

9.76 Real Time Status Register 7 - Index 7Dh (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			Caseopen_STS					
DEFAULT	_	_	_	_		_		•

BIT	DESCRIPTION
7	Reserved.
6	Reserved.
5	Reserved.
4	Reserved.
3	Reserved.
2	Reserved.
1	Reserved.
0	CASEOPEN_PIN_STATUS.

9.77 Reserved Register - Index 7Eh ~ 7Fh (Bank 0)

9.78 SMI# Mask Register 1 - Index 80h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	3VSB	Reserved	VIN2	VIN1	3VCC	AVSB	VIN0	CPUVCORE
DEFAULT	1	1	1	1	1	1	1	1

BIT		DESCRIPTION							
7	3VSB.								
6	Reserved.								
5	VIN2.								
4	VIN1.	A one disables the corresponding interrupt status bit for							
3	3VCC.	the SMI interrupt. (See Interrupt Status Register 1 – Index 70h (Bank0))							
2	AVSB.	(Bariko))							
1	VINO.								
0	CPUVCORE.								

-117-

9.79 SMI# Mask Register 2 - Index 81h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	VTT	VBAT
DEFAULT	0	0	0	0	1	1	1	1

BIT		DESCRIPTION							
7	Reserved.								
6	Reserved.								
5	Reserved.								
4	Reserved.	A one disables the corresponding interrupt status bit for							
3	Reserved.	the SMI interrupt. (See Interrupt Status Register 2 – Index 71h (Bank0))							
2	Reserved.								
1	VTT.								
0	VBAT.								

9.80 SMI# Mask Register 3 - Index 82h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	SMIOVT3	SMIOVT2	SMIOVT1
DEFAULT	0	0	0	0	0	1	1	1

BIT		DESCRIPTION
7-3	Reserved.	
2	SMIOVT3.	A one disables the corresponding interrupt status bit for
1	SMIOVT2.	the SMI interrupt. (See Interrupt Status Register 3 – Index 72h (Bank0))
0	SMIOVT1.	(Bariko))

9.81 SMI# Mask Register 4 - Index 83h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	Shut_ SMIOVT3	Shut_ SMIOVT2	Shut_ SMIOVT1
						0.00	0.0.10	O.II.IO V I I
DEFAULT	0	0	0	0	0	1	1	1

BIT	DESCRIPTION										
7-3	Reserved.	A one disables the corresponding interrupt status bit for									
2	Shut_SMIOVT3.	the SMI interrupt. (See Interrupt Status Register 4 – Index 73h									
1	Shut_SMIOVT2.	(Bank0))									

BIT		DESCRIPTION
0	Shut_SMIOVT1.	

9.82 SMI# Mask Register 5 - Index 84h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	AUX FANIN2	AUX FANIN1	AUX FANINO	CPU FANIN	SYS FANIN
DEFAULT	0	0	0	1	1	1	1	1

BIT		DESCRIPTION								
7	Reserved.									
6	Reserved.									
5	Reserved.	A one disables the corresponding interrupt status bit for								
4	AUXFANIN2.	the SMI interrupt. (See Interrupt Status Register 5 – Index 74h								
3	AUXFANIN1.	(Bank0))								
2	AUXFANINO.									
1	CPUFANIN.									
0	SYSFANIN.									

9.83 SMI# Mask Register 6 - Index 85h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved					AUX	CPU	SYS
							FANOUT	FANOUT
DEFAULT	0	0	0	0	0	1	1	1

BIT		DESCRIPTION									
7	Reserved.										
6	Reserved.										
5	Reserved.										
4	Reserved.	A one disables the corresponding interrupt status bit for the SMI interrupt. (See Interrupt Status Register 6 – Index 75h									
3	Reserved.	(Bank0))									
2	AUXFANOUT0.										
1	CPUFANOUT.										
0	SYSFANOUT.										

Publication Release Date: September 12, 2023

Version: 2.4

9.84 SMI# Mask Register 7 - Index 86h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		F	Reserved	Caseopen _clr	Reserved	Caseopen		
DEFAULT	0	0	1	1	0	0	1	1

BIT		DESCRIPTION						
7	Reserved.							
6	Reserved.							
5	Reserved.							
4	Reserved.	A one disables the corresponding interrupt status bit for						
3	Reserved.	the SMI interrupt. (See Interrupt Status Register 7 – Index 76h (Bank0))						
2	Caseopen_clr.							
1	Reserved.							
0	Caseopen.							

9.85 CPUVCORE High Limit Voltage Register - Index 90h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		CPUVCORE High Limit Voltage								
DEFAULT	1	1	0	1	1	0	1	0		

BIT	DESCRIPTION
7-0	CPUVCORE High Limit Voltage. Default: 0xDAh

9.86 CPUVCORE Low Limit Voltage Register - Index 91h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	CPUVCORE Low Limit Voltage							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	CPUVCORE Low Limit Voltage. Default: 0x00h

Publication Release Date: September 12, 2023

9.87 VIN0 High Limit Voltage Register - Index 92h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		VIN0 High Limit Voltage								
DEFAULT	1	1	1	1	1	1	1	1		

BIT	DESCRIPTION					
7-0	VIN0 High Limit Voltage. Default: 0xFFh					

9.88 VIN0 Low Limit Voltage Register - Index 93h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		VIN0 Low Limit Voltage							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	VIN0 Low Limit Voltage. Default: 0x00h

9.89 AVSB High Limit Voltage Register - Index 94h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AVSB High Limit Voltage								
DEFAULT	1	1	1	1	1	1	1	1		

BIT	DESCRIPTION
7-0	AVSB High Limit Voltage. Default: 0xFFh

9.90 AVSB Low Limit Voltage Register - Index 95h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	AVSB Low Limit Voltage							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION

Publication Release Date: September 12, 2023

k00h

9.91 3VCC High Limit Voltage Register – Index 96h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	3VCC High Limit Voltage								
DEFAULT	1	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	3VCC High Limit Voltage. Default: 0xFFh

9.92 3VCC Low Limit Voltage Register – Index 97h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	3VCC Low Limit Voltage								
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	3VCC Low Limit Voltage. Default: 0x00h

9.93 VIN1 High Limit Voltage Register - Index 98h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	VIN1 High Limit Voltage								
DEFAULT	1	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	VIN1 High Limit Voltage. Default: 0xFFh

9.94 VIN1 Low Limit Voltage Register - Index 99h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	VIN1 Low Limit Voltage							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	VIN1 Low Limit Voltage. Default: 0x00h

9.95 VIN2 High Limit Voltage Register - Index 9Ah (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	VIN2 High Limit Voltage								
DEFAULT	1	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	VIN2 High Limit Voltage. Default: 0xFFh

9.96 VIN2 Low Limit Voltage Register - Index 9Bh (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	VIN2 Low Limit Voltage							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	VIN2 Low Limit Voltage. Default: 0x00h

9.97 VHIF High Limit Voltage Register - Index 9Ch (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		VHIF High Limit Voltage							
DEFAULT	0	0	0	0	0	0	1	0	

BIT	DESCRIPTION
7-0	VHIF High Limit Voltage. Default: 0xFFh

9.98 VHIF Low Limit Voltage Register - Index 9Dh (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	VHIF Low Limit Voltage							
DEFAULT	0	0	0	0	0	0	1	0

Publication Release Date: September 12, 2023

BIT	DESCRIPTION
7-0	VHIF Low Limit Voltage. Default: 0x00h

9.99 3VSB High Limit Voltage Register - Index 9Eh (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		3VSB High Limit Voltage							
DEFAULT	1	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	3VSB High Limit Voltage. Default: 0xFFh

9.100 3VSB Low Limit Voltage Register - Index 9Fh (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	3VSB Low Limit Voltage							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	3VSB Low Limit Voltage. Default: 0x00h

9.101 VBAT High Limit Voltage Register – Index A0h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		VBAT High Limit Voltage							
DEFAULT	1	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	VBAT High Limit Voltage. Default: 0xFFh

9.102 VBAT Low Limit Voltage Register - Index A1h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0

NAME		VBAT Low Limit Voltage									
DEFAULT	0	0	0	0	0	0	0	0			

BIT	DESCRIPTION
7-0	VBAT Low Limit Voltage. Default: 0x00h

9.103 VTT High Limit Voltage Register - Index A2h (Bank 0)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME	VTT High Limit Voltage										
DEFAULT	1	1 1 1 1 1 1 1									

BIT	DESCRIPTION
7-0	VBAT High Limit Voltage. Default: 0xFFh

9.104 VTT Low Limit Voltage Register – Index A3h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	VTT Low Limit Voltage								
DEFAULT	0 0 0 0 0 0 0								

BIT	DESCRIPTION
7-0	VTT Low Limit Voltage. Default: 0x00h

9.105 Reserved Register - Index A4h ~ AFh (Bank 0)

9.106 SMIOVT1 Temperature Source Select Register – Index B0h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT 7 6 5 4 3 2 1 0 SMIOVT_SRC1 **NAME** Reserved **DEFAULT** 0 0 0 0 0 0 1

BIT	DESCRIPTION
7-5	Reserved.

4-0	SMIOVT1 Temperature selection.
	Bits
	43210
	0 0 0 0 1: Select SYSTIN as SMIOVT1 monitoring source. (Default)
	0 0 0 1 0: Select CPUTIN as SMIOVT1 monitoring source.
	0 0 0 1 1: Select AUXTIN as SMIOVT1 monitoring source.
	0 0 1 0 0: Select SMBUSMASTER 0 as SMIOVT1 monitoring source.
	0 0 1 0 1: Select SMBUSMASTER 1 as SMIOVT1 monitoring source.
	0 0 1 1 0: Select SMBUSMASTER 2 as SMIOVT1 monitoring source.
	0 0 1 1 1: Select SMBUSMASTER 3 as SMIOVT1 monitoring source.
	0 1 0 0 0: Select SMBUSMASTER 4 as SMIOVT1 monitoring source.
	0 1 0 0 1: Select SMBUSMASTER 5 as SMIOVT1 monitoring source.
	0 1 0 1 0: Select SMBUSMASTER 6 as SMIOVT1 monitoring source.
	0 1 0 1 1: Select SMBUSMASTER 7 as SMIOVT1 monitoring source.
	0 1 1 0 0: Select PECI Agent 0 as SMIOVT1 monitoring source.
	0 1 1 0 1: Select PECI Agent 1 as SMIOVT1 monitoring source.
	0 1 1 1 0: Select PCH_CHIP_CPU_MAX_TEMP as SMIOVT1 monitoring source.
	0 1 1 1 1: Select PCH_CHIP_TEMP as SMIOVT1 monitoring source.
	1 0 0 0 0: Select PCH_CPU_TEMP as SMIOVT1monitoring source.
	1 0 0 0 1: Select PCH_MCH_TEMP as SMIOVT1 monitoring source.
	1 0 0 1 0: Select PCH_DIMO_TEMP as SMIOVT1 monitoring source.
	1 0 0 1 1: Select PCH_DIM1_TEMP as SMIOVT1 monitoring source.
	1 0 1 0 0: Select PCH_DIM2_TEMP as SMIOVT1 monitoring source.
	1 0 1 0 1: Select PCH_DIM3_TEMP as SMIOVT1 monitoring source.
	1 0 1 1 0: Select BYTE_TEMP as SMIOVT1 monitoring source.

9.107 SMIOVT2 Temperature Source Select Register – Index B1h (Bank 0)

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved			SMIOVT_SRC2					
DEFAULT	0	0	0	0	0	0	1	0	

BIT	DESCRIPTION
7-5	Reserved.
4-0	SMIOVT2 Temperature selection. Bits 4 3 2 1 0 0 0 0 0 1: Select SYSTIN as SMIOVT2 monitoring source. 0 0 0 1 0: Select CPUTIN as SMIOVT2 monitoring source. (Default) 0 0 0 1 1: Select AUXTIN as SMIOVT2 monitoring source. 0 0 1 0 0: Select SMBUSMASTER 0 as SMIOVT2 monitoring source. 0 0 1 0 1: Select SMBUSMASTER 1 as SMIOVT2 monitoring source. 0 0 1 1 0: Select SMBUSMASTER 2 as SMIOVT2 monitoring source. 0 0 1 1 1: Select SMBUSMASTER 3 as SMIOVT2 monitoring source.
	0 1 0 0 0: Select SMBUSMASTER 4 as SMIOVT2 monitoring source.

0 1 0 0 1: Select SMBUSMASTER 5 as SMIOVT2 monitoring source.
0 1 0 1 0: Select SMBUSMASTER 6 as SMIOVT2 monitoring source.
0 1 0 1 1: Select SMBUSMASTER 7 as SMIOVT2 monitoring source.
0 1 1 0 0: Select PECI Agent 0 as SMIOVT2 monitoring source.
0 1 1 0 1: Select PECI Agent 1 as SMIOVT2 monitoring source.
0 1 1 1 0: Select PCH_CHIP_CPU_MAX_TEMP as SMIOVT2 monitoring source.
0 1 1 1 1: Select PCH_CHIP_TEMP as SMIOVT2 monitoring source.
1 0 0 0 0: Select PCH_CPU_TEMP as SMIOVT2monitoring source.
1 0 0 0 1: Select PCH_MCH_TEMP as SMIOVT2 monitoring source.
1 0 0 1 0: Select PCH_DIM0_TEMP as SMIOVT2 monitoring source.
1 0 0 1 1: Select PCH_DIM1_TEMP as SMIOVT2 monitoring source.
1 0 1 0 0: Select PCH_DIM2_TEMP as SMIOVT2 monitoring source.
1 0 1 0 1: Select PCH_DIM3_TEMP as SMIOVT2 monitoring source.
1 0 1 1 0: Select BYTE_TEMP as SMIOVT2 monitoring source.

9.108 SMIOVT3 Temperature Source Select Register – Index B2h (Bank 0)

BIT	7	6	5	4	3	2	1	0
NAME	Reserved			SMIOVT_SRC3				
DEFAULT	0	0	0	0	0	0	1	1

BIT	DESCRIPTION
7-5	Reserved.
4-0	SMIOVT3 Temperature selection. Bits
	43210
	0 0 0 0 1: Select SYSTIN as SMIOVT3 monitoring source.
	0 0 0 1 0: Select CPUTIN as SMIOVT3 monitoring source.
	0 0 0 1 1: Select AUXTIN as SMIOVT3 monitoring source. (Default)
	0 0 1 0 0: Select SMBUSMASTER 0 as SMIOVT3 monitoring source.
	0 0 1 0 1: Select SMBUSMASTER 1 as SMIOVT3 monitoring source.
	0 0 1 1 0: Select SMBUSMASTER 2 as SMIOVT3 monitoring source.
	0 0 1 1 1: Select SMBUSMASTER 3 as SMIOVT3 monitoring source.
	0 1 0 0 0: Select SMBUSMASTER 4 as SMIOVT3 monitoring source.
	0 1 0 0 1: Select SMBUSMASTER 5 as SMIOVT3 monitoring source.
	0 1 0 1 0: Select SMBUSMASTER 6 as SMIOVT3 monitoring source.
	0 1 0 1 1: Select SMBUSMASTER 7 as SMIOVT3 monitoring source.
	0 1 1 0 0: Select PECI Agent 0 as SMIOVT3 monitoring source.
	0 1 1 0 1: Select PECI Agent 1 as SMIOVT3 monitoring source.
	0 1 1 1 0: Select PCH_CHIP_CPU_MAX_TEMP as SMIOVT3 monitoring source.
	0 1 1 1 1: Select PCH_CHIP_TEMP as SMIOVT3 monitoring source.
	1 0 0 0 0: Select PCH_CPU_TEMP as SMIOVT3monitoring source.
	1 0 0 0 1: Select PCH_MCH_TEMP as SMIOVT3 monitoring source.
	1 0 0 1 0: Select PCH_DIM0_TEMP as SMIOVT3 monitoring source.
	1 0 0 1 1: Select PCH_DIM1_TEMP as SMIOVT3 monitoring source.
	1 0 1 0 0: Select PCH_DIM2_TEMP as SMIOVT3 monitoring source.

1 0 1 0 1: Select **PCH_DIM3_TEMP** as SMIOVT3 monitoring source.
1 0 1 1 0: Select **BYTE_TEMP** as SMIOVT3 monitoring source.

9.109 SMI/OVT Control Register - Index B6h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	OVTPOL	Reserved	T2ToT6	EN_T1	SMI#
						_INTMODE	ONE	ENABLE
DEFAULT	0	0	0	0	0	0	0	1

BIT	DESCRIPTION
7	Reserved.
6	Reserved.
5	Reserved.
4	OVTPOL (Over-temperature polarity). 1: OVT# is active high. 0: OVT# is active low (Default).
3	Reserved.
2	 T2ToT6_INTMode. 1: SMI# output type of Temperature SMIOVT2, SMIOVT3 temperature source is in Comparator Interrupt mode. 0: SMI# output type of Temperature SMIOVT2, SMIOVT3 temperature source is in Two-Times Interrupt mode. (Default)
1	EN_T1_ONE. 1: SMI# output type of SMIOVT Source1 temperature (Default: SYSTIN) is One-Time Interrupt Mode. 0: SMI# output type is in Two-Times Interrupt Mode. (Default)
0	SMI# Enable. A one enables the SMI# Interrupt output.

9.110 SMIOVT1 Control Register - Index B7h (Bank 0)

BIT	7	6	5	4	3	2	1	0
NAME	THYST1<0>	TOVF1<0>	FAULT1		DIS_ OVT1	EN_ WS1	OVT1_ Mode	STOP1
DEFAULT	0	0	0	0	1	0	0	0

BIT	DESCRIPTION
7	THYST1<0>: Hysteresis temperature bit0.
6	TOVF1<0>: Over-temperature bits0.
5-4	Fault1. Number of faults to detect before setting OVT# output. This avoids false strapping due to noise.

BIT	DESCRIPTION
3	DIS_OVT1. 0: Enable SMIOVT1 OVT# output. (Default)
3	Disable temperature sensor SMIOVT1 over-temperature (OVT#) output.
2	EN_WS1. 1: SMI# output type of SMIOVT Source1 temperature (Default: SYSTIN) is Shut-down Interrupt Mode. 0: SMI# output type is in Interrupt Mode. (Default)
1	OVT1_Mode. SMIOVT1 Mode Select. 0 : Compare Mode. (Default) 1 : Interrupt Mode.
0	STOP1. 0: Monitor SMIOVT1 temperature source. 1: Stop monitoring SMIOVT1 temperature source.

9.111 SMIOVT2 Control Register – Index B8h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	THYST2<0>	TOVF2<0>	FAULT2		DIS_ OVT2	EN_ WS2	OVT2_ Mode	STOP2
DEFAULT	0	0	0	0	1	0	0	0

BIT	DESCRIPTION
7	THYST2<0>: Hysteresis temperature bit0.
6	TOVF2<0>: Over-temperature bits0.
5-4	Fault2. Number of faults to detect before setting OVT# output. This avoids false strapping due to noise.
	DIS_OVT2.
3	0: Enable SMIOVT2 OVT# output. (Default)
	1: Disable temperature sensor SMIOVT2 over-temperature (OVT#) output.
	EN_WS2.
2	1: SMI# output type of SMIOVT Source2 temperature (Default: CPUTIN) is Shut-down Interrupt Mode.
	0: SMI# output type is in Interrupt Mode. (Default)
	OVT2_Mode. SMIOVT2 Mode Select.
1	0 : Compare Mode. (Default)
	1 : Interrupt Mode.
	STOP2.
0	0: Monitor SMIOVT2 temperature source.
	1: Stop monitoring SMIOVT2 temperature source.

9.112 SMIOVT3 Control Register - Index B9h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	THYST3<0>	TOVF3<0>	FAULT3		DIS_ OVT3	EN_ WS3	OVT3_ Mode	STO3
DEFAULT	0	0	0	0	1	0	0	0

BIT	DESCRIPTION
7	THYST3<0>: Hysteresis temperature bit0.
6	TOVF3<0>: Over-temperature bits0.
5-4	Fault3. Number of faults to detect before setting OVT# output. This avoids false strapping due to noise.
3	DIS_OVT3. 0: Enable SMIOVT3 OVT# output. (Default) 1: Disable temperature sensor SMIOVT3 over-temperature (OVT#) output.
2	EN_WS3. 1: SMI# output type of SMIOVT Source3 temperature (Default: AUXTIN) is Shut-down Interrupt Mode. 0: SMI# output type is in Interrupt Mode. (Default)
1	OVT3_Mode. SMIOVT3 Mode Select. 0 : Compare Mode. (Default) 1 : Interrupt Mode.
0	STOP3. 0: Monitor SMIOVT3 temperature source. 1: Stop monitoring SMIOVT3 temperature source.

9.113 Reserved Register - Index BDh ~ BFh (Bank 0)

9.114 SMIOVT1 Shut-down mode High Limit Temperature Register - Index C0h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		SMIOVT1 Shut-down mode High Limit Temperature						
DEFAULT	0	1	1	1	1	1	1	1

BIT	DESCRIPTION
7-0	SMIOVT1 Shut-down mode High Limit Temperature.

9.115 SMIOVT1 Shut-down mode Low Limit Temperature Register - Index C1h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SMIOVT1 Shut-down mode Low Limit Temperature							
DEFAULT	0	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	SMIOVT1 Shut-down mode Low Limit Temperature.

9.116 SMIOVT1 Temperature Source Over-temperature (High Byte) Register – Index C2h (Bank 0)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	TOVF1<8:1>							
DEFAULT	0	1	0	1	0	0	0	0

BIT	DESCRIPTION
7-0	TOVF1<8:1>. Over-temperature bits 8-1. The nine-bit value is in units of 0.5°C, and the default is 80°C.

9.117 SMIOVT1 Temperature Source Hysteresis (High Byte) Register - Index C3h (Bank 0)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	THYST1<8:1>							
DEFAULT	0	1	0	0	1	0	1	1

BIT	DESCRIPTION						
7-0	THYST1<8:1>. Hysteresis temperature bits 8-1. The nine-bit value is in units of 0.5°C, and the default is 75°C.						

9.118 SMIOVT2 Shut-down mode High Limit Temperature Register - Index C4h (Bank 0)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SMIOVT2 Shut-down mode High Limit Temperature							
DEFAULT	0	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	SMIOVT2 Shut-down mode High Limit Temperature.

9.119 SMIOVT2 Shut-down mode Low Limit Temperature Register – Index C5h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SMIOVT2 Shut-down mode Low Limit Temperature							
DEFAULT	0	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	SMIOVT2 Shut-down mode Low Limit Temperature.

9.120 SMIOVT2 Temperature Source Over-temperature (High Byte) Register – Index C6h (Bank 0)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		TOVF2<8:1>						
DEFAULT	0	1	0	1	0	0	0	0

BIT	DESCRIPTION
7-0	TOVF2<8:1>. Over-temperature bits 8-1. The nine-bit value is in units of 0.5°C, and the default is 80°C.

9.121 SMIOVT2 Temperature Source Hysteresis (High Byte) Register – Index C7h (Bank 0)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		THYST2<8:1>						
DEFAULT	0	1	0	0	1	0	1	1

E	BIT	DESCRIPTION
7		THYST2<8:1>. Hysteresis temperature bits 8-1. The nine-bit value is in units of 0.5°C, and the default is 75°C.

9.122 SMIOVT3 Shut-down mode High Limit Temperature Register - Index C8h (Bank 0)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		SMIOVT3 Shut-down mode High Limit Temperature						
DEFAULT	0	1	1	1	1	1	1	1

BIT	DESCRIPTION
7-0	SMIOVT3 Shut-down mode High Limit Temperature.

9.123 SMIOVT3 Shut-down mode Low Limit Temperature Register - Index C9h (Bank 0)

Read/Write Attribute: Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		SMIOVT3 Shut-down mode Low Limit Temperature						
DEFAULT	0	1	1	1	1	1	1	1

BIT	DESCRIPTION
7-0	SMIOVT3 Shut-down mode Low Limit Temperature.

9.124 SMIOVT3 Temperature Source Over-temperature (High Byte) Register – Index Cah (Bank 0)

Attribute: Read/Write Size: 8 bits

0

1

BIT 7 6 5 4 3 2 1 0 **NAME** TOVF3<8:1> **DEFAULT**

1

0

0

0

0

BIT	DESCRIPTION
7-0	TOVF3<8:1>. Over-temperature bits 8-1. The nine-bit value is in units of 0.5°C, and the
	default is 80°C.

9.125 SMIOVT3 Temperature Source Hysteresis (High Byte) Register – Index CBh (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		THYST3<8:1>						
DEFAULT	0	1	0	0	1	0	1	1

BIT	DESCRIPTION
7-0	THYST3<8:1>. Hysteresis temperature bits 8-1. The nine-bit value is in units of 0.5°C, and the default is 75°C.

9.126 Reserved Register - Index D8h ~ DFh (Bank 0)

9.127 (SYSFANIN) Fan Count Limit High-byte Register – Index E0h (Bank 0)

Attribute: Read

Size:	8 bits							
BIT	7	6	5	4	3	2	1	0

NAME		FANIN1_HL [12:5]							
DEFAULT	1	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	FANIN1_HL: 13-bit SYSFANIN Fan Count Limit, High Byte

9.128 (SYSFANIN) Fan Count Limit Low-byte Register - Index E1h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved			FANIN1_HL [4:0]				
DEFAULT	0					11111		

	BIT	DESCRIPTION
	7-5	Reserved.
I	4-0	FANIN1_HL: 13-bit SYSFANIN Fan Count Limit, Low Byte

9.129 (CPUFANIN) Fan Count Limit High-byte Register – Index E2h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		FANIN2_HL [12:5]							
DEFAULT	1	1	1	1	1	1	1	1	

	BIT		DESCRIPTION
ſ	7-0	FANIN2_HL:	13-bit CPUFANIN Fan Count Limit, High Byte

9.130 (CPUFANIN) Fan Count Limit Low-byte Register – Index E3h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved			FANIN2_HL [4:0]					
DEFAULT		0				11111			

BIT	DESCRIPTION
7-5	Reserved.
4-0	FANIN2_HL: 13-bit CPUFANIN Fan Count Limit, Low Byte

9.131 (AUXFANIN0) Fan Count Limit High-byte Register – Index E4h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		FANIN3_HL [12:5]							
DEFAULT	1	1	1	1	1	1	1	1	

BIT		DESCRIPTION
7-0	FANIN3_HL:	13-bit AUXFANIN0 Fan Count Limit, High Byte

9.132 (AUXFANINO) Fan Count Limit Low-byte Register – Index E5h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved			FANIN3_HL [4:0]					
DEFAULT	0			11111					

BIT	DESCRIPTION
7-5	Reserved.
4-0	FANIN3_HL: 13-bit AUXFANIN0 Fan Count Limit, Low Byte

9.133 (AUXFANIN1) Fan Count Limit High-byte Register – Index E6h (Bank 0)

Attribute: Read Size: 8 bits

0.20.	0 5110								
BIT	7	6	5	4	3	2	1	0	
NAME		FANIN4_HL [12:5]							
DEFAULT	1	1	1	1	1	1	1	1	

BIT	DESCRIPTION
7-0	FANIN4_HL: 13-bit AUXFANIN1 Fan Count Limit, High Byte

9.134 (AUXFANIN1) Fan Count Limit Low-byte Register – Index E7h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved			FANIN4_HL [4:0]					
DEFAULT	0					11111			

BIT	DESCRIPTION
7-5	Reserved.

4-0 FANIN4_HL: 13-bit AUXFANIN1 Fan Count Limit, Low Byte

9.135 (AUXFANIN2) Fan Count Limit High-byte Register – Index E8h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		FANIN5_HL [12:5]						
DEFAULT	1	1	1	1	1	1	1	1

BIT	DESCRIPTION
7-0	FANIN5_HL: 13-bit AUXFANIN2 Fan Count Limit, High Byte

9.136 (AUXFANIN2) Fan Count Limit Low-byte Register – Index E9h (Bank 0)

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved			Reserved FANIN5_HL [4:0]				
DEFAULT	0					11111		

BIT	DESCRIPTION				
7-5	Reserved.				
4-0	FANIN5_HL: 13-bit AUXFANIN2 Fan Count Limit, Low Byte				

9.137 FANIN5 IN/OUT Control Register – Index EAh (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5-0
NAME	FANOPV5	FANINC5	Reserved
DEFAULT	0	0	0

BIT	DESCRIPTION
	FANOPV5. AUXFANIN2 output value, only if bit 2 is set to zero.
7	1: AUXFANIN2 generates a logic-high signal.
	0: AUXFANIN2 generates a logic-low signal. (Default)
	FANINC5. AUXFANIN2 Input Control.
6	1: AUXFANIN2 acts as a fan tachometer input. (Default)
	0: AUXFANIN2 acts as a fan control signal, and the output value is set by bit 1.
5-0	Reserved.

9.138 Reserved Register - Index EBh ~ EFh (Bank 0)

9.139 SYSFAN PWM Output Frequency Configuration Register – Index F0h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	7 6 5 4 3 2 1 0							
NAME	PWM_CLK_SEL1	_CLK_SEL1 PWM_SCALE1							
DEFAULT	0				3				

The register is meaningful only when SYSFANOUT is progarmmed for PWM output (i.e., Bank0, Index F3h, bit 0 is 0).

BIT	DESCRIPTION
7	PWM_CLK_SEL1. SYSFANOUT PWM Input Clock Source Select. This bit selects the clock source for PWM output frequency. Refer the Divisor table.
6-0	PWM_SCALE1. SYSFANOUT PWM Pre-Scale divider. The clock source for PWM output is divided by this seven-bit value to calculate the actual PWM output frequency. Refer the Divisor table.

9.140 CPUFAN PWM Output Frequency Configuration Register – Index F1h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PWM_CLK_SEL2	PWM_SCALE2						
DEFAULT	0				3			

The register is meaningful only when CPUFANOUT is progarmmed for PWM output (i.e., Bank0, Index F3h, bit 1 is 0).

BIT	DESCRIPTION
7	PWM_CLK_SEL2. CPUFANOUT PWM Input Clock Source Select. This bit selects the clock source for the PWM output. Refer the Divisor table.
6-0	PWM_SCALE2. CPUFANOUT PWM Pre-Scale divider. The clock source for PWM output is divided by this seven-bit value to calculate the actual PWM output frequency. Refer the Divisor table.

9.141 AUXFAN0 PWM Output Frequency Configuration Register - Index F2h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME	PWM_CLK_SEL3	PWM_SCALE3								
DEFAULT	0	3								

This register is only meaningful when AUXFANOUT0 is programmed for PWM output (i.e. Bank0, Index F3h, bit 2 is 0)

BIT	DESCRIPTION
7	PWM_CLK_SEL3. AUXFANOUTO PWM Input Clock Source Select. This bit selects the clock source of PWM output frequency. Refer the Divisor table.
6-0	PWM_CLK_SCALE3. AUXFANOUTO PWM Pre-Scale divider. The clock source for PWM output is divided by this seven-bit value to calculate the actual PWM output frequency. Refer the Divisor table.

The clock source selected by CKSEL will be divided by the divisor and used as a fan PWM output frequency. If CKSEL equals **0**, then the output clock is simply equal to **92.5/ (Divisor[6:0]+1) KHz**Mapped Divisor depends on **Divisor[6:0]** and is described in the table below.

Divisor[6:0]	Mapped Divisor	Output Frequency	Divisor[6:0]	Mapped Divisor	Output Frequency
0000000	1	92.5KHz			
0000001	2	46.3KHz			
0000010	3	31.2KHz			
0000011	4	23.3KHz			
0000100	5	18.5KHz	0001111	16	5.8KHz
0000101	6	15.6KHz	0011111	32	2.9KHz
0000110	7	13.3KHz	0111111	64	1.4KHz
0000111	8	11.6KHz	1111111	128	724Hz

If CKSEL equals 1, then the output clock is simply equal to 1008/ Mapped Divisor Hz Mapped Divisor depends on Divisor[3:0] and is described in the table below.

Divisor[3:0]	Mapped Divisor	Output Frequency	Divisor[3:0]	Mapped Divisor	Output Frequency
0000	1	1000Hz	1000	12	83Hz
0001	2	500Hz	1001	16	62.5Hz
0010	3	333Hz	1010	32	31.25Hz
0011	4	250Hz	1011	64	15.62Hz
0100	5	200Hz	1100	128	7.81Hz
0101	6	166Hz	1101	256	3.9Hz
0110	7	142Hz	1110	512	2Hz
0111	8	125Hz	1111	1024	0.98Hz

9.142 FAN Output Mode Configuration - Index F3h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		Reserved			AUXFANOUT0_SEL	CPUFANOUT_SEL	SYSFANOUT_SEL			
DEFAULT			0			0		0	0	0

BIT	DESCRIPTION
7-3	Reserved.
2	AUXFANOUT0 Output Mode Selection.

BIT	DESCRIPTION
	0: AUXFANAOUT0 pin produces a PWM output duty cycle. (Default) 1: AUXFANOUT0 pin produces DC output.
1	CPUFANOUT Output Mode Selection. 0: CPUFANOUT pin produces a PWM output duty cycle. (Default) 1: CPUFANOUT pin produces DC output.
0	SYSFANOUT Output Mode Selection. 0: SYSFANOUT pin produces a PWM duty cycle output. (Default) 1: SYSFANOUT pin produces DC output.

9.143 Reserved Register - Index F4h (Bank 0)

9.144 FANIN5 Revolution Pulses Selection Register - Index F5h (Bank 0)

Attribute: Read /Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	HM_Rev_Pul	se_Fan5_Sel	Reserved						
DEFAULT	1	0			()			

BIT	DESCRIPTION						
7-6	AUXFANIN2 Revolution Pulses Selection						
	= 00, four pulses per revolution.						
	= 01, one pulse per revolution.						
	= 10, two pulses per revolution. (default)						
	= 11, three pulses per revolution.						
5-0	Reserved.						

9.145 FANIN1~4 Revolution Pulses Selection Register – Index F6h (Bank 0)

Attribute: Read /Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	HM_Rev_Pulse_Fan4_Sel		HM_Rev_Pulse_Fan3_Sel		HM_Rev_Pulse_Fan2_Sel		HM_Rev_Pulse_Fan1_Sel	
DEFAULT	1	0	10		1	0	10	

-139-

BIT	DESCRIPTION
7-6	AUXFANIN1 Revolution Pulses Selection
	= 00, four pulses per revolution.
	= 01, one pulse per revolution.
	= 10, two pulses per revolution. (default)
	= 11, three pulses per revolution.
5-4	AUXFANIN0 Revolution Pulses Selection
	= 00, four pulses per revolution.
	= 01, one pulse per revolution.

Publication Release Date: September 12, 2023

	= 10, two pulses per revolution. (default)
	= 11, three pulses per revolution.
3-2	CPUFANIN Revolution Pulses Selection
	= 00, four pulses per revolution.
	= 01, one pulse per revolution.
	= 10, two pulses per revolution. (default)
	= 11, three pulses per revolution.
1-0	SYSFANIN Revolution Pulses Selection
	= 00, four pulses per revolution.
	= 01, one pulse per revolution.
	= 10, two pulses per revolution. (default)
	= 11, three pulses per revolution.

9.146 Serial Bus Address Register - Index F7h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Serial Bus Address						
DEFAULT	0	0	1	0	1	1	0	1

BIT	DESCRIPTION
7	Reserved. (Read Only).
6-0	Serial Bus Address <7:1>

9.147 FANIN1~4 IN/OUT Control Register – Index F8h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	FANOPV4	FANINC4	FANOPV3	FANINC3	FANOPV2	FANINC2	FANOPV1	FANINC1
DEFAULT	0	1	0	1	0	1	0	1

BIT	DESCRIPTION
	FANOPV4. AUXFANIN1 output value, only if bit 6 is set to zero.
7	1: AUXFANIN1 generates a logic-high signal.
	0: AUXFANIN1 generates a logic-low signal. (Default)
	FANINC4. AUXFANIN1 Input Control.
6	1: AUXFANIN1 acts as a fan tachometer input. (Default)
	0: AUXFANIN1 acts as a fan control signal, and the output value is set by bit 1.
	FANOPV3. AUXFANIN0 output value, only if bit 4 is set to zero.
5	1: AUXFANIN0 generates a logic-high signal.
	0: AUXFANIN0 generates a logic-low signal. (Default)
4	FANINC3. AUXFANIN0 Input Control.
4	1: AUXFANIN0 acts as a fan tachometer input. (Default)

BIT	DESCRIPTION
	0: AUXFANIN0 acts as a fan control signal, and the output value is set by bit 1.
	FANOPV2. CPUFANIN output value, only if bit 2 is set to zero.
3	1: CPUFANIN generates a logic-high signal.
	0: CPUFANIN generates a logic-low signal. (Default)
	FANINC2. CPUFANIN Input Control.
2	1: CPUFANIN acts as a fan tachometer input. (Default)
	0: CPUFANIN acts as a fan control signal, and the output value is set by bit 3.
	FANOPV1. SYSFANIN output value, only if bit 0 is set to zero.
1	1: SYSFANIN generates a logic-high signal.
	0: SYSFANIN generates a logic-low signal. (Default)
	FANINC1. SYSFANIN Input Control.
0	1: SYSFANIN acts as a fan tachometer input. (Default)
	0: SYSFANIN acts as a fan control signal, and the output value is set by bit 1.

9.148 AUXFAN1 PWM Output Frequency Configuration Register – Index F9h (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PWM_CLK_SEL4	PWM_SCALE4						
DEFAULT	0	3						

BIT	DESCRIPTION
7	PWM_CLK_SEL4. AUXFANOUT1 PWM Input Clock Source Select. This bit selects the clock source of PWM output frequency. Refer the Divisor table.
6-0	PWM_CLK_SCALE4. AUXFANOUT1 PWM Pre-Scale divider. The clock source for PWM output is divided by this seven-bit value to calculate the actual PWM output frequency. Refer the Divisor table.

9.149 AUXFAN2 PWM Output Frequency Configuration Register – Index Fah (Bank 0)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PWM_CLK_SEL5	PWM_SCALE5						
DEFAULT	0	3						

BIT	DESCRIPTION
7	PWM_CLK_SEL5. AUXFANOUT2 PWM Input Clock Source Select. This bit selects the clock source of PWM output frequency. Refer the Divisor table.

-141-

Publication Release Date: September 12, 2023

Version: 2.4

BIT	DESCRIPTION
6-0	PWM_CLK_SCALE5. AUXFANOUT2 PWM Pre-Scale divider. The clock source for PWM output is divided by this seven-bit value to calculate the actual PWM output frequency. Refer the Divisor table.

The clock source selected by CKSEL will be divided by the divisor and used as a fan PWM output frequency. If CKSEL equals **0**, then the output clock is simply equal to **92.5/ (Divisor[6:0]+1) KHz**Mapped Divisor depends on **Divisor[6:0]** and is described in the table below.

Divisor[6:0]	Mapped Divisor	Output Frequency	Divisor[6:0]	Mapped Divisor	Output Frequency
0000000	1	92.5KHz			
0000001	2	46.3KHz			
0000010	3	31.2KHz			
0000011	4	23.3KHz			
0000100	5	18.5KHz	0001111	16	5.8KHz
0000101	6	15.6KHz	0011111	32	2.9KHz
0000110	7	13.3KHz	0111111	64	1.4KHz
0000111	8	11.6KHz	1111111	128	724Hz

If CKSEL equals 1, then the output clock is simply equal to 1008/ Mapped Divisor Hz Mapped Divisor depends on Divisor[3:0] and is described in the table below.

Divisor[3:0]	Mapped Divisor	Output Frequency	Divisor[3:0]	Mapped Divisor	Output Frequency
0000	1	1000Hz	1000	12	83Hz
0001	2	500Hz	1001	16	62.5Hz
0010	3	333Hz	1010	32	31.25Hz
0011	4	250Hz	1011	64	15.62Hz
0100	5	200Hz	1100	128	7.81Hz
0101	6	166Hz	1101	256	3.9Hz
0110	7	142Hz	1110	512	2Hz
0111	8	125Hz	1111	1024	0.98Hz

9.150 Reserved Register - Index FBh ~ FCh (Bank 0)

9.151 Nuvoton Vendor ID Register by I2C Interface - Index FDh (Bank 0)

Attribute: Read Only Size: 16 bits

BIT	15	14	13	12	11	10	9	8
NAME		VIDH						
DEFAULT	0	1	0	1	1	1	0	0

BIT	7	6	5	4	3	2	1	0	
NAME		VIDL							
DEFAULT	1	0	1	0	0	0	1	1	

BIT	DESCRIPTION
15-8	Vendor ID High-Byte, if Index 4Eh, bit 7 is 1. Default 5Ch.
7-0	Vendor ID Low-Byte, if Index 4Eh, bit 7 is 0. Default A3h.

9.152 Nuvoton Vendor ID Register by LPC Interface – Index FEh (Bank 0)

Attribute: Read Only Size: 16 bits

BIT	15	14	13	12	11	10	9	8	
NAME		VIDH							
DEFAULT	0	1	0	1	1	1	0	0	

BIT	7	6	5	4	3	2	1	0		
NAME		VIDL								
DEFAULT	1	1 0 1 0 0 1 1								

BIT	DESCRIPTION
15-8	Vendor ID High-Byte, if Index 4Eh, bit 7 is 1. Default 5Ch.
7-0	Vendor ID Low-Byte, if Index 4Eh, bit 7 is 0. Default A3h.

9.153 Chip ID - Index FFh (Bank 0)

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		CHIPID								
DEFAULT	1	1	0	0	0	0	0	1		

BIT	DESCRIPTION
7-0	Nuvoton Chip ID number. Default C1h.

9.154 SYSFAN Monitor Temperature Source Select Register/ STOPDUTY Enable Register – Index 10h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Stopduty_En	Rese	erved	SYSFAN SOURCE[4:0]				
DEFAULT	0	(1					

BIT	DESCRIPTION
7	Stopduty_En: 0: FANOUT will decrease to zero value at most if necessary. 1: FANOUT will decrease to SYSFANOUT Stop Value (Bank1, Index16h) at most if necessary.
6-5	Reserved.
4-0	SYSFAN Temperature Source Select: Bits 4 3 2 1 0 0 0 0 0 1: Select SYSTIN as SYSFAN monitoring source. (Default) 0 0 0 1 0: Select CPUTIN as SYSFAN monitoring source. 0 0 0 1 1: Select AUXTIN as SYSFAN monitoring source. 0 0 1 0 0: Select SMBUSMASTER 0 as SYSFAN monitoring source. 0 0 1 0 1: Select SMBUSMASTER 1 as SYSFAN monitoring source. 0 0 1 1 0: Select SMBUSMASTER 2 as SYSFAN monitoring source. 0 0 1 1 1: Select SMBUSMASTER 3 as SYSFAN monitoring source. 0 1 0 0 0: Select SMBUSMASTER 4 as SYSFAN monitoring source. 0 1 0 0 1: Select SMBUSMASTER 5 as SYSFAN monitoring source. 0 1 0 1 0: Select SMBUSMASTER 6 as SYSFAN monitoring source. 0 1 0 1 1: Select SMBUSMASTER 7 as SYSFAN monitoring source. 0 1 1 0 0: Select PECI Agent 0 as SYSFAN monitoring source. 0 1 1 0 1: Select PECI Agent 1 as SYSFAN monitoring source. 0 1 1 1 1: Select PCH_CHIP_CPU_MAX_TEMP as SYSFAN monitoring source. 1 0 0 0 0: Select PCH_CHIP_TEMP as SYSFAN monitoring source. 1 0 0 0 1: Select PCH_CHIP_TEMP as SYSFAN monitoring source. 1 0 0 0 1: Select PCH_CHIP_TEMP as SYSFAN monitoring source. 1 0 0 1 0: Select PCH_DIMO_TEMP as SYSFAN monitoring source. 1 0 1 1: Select PCH_DIMO_TEMP as SYSFAN monitoring source. 1 0 1 1: Select PCH_DIMO_TEMP as SYSFAN monitoring source.
	1 0 1 0 1: Select PCH_DIM3_TEMP as SYSFAN monitoring source. 1 0 1 1 0: Select BYTE_TEMP as SYSFAN monitoring source.

9.155 SYSFAN Target Temperature Register / SYSFANIN Target Speed_L Register – Index 11h (Bank 1)

BIT	7	6	5	4	3	2	1	0				
NAME		SYSFAN Target Temperature / SYSFANIN Target Speed_L										
DEFAULT				0								

FUNCTION MODE		7	6	5	4	3	2	1	0
Thermal Cruise™	DESCRIPTION	SYSFAN	l Targe	t Temp	erature				
Fan Speed Cruise™	DESCRIPTION	SYSFAN 12h[3:0]		rget S _l	peed [7	7 :0], [1 <i>1</i>	1:8] ass	sociate	Index

9.156 SYSFANIN Tolerance_H / Target Speed_H Register - Index 12h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7 6 5		4	3	2	1	0		
NAME	SYSF	ANIN TOL	_H	Reserved.	SYSFANIN Target Speed_H				
DEFAULT		0		0	0				

BIT	DESCRIPTION
7-5	SYSFANIN Tolerance_H [5:3]
4	Reserved.
3-0	SYSFANIN Target Speed_H [11:8]

9.157 SYSFAN MODE Register / SYSFAN TOLERRANCE Register - Index 13h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		SYSFAN	MODE		Reserved	S\ Tempera	olerance of SFAN Taresture or SY	get ′SFANIN
DEFAULT		0			0		0	

BIT	DESCRIPTION
7-4	SYSFANOUT Mode Select.
	0000: SYSFANOUT is in Manual Mode. (Default)
	0001: SYSFANOUT is in Thermal Cruise Mode.
	0010: SYSFANOUT is in Speed Cruise Mode.
	0100: SYSFANOUT is in SMART FAN™ IV Mode.
3	Reserved.
2-0	Tolerance of SYSFAN Target Temperature or SYSFANIN Target Speed_L.

9.158 SYSFAN Step Up Time Register – Index 14h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		SYSFANOUT Step Up Time Value									
DEFAULT		A									

In SMART FAN™ mode, this register determines the amount of time SYSFANOUT takes to increase its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.159 SYSFAN Step Down Time Register - Index 15h (Bank 1)

Read/Write Attribute:

Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		SYSFANOUT Step Down Time Value								
DEFAULT		А								

In SMART FANTM mode, this register determines the amount of time SYSFANOUT takes to decrease its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.160 SYSFAN Stop Value Register - Index 16h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		SYSFANOUT Stop Value								
DEFAULT		1								

In Thermal Cruise mode, the SYSFANOUT value decreases to this eight-bit value if the temperature stays below the lowest temperature limit. This value should not be zero.

Please note that Stop Value does not mean that the fan really stops. It means that if the temperature keeps below low temperature limit, then the fan speed keeps on decreasing until reaching a minimum value, and this is Stop Value.

9.161 SYSFAN Start-up Value Register – Index 17h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		SYSFANOUT Start-Up Value								
DEFAULT		1								

In Thermal Cruise mode, SYSFANOUT value increases from zero to this eight-bit register value to provide a minimum value to turn on the fan.

-146-

9.162 SYSFAN Stop Time Register – Index 18h (Bank 1)

Attribute: Read/Write Size: 8 bits

Publication Release Date: September 12, 2023

Version: 2.4

BIT	7	6	5	4	3	2	1	0		
NAME		SYSFANOUT Stop Time								
DEFAULT		3C								

In Thermal Cruise mode, Define the retention time to the fan stop. It is required by Fan Stop Function. The time unit is 0.1sec.

9.163 SYSFAN Output Value Select Register - Index 19h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		SYSFANOUT Value								
DEFAULT		7F								

FUNCTION MODE		7	6	5	4	3	2	1	0
PWM Output (Bank0, Index F3h, bit 0 is 0)	DESCRIPTION	255, tir	mes 100		alue, divi 100%, a				
DC Voltage Output Bank0, Index F3h, bit 0 is 1)	DESCRIPTION	voltage equation	creates a duty cycle of 0%. SYSFANOUT voltage control. The output voltage is calculated according to this equation. $ \textbf{OUTPUT Voltage} = Vref* \frac{FANOUT}{64} $						erved

9.164 SYSFAN Temperature Critical Register - Index 1Ah (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	7 6 5 4 3 2 1 0									
NAME		SYSFAN Temperature Critical									
DEFAULT		3C									

BIT	DESCRIPTION
7-0	SYSFAN Temperature Critical Register.

9.165 SYSFAN Critical Temperature Tolerance Register – Index 1Bh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		i	Reserved	d		SYSFANO	UT Critical Te Tolerance	mperature

DEFAULT	0	0

BIT	DESCRIPTION
7-3	Reserved.
2-0	SYSFAN Critical Temperature Tolerance

9.166 SYSFAN Enable Critical Duty / Fanout Step Register - Index 1Ch (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	En_SYS_3WFAN	Reserved		En_SYS_CRITICAL_DUTY	Reserved			
DEFAULT	0	(0	0			0	

BIT	DESCRIPTION
7	En_SYS_3WFAN
	0: 4-wire fan
	1: 3-wire fan
6-5	Reserved.
4	En_SYS_CRITICAL_FUNC
	0: Disable critical function for SYSFANOUT.
	1: Used Index 1D CRITICAL_DUTY Value for SYSFANOUT.
3-0	Reserved.

9.167 SYSFAN Critical Duty Register - Index 1Dh (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	SYSFAN Critical Duty							
DEFAULT		CC						

BIT	DESCRIPTION
7-0	SYSFAN Critical Duty.

9.168 SYSFAN Enable Close Loop Fan Control RPM Mode Register – Index 1Eh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			En_SYS_RPM					
DEFAULT	0							0

BIT	DESCRIPTION					
7-1	Reserved.					
0	En_SYS_RPM					
	0: Disable SMART FAN™ IV Close Loop Fan Control RPM Mode.					
	1: Enable SMART FAN™ IV Close Loop Fan Control RPM Mode.					

9.169 SYSFAN Enable RPM High Mode / RPM Mode Tolerance Register - Index 1Fh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	En_SYS_RPM_High	Reserved			Generic_Tol_RPM			
DEFAULT	0	0				2	2	

BIT	DESCRIPTION
7	En_SYS_RPM_High For High Speed Fan Control at RPM Mode, the unit is 100 RPM. Support 100 rpm ~ 25500 rpm Fan, 0: Disable 1: Enable
6-4	Reserved.
3-0	Tolerance of RPM mode, unit 50 RPM. If Enable RPM High Mode, unit is 100 RPM.

9.170 CPUFAN Monitor Temperature Source Select Register/ STOPDUTY Enable Register – Index 20h (Bank 1)

BIT	7	6 5		4	3	2	1	0
NAME	Stopduty_En	Rese	CPUFAN SOURCE[4:0]					
DEFAULT	0	(2			

BIT	DESCRIPTION
7	Stopduty_En: 0: FANOUT will decrease to zero value at most if necessary. 1: FANOUT will decrease to CPUFANOUT Stop Value (Bank1, Index 26h) at most if necessary.
6-5	Reserved.
4-0	CPUFAN Temperature Source Select: Bits 4 3 2 1 0 0 0 0 0 1: Select SYSTIN as CPUFAN monitoring source. 0 0 0 1 0: Select CPUTIN as CPUFAN monitoring source. (Default)

BIT	DESCRIPTION
	0 0 0 1 1: Select AUXTIN as CPUFAN monitoring source.
	0 0 1 0 0: Select SMBUSMASTER 0 as CPUFAN monitoring source.
	0 0 1 0 1: Select SMBUSMASTER 1 as CPUFAN monitoring source.
	0 0 1 1 0: Select SMBUSMASTER 2 as CPUFAN monitoring source.
	0 0 1 1 1: Select SMBUSMASTER 3 as CPUFAN monitoring source.
	0 1 0 0 0: Select SMBUSMASTER 4 as CPUFAN monitoring source.
	0 1 0 0 1: Select SMBUSMASTER 5 as CPUFAN monitoring source.
	0 1 0 1 0: Select SMBUSMASTER 6 as CPUFAN monitoring source.
	0 1 0 1 1: Select SMBUSMASTER 7 as CPUFAN monitoring source.
	0 1 1 0 0: Select PECI Agent 0 as CPUFAN monitoring source.
	0 1 1 0 1: Select PECI Agent 1 as CPUFAN monitoring source.
	0 1 1 1 0: Select PCH_CHIP_CPU_MAX_TEMP as CPUFAN monitoring source.
	0 1 1 1 1: Select PCH_CHIP_TEMP as CPUFAN monitoring source.
	1 0 0 0 0: Select PCH_CPU_TEMP as CPUFAN monitoring source.
	1 0 0 0 1: Select PCH_MCH_TEMP as CPUFAN monitoring source.
	1 0 0 1 0: Select PCH_DIM0_TEMP as CPUFAN monitoring source.
	1 0 0 1 1: Select PCH_DIM1_TEMP as CPUFAN monitoring source.
	1 0 1 0 0: Select PCH_DIM2_TEMP as CPUFAN monitoring source.
	1 0 1 0 1: Select PCH_DIM3_TEMP as CPUFAN monitoring source.
	1 0 1 1 0: Select BYTE_TEMP as CPUFAN monitoring source.

9.171 CPUFAN Target Temperature Register / CPUFANIN Target Speed_L Register – Index 21h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		CPUFAN Target Temperature / CPUFANIN Target Speed_L								
DEFAULT				0						

FUNCTION MODE		7	6	5	4	3	2	1	0
Thermal Cruise [™]	DESCRIPTION	CPUFAN Target Temperature							
Fan Speed Cruise™	DESCRIPTION	CPUFANIN Target Speed [7:0], [11:8] associate Index 22h[3:0]							

9.172 CPUFANIN Tolerance_H / Target Speed_H Register - Index 22h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	CPU	CPUFANIN TOL_H Reserved CPUFANIN Target Speed				ed_H		
DEFAULT	0 0						0	

BIT	DESCRIPTION	
7-5	CPUFANIN Tolerance_H [5:3]	

4	Reserved.
3-0	CPUFANIN Target Speed_H [11:8]

9.173 CPUFAN MODE Register / CPUFAN TOLERRANCE Register – Index 23h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	CPUFAN MODE				Reserved	CF Tempera	olerance of PUFAN Tar ature or CF rget Speed	get PUFANIN
DEFAULT		0			0	0		

BIT	DESCRIPTION
7-4	CPUFANOUT Mode Select. 0000: CPUFANOUT is in Manual Mode. (Default) 0001: CPUFANOUT is in Thermal Cruise Mode. 0010: CPUFANOUT is in Speed Cruise Mode. 0100: CPUFANOUT is in SMART FAN™ IV Mode.
3	Reserved.
2-0	Tolerance of CPUFAN Target Temperature or CPUFANIN Target Speed_L.

9.174 CPUFAN Step Up Time Register - Index 24h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		CPUFANOUT Step Up Time Value						
DEFAULT				P	4			

In SMART FAN $^{\text{TM}}$ mode, this register determines the amount of time CPUFANOUT takes to increase its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.175 CPUFAN Step Down Time Register – Index 25h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		CPUFANOUT Step Down Time Value							
DEFAULT				P	4				

In SMART FAN™ mode, this register determines the amount of time CPUFANOUT takes to decrease its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.176 CPUFAN Stop Value Register – Index 26h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		CPUFANOUT Stop Value							
DEFAULT				,	1				

In Thermal Cruise mode, the CPUFANOUT value decreases to this eight-bit value if the temperature stays below the lowest temperature limit. This value should not be zero.

Please note that Stop Value does not mean that the fan really stops. It means that if the temperature keeps below low temperature limit, then the fan speed keeps on decreasing until reaching a minimum value, and this is Stop Value.

9.177 CPUFANOUT Start-up Value Register – Index 27h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		CPUFANOUT Start-Up Value								
DEFAULT				•	1					

In Thermal Cruise mode, CPUFANOUT value increases from zero to this eight-bit register value to provide a minimum value to turn on the fan.

9.178 CPUFAN Stop Time Register – Index 28h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		CPUFANOUT Stop Time								
DEFAULT				3	С					

In Thermal Cruise mode, Define the retention time to the fan stop. It is required by Fan Stop Function. The time unit is 0.1sec.

9.179 CPUFANOUT Output Value Select Register – Index 29h (Bank 1)

BIT 7 6 5 4 3 2 1	0
---	---

NAME	CPUFANOUT Value
DEFAULT	7F

FUNCTION MODE		7	6	5	4	3	2	1	0
PWM Output (Bank0, Index F3h, bit 1 is 0)	DESCRIPTION	255, tir	The PWM duty cycle is equal to this eight-bit vances 100%. FFh creates a duty cycle of creates a duty cycle of 0%.						
DC Voltage Output Bank0, Index F3h, bit 1 is	DESCRIPTION	voltage equation	e is c on.	voltage alculated	d acco	ording t	o this		
1)	DESCRIPTION	OUTP	UT Volta	$age = V_i$	$ref*\frac{F_A}{}$	4 <i>NOUT</i> 64	-	Rese	erved
		Note. \	/REF is	around 2	2.048V.				

9.180 CPUFAN Temperature Critical Register - Index 2Ah (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		CPUFAN Temperature Critical								
DEFAULT				4	В					

BIT	DESCRIPTION
7-0	CPUFAN Temperature Critical Register.

9.181 CPUFAN Critical Temperature Tolerance Register – Index 2Bh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4 3 2 1				0	
NAME		F	Reserve	k		CPUFANOUT Critical Temperature Tolerance			
DEFAULT		0					0		

BIT	DESCRIPTION
7-3	Reserved.
2-0	CPUFAN Critical Temperature Tolerance

9.182 CPUFAN Enable Critical Duty / Fanout Step Register - Index 2Ch (Bank 1)

BIT	7	6	5	4	3	2	1	0

NAME	En_CPU_3WFAN	Reserved	En_CPU_CRITICAL_DUTY	Reserved
DEFAULT	0	0	0	0

BIT	DESCRIPTION
7	En_CPU_3WFAN
	0: 4-wire fan
	1: 3-wire fan
6-5	Reserved.
4	En_CPU_CRITICAL_FUNC
	0: Disable critical function for CPUFANOUT.
	1: Used Index 1D CRITICAL_DUTY Value for CPUFANOUT.
3-0	Reserved.

9.183 CPUFAN Critical Duty Register - Index 2Dh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		CPUFAN Critical Duty									
DEFAULT		СС									

BIT	DESCRIPTION
7-0	CPUFAN Critical Duty.

9.184 CPUFAN Enable Close Loop Fan Control RPM Mode Register – Index 2Eh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		Reserved							
DEFAULT		0							

BIT	DESCRIPTION
7-1	Reserved.
0	En_CPU_RPM
	0: Disable SMART FAN™ IV Close Loop Fan Control RPM Mode.
	1: Enable SMART FAN™ IV Close Loop Fan Control RPM Mode.

9.185 CPUFAN Enable RPM High Mode / RPM Mode Tolerance Register – Index 2Fh (Bank 1)

BIT	7	6	5	4	3	2	1	0

NAME	En_CPU_RPM_High	Reserved	Generic_Tol_RPM		
DEFAULT	0	0	2		

BIT	DESCRIPTION
7	En_CPU_RPM_High For High Speed Fan Control at RPM Mode, the unit is 100 RPM. Support 100 rpm ~ 25500 rpm Fan, 0: Disable 1: Enable
6-4	Reserved.
3-0	Tolerance of RPM mode, unit 50 RPM. If Enable RPM High Mode, unit is 100 RPM.

9.186 AUXFAN0 Monitor Temperature Source Select Register/ STOPDUTY Enable Register – Index 30h (Bank 1)

BIT	7	6	5	4	3	2	1	0
NAME	Stopduty_En	Rese	AUXFAN0 SOURCE[4:0]					
DEFAULT	0	(3			

BIT	DESCRIPTION
7	Stopduty_En: 0: FANOUT will decrease to zero value at most if necessary. 1: FANOUT will decrease to AUXFANOUT0 Stop Value (Bank1, Index 36h) at most if necessary.
6-5	Reserved.
4-0	AUXFAN0 Temperature Source Select: Bits 4 3 2 1 0 0 0 0 0 1: Select SYSTIN as AUXFAN0 monitoring source. 0 0 0 1 0: Select CPUTIN as AUXFAN0 monitoring source. 0 0 0 1 1: Select AUXTIN as AUXFAN0 monitoring source. (Default) 0 0 1 0 0: Select SMBUSMASTER 0 as AUXFAN0 monitoring source. 0 0 1 0 1: Select SMBUSMASTER 1 as AUXFAN0 monitoring source. 0 0 1 1 0: Select SMBUSMASTER 2 as AUXFAN0 monitoring source. 0 0 1 1 1: Select SMBUSMASTER 3 as AUXFAN0 monitoring source. 0 1 0 0 0: Select SMBUSMASTER 4 as AUXFAN0 monitoring source. 0 1 0 0 1: Select SMBUSMASTER 5 as AUXFAN0 monitoring source. 0 1 0 1 0: Select SMBUSMASTER 6 as AUXFAN0 monitoring source. 0 1 0 1 0: Select SMBUSMASTER 7 as AUXFAN0 monitoring source. 0 1 1 0 1: Select PECI Agent 0 as AUXFAN0 monitoring source. 0 1 1 1 0: Select PCH_CHIP_CPU_MAX_TEMP as AUXFAN0 monitoring source. 0 1 1 1 1: Select PCH_CHIP_CPU_MAX_TEMP as AUXFAN0 monitoring source.

BIT	DESCRIPTION
	1 0 0 0 0: Select PCH_CPU_TEMP as AUXFAN0 monitoring source.
	1 0 0 0 1: Select PCH_MCH_TEMP as AUXFAN0 monitoring source.
	1 0 0 1 0: Select PCH_DIM0_TEMP as AUXFAN0 monitoring source.
	1 0 0 1 1: Select PCH_DIM1_TEMP as AUXFAN0 monitoring source.
	1 0 1 0 0: Select PCH_DIM2_TEMP as AUXFAN0 monitoring source.
	1 0 1 0 1: Select PCH_DIM3_TEMP as AUXFAN0 monitoring source.
	1 0 1 1 0: Select BYTE_TEMP as AUXFAN0 monitoring source.

9.187 AUXFAN0 Target Temperature Register / AUXFANIN0 Target Speed_L Register – Index 31h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME	AUXFAN0 Target Temperature / AUXFANIN0 Target Speed_L										
DEFAULT		0									

FUNCTION MODE		7	6	5	4	3	2	1	0
Thermal Cruise [™]	DESCRIPTION	AUXFAN0 Target Temperature							
Fan Speed Cruise™	DESCRIPTION	AUXFANIN0 Target Speed [7:0], [11:8] associate Index 32h[3:0]							

9.188 AUXFANIN0 Tolerance_H / Target Speed_H Register - Index 32h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	ΑUX	(FANINO TOL	Reserved	AUXFANIN0 Target Speed_H				
DEFAULT		0			0			

BIT	DESCRIPTION				
7-5	AUXFANIN0 Tolerance_H [5:3]				
4	Reserved.				
3-0	AUXFANIN0 Target Speed_H [11:8]				

9.189 AUXFAN0 MODE Register / AUXFAN0 TOLERRANCE Register - Index 33h (Bank 1)

BIT	7	6	5	4	3	2	1	0
NAME	AUXFAN MODE				Reseved	AU	olerance o XFAN0 Ta ture or AU	rget

			Target Speed_L
DEFAULT	0	0	0

BIT	DESCRIPTION
7-4	AUXFANOUT0 Mode Select. 0000: AUXFANOUT0 is in Manual Mode. (Default) 0001: AUXFANOUT0 is in Thermal Cruise Mode. 0010: AUXFANOUT0 is as Fan Speed Cruise Mode. 0100: AUXFANOUT0 is in SMART FAN™ IV Mode.
3	Reseved.
2-0	Tolerance of AUXFAN0 Target Temperature or AUXFANIN0 Target Speed_L.

9.190 AUXFAN0 Step Up Time Register - Index 34h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFANOUT0 Step Up Time Value							
DEFAULT				F	4				

In SMART FANTM mode, this register determines the amount of time AUXFANOUT0 takes to increase its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.191 AUXFAN0 Step Down Time Register – Index 35h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFANOUT0 Step Down Time Value								
DEFAULT		A								

In SMART FANTM mode, this register determines the amount of time AUXFANOUT0 takes to decrease its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.192 AUXFAN0 Stop Value Register – Index 36h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFANOUT0 Stop Value							

In Thermal Cruise mode, the AUXFANOUT0 value decreases to this eight-bit value if the temperature stays below the lowest temperature limit. This value should not be zero.

Please note that Stop Value does not mean that the fan really stops. It means that if the temperature keeps below low temperature limit, then the fan speed keeps on decreasing until reaching a minimum value, and this is Stop Value.

9.193 AUXFAN0 Start-up Value Register - Index 37h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	5 4 3			1	0	
NAME		AUXFANOUT0 Start-Up Value							
DEFAULT				,	1				

In Thermal Cruise mode, AUXFANOUT0 value increases from zero to this eight-bit register value to provide a minimum value to turn on the fan.

9.194 AUXFAN0 Stop Time Register - Index 38h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFANOUT0 Stop Time							
DEFAULT				3	С				

In Thermal Cruise mode, Define the retention time to the fan stop. It is required by Fan Stop Function. The time unit is 0.1sec.

9.195 AUXFAN0 Output Value Select Register - Index 39h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6 5 4 3 2						0		
NAME		AUXFANOUT0 Value								
DEFAULT		FF								

FUNCTION MODE		7	6	5	4	3	2	1	0
PWM Output (Bank0, Index F3h, bit 2 is 0)	DESCRIPTION	The PWM duty cycle is equal to this eight-bit value, divided by 255, times 100%. FFh creates a duty cycle of 100%, and 00h creates a duty cycle of 0%.							
DC Voltage Output Bank0, Index F3h, bit 2 is	DESCRIPTION		e is c) voltage alculated			•	Rese	erved

Publication Release Date: September 12, 2023

-158- Version: 2.4

1)	OUTPUT Volta	$ge = Vref * \frac{FANOUT}{64}$
	Note. VREF is a	around 2.048V.

9.196 AUXFAN0 Temperature Critical Register – Index 3Ah (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5 4 3 2		2	1	0			
NAME		AUXFAN0 Temperature Critical								
DEFAULT				3	С					

BIT	DESCRIPTION
7-0	AUXFAN0 Temperature Critical Register.

9.197 AUXFAN0 Critical Temperature Tolerance Register – Index 3Bh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6 5 4 3 2 1						0			
NAME		Reserved					AUXFANOUT0 Critical Temperature Tolerance				
DEFAULT		0					0				

BIT	DESCRIPTION
7-3	Reserved.
2-0	AUXFAN0 Critical Temperature Tolerance

9.198 AUXFAN0 Enable Critical Duty / Fanout Step Register – Index 3Ch (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	En_AUX_3WFAN	Rese	rved	En_AUX_CRITICAL_DUTY		serv	ed	Reserved
DEFAULT	0	()	0		0		0

BIT	DESCRIPTION
7	En_AUX_3WFAN 0: 4-wire fan
	1: 3-wire fan
6-5	Reserved.
4	En_AUX_CRITICAL_FUNC 0: Disable critical function for AUXFANOUT.

-159-

Publication Release Date: September 12, 2023

	1: Used Index 1D CRITICAL_DUTY Value for AUXFANOUT.
3-0	Reserved.

9.199 AUXFAN0 Critical Duty Register - Index 3Dh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN0 Critical Duty						
DEFAULT		СС						

BIT	DESCRIPTION	
7-0	AUXFAN0 Critical Duty.	

9.200 AUXFAN0 Enable Close Loop Fan Control RPM Mode Register - Index 3Eh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			En_AUX_RPM					
DEFAULT	0							0

BIT	DESCRIPTION					
7-1	Reserved.					
0	En_AUX_RPM					
	0: Disable SMART FAN™ IV Close Loop Fan Control RPM Mode.					
	1: Enable SMART FAN™ IV Close Loop Fan Control RPM Mode.					

9.201 AUXFAN0 Enable RPM High Mode / RPM Mode Tolerance Register – Index 3Fh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	En_AUX_RPM_High	Reserved			Generic_Tol_RPM			
DEFAULT	0	0				2	2	

BIT	DESCRIPTION
7	En_AUX_RPM_High
	For High Speed Fan Control at RPM Mode, the unit is 100 RPM.
	Support 100 rpm ~ 25500 rpm Fan,
	0: Disable
	1: Enable
6-4	Reserved.

3-0	Tolerance of RPM mode, unit 50 RPM.
	If Enable RPM High Mode, unit is 100 RPM.

9.202 SYSFAN (SMART FAN™ IV) Temperature 1 Register(T1) – Index 60h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFAN (SMART FANTM IV) Temperature 1							
DEFAULT		19							

BIT	DESCRIPTION
7-0	SYSFAN (SMART FAN™ IV) Temperature 1 Register (T1).

9.203 SYSFAN (SMART FAN™ IV) Temperature 2 Register(T2) – Index 61h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		SYSFAN (SMART FANTM IV) Temperature 2						
DEFAULT		23						

BIT	DESCRIPTION
7-0	SYSFAN (SMART FAN™ IV) Temperature 2 Register (T2).

9.204 SYSFAN (SMART FAN™ IV) Temperature 3 Register(T3) – Index 62h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFAN (SMART FANTM IV) Temperature 3							
DEFAULT		2D							

BIT	DESCRIPTION
7-0	SYSFAN (SMART FAN™ IV) Temperature 3 Register (T3).

9.205 SYSFAN (SMART FAN™ IV) Temperature 4 Register(T4) – Index 63h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFAN (SMART FANTM IV) Temperature 4							
DEFAULT		37							

BIT	DESCRIPTION
7-0	SYSFAN (SMART FAN™ IV) Temperature 4 Register (T4).

9.206 SYSFAN (SMART FANTM IV) FD1/RPM1 Register – Index 64h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFAN (SMART FAN™ IV) FD1/RPM1							
DEFAULT		8C							

BIT	DESCRIPTION
7-0	SYSFAN (SMART FAN™ IV) FD1/RPM1 Register.

9.207 SYSFAN (SMART FANTM IV) FD2/RPM2 Register - Index 65h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFAN (SMART FAN™ IV) FD2/RPM2							
DEFAULT		AA							

BIT	DESCRIPTION
7-0	SYSFAN (SMART FAN™ IV) FD2/RPM2 Register.

9.208 SYSFAN (SMART FANTM IV) FD3/RPM3 Register – Index 66h (Bank 1)

Attribute: Read/Write Size: 8 bits

0 01	10									
BIT	7	7 6 5 4 3 2 1 0								
NAME		SYSFAN (SMART FAN™ IV) FD3/RPM3								
DEFAULT		C8								

BIT	DESCRIPTION
7-0	SYSFAN (SMART FAN™ IV) FD3/RPM3 Register.

9.209 SYSFAN (SMART FANTM IV) FD4/RPM4 Register – Index 67h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFAN (SMART FANTM IV) FD4/RPM4							
DEFAULT		E6							

BIT	DESCRIPTION
7-0	SYSFAN (SMART FAN™ IV) FD4/RPM4 Register.

9.210 SYSFAN Weight value Configuration Register - Index 68h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6 5		4	3	2	1	0
NAME	EN_SYSFAN_WEIGHT	Rese	SYS_WEIGHT_SEL					
DEFAULT	0	(1					

BIT	DESCRIPTION
7	EN_SYSFAN_WEIGHT.
	0: Disable Weight Value Control for SYSFAN.
	1: Enable Weight Value Control for SYSFAN.
6-5	Reserved.
4-0	SYSFAN Weighting Temperature Source Select:
	Bits
	43210
	0 0 0 0 1: Select SYSTIN as SYSFAN monitoring source. (Default)
	0 0 0 1 0: Select CPUTIN as SYSFAN monitoring source.
	0 0 0 1 1: Select AUXTIN as SYSFAN monitoring source.
	0 0 1 0 0: Select SMBUSMASTER 0 as SYSFAN monitoring source.
	0 0 1 0 1: Select SMBUSMASTER 1 as SYSFAN monitoring source.
	0 0 1 1 0: Select SMBUSMASTER 2 as SYSFAN monitoring source.
	0 0 1 1 1: Select SMBUSMASTER 3 as SYSFAN monitoring source.
	0 1 0 0 0: Select SMBUSMASTER 4 as SYSFAN monitoring source.
	0 1 0 0 1: Select SMBUSMASTER 5 as SYSFAN monitoring source.
	0 1 0 1 0: Select SMBUSMASTER 6 as SYSFAN monitoring source.
	0 1 0 1 1: Select SMBUSMASTER 7 as SYSFAN monitoring source.
	0 1 1 0 0: Select PECI Agent 0 as SYSFAN monitoring source.
	0 1 1 0 1: Select PECI Agent 1 as SYSFAN monitoring source.
	0 1 1 1 0: Select PCH_CHIP_CPU_MAX_TEMP as SYSFAN monitoring source.
	0 1 1 1 1: Select PCH_CHIP_TEMP as SYSFAN monitoring source.
	1 0 0 0 0: Select PCH_CPU_TEMP as SYSFAN monitoring source.
	1 0 0 0 1: Select PCH_MCH_TEMP as SYSFAN monitoring source.
	1 0 0 1 0: Select PCH_DIM0_TEMP as SYSFAN monitoring source.
	1 0 0 1 1: Select PCH_DIM1_TEMP as SYSFAN monitoring source.
	1 0 1 0 0: Select PCH_DIM2_TEMP as SYSFAN monitoring source.
	1 0 1 0 1: Select PCH_DIM3_TEMP as SYSFAN monitoring source.
	1 0 1 1 0: Select BYTE_TEMP as SYSFAN monitoring source.

9.211 SYSFAN Weight Temperature Step Register - Index 69h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFANOUT Temperature Step (SYS_TEMP_STEP)							
DEFAULT		0							

BIT	DESCRIPTION
7-0	SYSFANOUT Temperature Step

9.212 SYSFAN Weight Temperature Step Tolerance Register – Index 6Ah (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	SY	SYSFANOUT Temperature Step Tolerance (SYS_TEMP_STEP_TOL)							
DEFAULT				()				

BIT	DESCRIPTION
7-0	SYSFANOUT Temperature Step Tolerance

9.213 SYSFAN Weight Step Register - Index 6Bh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	SYSFANOUT Weight Step (SYS_WEIGHT_STEP)								
DEFAULT		0							

BIT	DESCRIPTION
7-0	SYSFANOUT Weight Step

9.214 SYSFAN Weight Temperature Base Register - Index 6Ch (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFANOUT Temperature Base (SYS_TEMP_BASE)							
DEFAULT		0							

BIT	DESCRIPTION					
7-0	SYSFANOUT Temperature Base					

9.215 SYSFAN Weight Fan Duty Base Register - Index 6Dh (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		SYSFANOUT Temperature Base (SYS_DUTY_BASE)							
DEFAULT		0							

BIT	DESCRIPTION			
7-0	SYSFANOUT Start point of Fan Duty increasing			

9.216 SYSFAN Enable PECIERR DUTY Register - Index 6Eh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			Rese	EN_SYS_PECIERR_DUTY				
DEFAULT		0						0

BIT	DESCRIPTION						
7-2	Reserved.						
1-0	EN_SYS_PECIERR_DUTY						
	00: Disable PECIERR DUTY FANOUT (default)						
	01: Enable PECIERR DUTY FANOUT						
	10,11: Keep Full Speed						

9.217 SYSFAN Pre-Configured Register For PECI Error – Index 6Fh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	SYSFANOUT pre-configured register for PECI error (PECI_ERR_SYSOUT)							
DEFAULT		FF						

BIT	DESCRIPTION
7-0	SYSFANOUT pre-configured register for PECI error.

9.218 CPUFAN (SMART FANTM IV) Temperature 1 Register(T1) – Index 70h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		CPUFAN (SMART FANTM IV) Temperature 1							
DEFAULT		28							

BIT	DESCRIPTION
7-0	CPUFAN (SMART FAN TM IV) Temperature 1 Register (T1).

9.219 CPUFAN (SMART FANTM IV) Temperature 2 Register(T2) - Index 71h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		CPUFAN (SMART FANTM IV) Temperature 2							
DEFAULT		32							

BIT	DESCRIPTION
7-0	CPUFAN (SMART FAN TM IV) Temperature 2 Register (T2).

9.220 CPUFAN (SMART FANTM IV) Temperature 3 Register(T3) - Index 72h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		CPUFAN (SMART FAN™ IV) Temperature 3							
DEFAULT		3C							

BIT	DESCRIPTION
7-0	CPUFAN (SMART FAN™ IV) Temperature 3 Register (T3).

9.221 CPUFAN (SMART FANTM IV) Temperature 4 Register(T4) – Index 73h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		CPUFAN (SMART FAN™ IV) Temperature 4						
DEFAULT		46						

BIT	DESCRIPTION
7-0	CPUFAN (SMART FAN TM IV) Temperature 4 Register (T4).

9.222 CPUFAN (SMART FANTM IV) FD1/RPM1 Register – Index 74h (Bank 1)

Attribute: Read/Write Size: 8 bits

- 0 01										
BIT	7	6	5	4	3	2	1	0		
NAME		CPUFAN (SMART FANTM IV) FD1/RPM1								
DEFAULT				8	С					

BIT	DESCRIPTION					
7-0	CPUFAN (SMART FAN TM IV) FD1/RPM1 Register.					

9.223 CPUFAN (SMART FANTM IV) FD2/RPM2 Register - Index 75h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		CPUFAN (SMART FANTM IV) FD2/RPM2									
DEFAULT		AA									

BIT	DESCRIPTION
7-0	CPUFAN (SMART FAN TM IV) FD2/RPM2 Register.

9.224 CPUFAN (SMART FANTM IV) FD3/RPM3 Register - Index 76h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		CPUFAN (SMART FAN™ IV) FD3/RPM3									
DEFAULT		C8									

BIT	DESCRIPTION
7-0	CPUFAN (SMART FAN TM IV) FD3/RPM3 Register.

9.225 CPUFAN (SMART FANTM IV) FD4/RPM4 Register – Index 77h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		CPUFAN (SMART FANTM IV) FD4/RPM4								
DEFAULT		E6								

BIT	DESCRIPTION
7-0	CPUFAN (SMART FAN TM IV) FD4/RPM4 Register.

9.226 CPUFAN Weight value Configuration Register - Index 78h (Bank 1)

Attribute: Read/Write Size: 8 bits

	NAME	EN_CPUFAN_WEIGHT	Rese	CPU_WEIGHT_SEL					
Ī	BIT	7	6	5	4	3	2	1	0

DEFAULT 0	0	1
------------------	---	---

BIT	DESCRIPTION
7	EN_CPUFAN_WEIGHT.
	0: Disable Weight Value Control for CPUFAN.
	1: Enable Weight Value Control for CPUFAN.
6-5	Reserved.
4-0	CPUFAN Weighting Temperature Source Select:
	Bits
	43210
	0 0 0 0 1: Select SYSTIN as CPUFAN monitoring source. (Default)
	0 0 0 1 0: Select CPUTIN as CPUFAN monitoring source.
	0 0 0 1 1: Select AUXTIN as CPUFAN monitoring source.
	0 0 1 0 0: Select SMBUSMASTER as CPUFAN monitoring source.
	0 0 1 0 0: Select SMBUSMASTER 0 as CPUFAN monitoring source.
	0 0 1 0 1: Select SMBUSMASTER 1 as CPUFAN monitoring source.
	0 0 1 1 0: Select SMBUSMASTER 2 as CPUFAN monitoring source.
	0 0 1 1 1: Select SMBUSMASTER 3 as CPUFAN monitoring source.
	0 1 0 0 0: Select SMBUSMASTER 4 as CPUFAN monitoring source.
	0 1 0 0 1: Select SMBUSMASTER 5 as CPUFAN monitoring source.
	0 1 0 1 0: Select SMBUSMASTER 6 as CPUFAN monitoring source.
	0 1 0 1 1: Select SMBUSMASTER 7 as CPUFAN monitoring source.
	0 1 1 0 0: Select PECI Agent 0 as CPUFAN monitoring source.
	0 1 1 0 1: Select PECI Agent 1 as CPUFAN monitoring source.
	0 1 1 1 0: Select PCH_CHIP_CPU_MAX_TEMP as CPUFAN monitoring source. 0 1 1 1 1: Select PCH_CHIP_TEMP as CPUFAN monitoring source.
	1 0 0 0 0: Select PCH_CPU_TEMP as CPUFAN monitoring source.
	1 0 0 0 1: Select PCH_MCH_TEMP as CPUFAN monitoring source.
	1 0 0 1 0: Select PCH_DIMO_TEMP as CPUFAN monitoring source.
	1 0 0 1 1: Select PCH_DIM1_TEMP as CPUFAN monitoring source.
	1 0 1 0 0: Select PCH_DIM2_TEMP as CPUFAN monitoring source.
	1 0 1 0 1: Select PCH_DIM3_TEMP as CPUFAN monitoring source.
	1 0 1 1 0: Select BYTE TEMP as CPUFAN monitoring source.
	1 0 1 1 0. Goldet DTTE_TEIN as Of OT AIV Monitoring source.

9.227 CPUFAN Weight Temperature Step Register - Index 79h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		CPUFANOUT Temperature Step (CPU_TEMP_STEP)									
DEFAULT		0									

BIT		DESCRIPTION
7-0	CPUFANOUT Temperature Step	

9.228 CPUFAN Weight Temperature Step Tolerance Register – Index 7Ah (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME	СР	CPUFANOUT Temperature Step Tolerance (CPU_TEMP_STEP_TOL)									
DEFAULT				()						

BIT	DESCRIPTION
7-0	CPUFANOUT Temperature Step Tolerance

9.229 CPUFAN Weight Step Register - Index 7Bh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		CPUFANOUT Weight Step (CPU_WEIGHT_STEP)									
DEFAULT		0									

BIT		DESCRIPTION
7-0	CPUFANOUT Weight Step	

9.230 CPUFAN Weight Temperature Base Register - Index 7Ch (Bank 1)

Attribute: Read/Write Size: 8 bits

0 01	13									
BIT	7	6	5	4	3	2	1	0		
NAME		CPUFANOUT Temperature Base (CPU_TEMP_BASE)								
DEFAULT				()					

BIT		DESCRIPTION
7-0	CPUFANOUT Temperature Base	

9.231 CPUFAN Weight Fan Duty Base Register - Index 7Dh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		CPUFANOUT Temperature Base (CPU_DUTY_BASE)									
DEFAULT		0									

BIT	DESCRIPTION
7-0	CPUFANOUT Start point of Fan Duty increasing

Publication Release Date: September 12, 2023

9.232 CPUFAN Enable PECIERR DUTY Register - Index 7Eh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			Rese	EN_CPU_PECIERR_DUTY				
DEFAULT			(0	0			

BIT	DESCRIPTION					
7-2	Reserved.					
1-0	EN_CPU_PECIERR_DUTY					
	00: Disable PECIERR DUTY FANOUT (default)					
	01: Enable PECIERR DUTY FANOUT					
	10,11: Keep Full Speed					

9.233 CPUFAN Pre-Configured Register For PECI Error – Index 7Fh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME	CPUF	CPUFANOUT pre-configured register for PECI error (PECI_ERR_CPUOUT)									
DEFAULT		FF									

BIT	DESCRIPTION
7-0	CPUFANOUT pre-configured register for PECI error.

9.234 AUXFAN0 (SMART FAN™ IV) Temperature 1 Register(T1) – Index 80h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	AUXFAN0 (SMART FAN™ IV) Temperature 1							
DEFAULT		19						

BIT	DESCRIPTION
7-0	AUXFAN0 (SMART FAN TM IV) Temperature 1 Register (T1).

9.235 AUXFAN0 (SMART FANTM IV) Temperature 2 Register(T2) - Index 81h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0

NAME	AUXFAN0 (SMART FANTM IV) Temperature 2
DEFAULT	23

BIT	DESCRIPTION
7-0	AUXFAN0 (SMART FAN TM IV) Temperature 2 Register (T2).

9.236 AUXFAN0 (SMART FANTM IV) Temperature 3 Register(T3) - Index 82h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	AUXFAN0 (SMART FANTM IV) Temperature 3							
DEFAULT		2D						

BIT	DESCRIPTION
7-0	AUXFAN0 (SMART FAN TM IV) Temperature 3 Register (T3).

9.237 AUXFAN0 (SMART FANTM IV) Temperature 4 Register(T4) - Index 83h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN0 (SMART FANTM IV) Temperature 4						
DEFAULT		37						

BIT	DESCRIPTION
7-0	AUXFAN0 (SMART FAN™ IV) Temperature 4 Register (T4).

9.238 AUXFAN0 (SMART FANTM IV) FD1/RPM1 Register – Index 84h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN0 (SMART FANTM IV) FD1/RPM1						
DEFAULT		8C						

BIT	DESCRIPTION
7-0	AUXFAN0 (SMART FAN™ IV) FD1/RPM1 Register.

9.239 AUXFAN0 (SMART FAN™ IV) FD2/RPM2 Register – Index 85h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANO (SMART FANTM IV) FD2/RPM2									
DEFAULT		AA									

BIT	DESCRIPTION
7-0	AUXFAN0 (SMART FAN™ IV) FD2/RPM2 Register.

9.240 AUXFAN0 (SMART FANTM IV) FD3/RPM3 Register - Index 86h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANO (SMART FANTM IV) FD3/RPM3									
DEFAULT		C8									

BIT	DESCRIPTION
7-0	AUXFAN0 (SMART FAN TM IV) FD3/RPM3 Register.

9.241 AUXFAN0 (SMART FANTM IV) FD4/RPM4 Register - Index 87h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFAN0 (SMART FANTM IV) FD4/RPM4									
DEFAULT		E6									

BIT	DESCRIPTION				
7-0	AUXFAN0 (SMART FAN TM IV) FD4/RPM4 Register.				

9.242 AUXFAN0 Weight value Configuration Register - Index 88h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6 5		4	3	2	1	0
NAME	EN_AUXFAN0_WEIGHT	Res	AUX_WEIGHT_SEL					
DEFAULT	0		1					

BIT	DESCRIPTION							
7	EN_AUXFAN0_WEIGHT.							
	0: Disable Weight Value Control for AUXFAN0.							
	1: Enable Weight Value Control for AUXFAN0.							
6-5	Reserved.							

BIT	DESCRIPTION
4-0	AUXFAN0 Weighting Temperature Source Select:
	Bits
	43210
	0 0 0 0 1: Select SYSTIN as AUXFAN0 monitoring source. (Default)
	0 0 0 1 0: Select CPUTIN as AUXFAN0 monitoring source.
	0 0 0 1 1: Select AUXTIN as AUXFAN0 monitoring source.
	0 0 1 0 0: Select SMBUSMASTER 0 as AUXFAN0 monitoring source.
	0 0 1 0 1: Select SMBUSMASTER 1 as AUXFAN0 monitoring source.
	0 0 1 1 0: Select SMBUSMASTER 2 as AUXFAN0 monitoring source.
	0 0 1 1 1: Select SMBUSMASTER 3 as AUXFAN0 monitoring source.
	0 1 0 0 0: Select SMBUSMASTER 4 as AUXFAN0 monitoring source.
	0 1 0 0 1: Select SMBUSMASTER 5 as AUXFAN0 monitoring source.
	0 1 0 1 0: Select SMBUSMASTER 6 as AUXFAN0 monitoring source.
	0 1 0 1 1: Select SMBUSMASTER 7 as AUXFAN0 monitoring source.
	0 1 1 0 0: Select PECI Agent 0 as AUXFAN0 monitoring source.
	0 1 1 0 1: Select PECI Agent 1 as AUXFAN0 monitoring source.
	0 1 1 1 0: Select PCH_CHIP_CPU_MAX_TEMP as AUXFAN0 monitoring source.
	0 1 1 1 1: Select PCH_CHIP_TEMP as AUXFAN0 monitoring source.
	1 0 0 0 0: Select PCH_CPU_TEMP as AUXFAN0 monitoring source.
	1 0 0 0 1: Select PCH_MCH_TEMP as AUXFAN0 monitoring source.
	1 0 0 1 0: Select PCH_DIM0_TEMP as AUXFAN0 monitoring source.
	1 0 0 1 1: Select PCH_DIM1_TEMP as AUXFAN0 monitoring source.
	1 0 1 0 0: Select PCH_DIM2_TEMP as AUXFAN0 monitoring source.
	1 0 1 0 1: Select PCH_DIM3_TEMP as AUXFAN0 monitoring source.
	1 0 1 1 0: Select BYTE_TEMP as AUXFAN0 monitoring source.

9.243 AUXFAN0 Weight Temperature Step Register – Index 89h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT0 Temperature Step (AUX_TEMP_STEP)									
DEFAULT		0									

BIT		DESCRIPTION
7-0	AUXFANOUT0 Temperature Step	

9.244 AUXFAN0 Weight Temperature Step Tolerance Register - Index 8Ah (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME	AU	AUXFANOUT0 Temperature Step Tolerance (AUX_TEMP_STEP_TOL)								
DEFAULT		0								

BIT	DESCRIPTION
7-0	AUXFANOUT0 Temperature Step Tolerance

9.245 AUXFAN0 Weight Step Register - Index 8Bh (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT0 Weight Step (AUX_WEIGHT_STEP)									
DEFAULT		0									

BIT	DESCRIPTION	
7-0	AUXFANOUT0 Weight Step	

9.246 AUXFAN0 Weight Temperature Base Register - Index 8Ch (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFANOUT0 Temperature Base (AUX_TEMP_BASE)								
DEFAULT		0								

BIT	DESCRIPTION
7-0	AUXFANOUT0 Temperature Base

9.247 AUXFAN0 Weight Fan Duty Base Register – Index 8Dh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFANOUT0 Temperature Base (AUX_DUTY_BASE)								
DEFAULT		0								

BIT	DESCRIPTION
7-0	AUXFANOUT0 Start point of Fan Duty increasing

9.248 AUXFAN0 Enable PECIERR DUTY Register – Index 8Eh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			Rese	EN_AUX_PECIERR_DUTY				
DEFAULT		0						0

BIT	DESCRIPTION					
7-2	Reserved.					
1-0	EN_AUX_PECIERR_DUTY					
	00 : Disable PECIERR DUTY FANOUT (default)					
	01: Enable PECIERR DUTY FANOUT					
	10,11: Keep Full Speed					

9.249 AUXFAN0 Pre-Configured Register For PECI Error – Index 8Fh (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	AUXFANOUT0 pre-configured register for PECI error (PECI_ERR_AUXOUT)								
DEFAULT	FF								

BIT	DESCRIPTION
7-0	AUXFANOUT0 pre-configured register for PECI error.

9.250 AUXFAN1 Monitor Temperature Source Select Register/ STOPDUTY Enable Register – Index 90h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Stopduty_En	Rese	AUXFAN1 SOURCE[4:0]					
DEFAULT	0	(3					

BIT	DESCRIPTION
7	Stopduty_En: 0: FANOUT will decrease to zero value at most if necessary. 1: FANOUT will decrease to AUXFANOUT1 Stop Value (Bank1, Index96h) at most if necessary.
6-5	Reserved.
4-0	AUXFAN1 Temperature Source Select: Bits 4 3 2 1 0 0 0 0 0 1: Select SYSTIN as AUXFAN1 monitoring source. 0 0 0 1 0: Select CPUTIN as AUXFAN1 monitoring source. 0 0 0 1 1: Select AUXTIN as AUXFAN1 monitoring source. (Default) 0 0 1 0 0: Select SMBUSMASTER 0 as AUXFAN1 monitoring source. 0 0 1 0 1: Select SMBUSMASTER 1 as AUXFAN1 monitoring source. 0 0 1 1 0: Select SMBUSMASTER 2 as AUXFAN1 monitoring source. 0 0 1 1 1: Select SMBUSMASTER 3 as AUXFAN1 monitoring source. 0 1 0 0 0: Select SMBUSMASTER 4 as AUXFAN1 monitoring source.

BIT	DESCRIPTION
	0 1 0 0 1: Select SMBUSMASTER 5 as AUXFAN1 monitoring source.
	0 1 0 1 0: Select SMBUSMASTER 6 as AUXFAN1 monitoring source.
	0 1 0 1 1: Select SMBUSMASTER 7 as AUXFAN1 monitoring source.
	0 1 1 0 0: Select PECI Agent 0 as AUXFAN1 monitoring source.
	0 1 1 0 1: Select PECI Agent 1 as AUXFAN1 monitoring source.
	0 1 1 1 0: Select PCH_CHIP_CPU_MAX_TEMP as AUXFAN1 monitoring source.
	0 1 1 1 1: Select PCH_CHIP_TEMP as AUXFAN1 monitoring source.
	1 0 0 0 0: Select PCH_CPU_TEMP as AUXFAN1 monitoring source.
	1 0 0 0 1: Select PCH_MCH_TEMP as AUXFAN1 monitoring source.
	1 0 0 1 0: Select PCH_DIM0_TEMP as AUXFAN1 monitoring source.
	1 0 0 1 1: Select PCH_DIM1_TEMP as AUXFAN1 monitoring source.
	1 0 1 0 0: Select PCH_DIM2_TEMP as AUXFAN1 monitoring source.
	1 0 1 0 1: Select PCH_DIM3_TEMP as AUXFAN1 monitoring source.
	1 0 1 1 0: Select BYTE_TEMP as AUXFAN1 monitoring source.

9.251 AUXFAN1 Target Temperature Register / AUXFANIN1 Target Speed_L Register – Index 91h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFAN1 Target Temperature / AUXFANIN1 Target Speed_L									
DEFAULT		0									

FUNCTION MODE		7	6	5	4	3	2	1	0
Thermal Cruise™	DESCRIPTION	AUXFAN1 Target Temperature							
Fan Speed Cruise™	DESCRIPTION	AUXFANIN1 92h[3:0]	Target	Spe	ed [7:0)], [11	:8] ass	sociate	Index

9.252 AUXFANIN1 Tolerance_H / Target Speed_H Register - Index 92h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	AU	XFANIN1 TOL	Reserved	AUXFANIN1 Target Speed_H				
DEFAULT	0			0			0	

BIT	DESCRIPTION
7-5	AUXFANIN1 Tolerance_H [5:3]
4	Reserved.
3-0	AUXFANIN1 Target Speed_H [11:8]

9.253 AUXFAN1 MODE Register / AUXFAN1 TOLERRANCE Register – Index 93h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	2 1 0			
NAME		AUXFAN	1 MODE		Reseved	AU Tempera	olerance of XFAN1 Ta ture or AU	rget XFANIN1		
DEFAULT		0			0		0			

BIT	DESCRIPTION
7-4	AUXFANOUT1 Mode Select.
	0000: AUXFANOUT1 is in Manual Mode. (Default)
	0001: AUXFANOUT1 is in Thermal Cruise Mode.
	0010: AUXFANOUT1 is as Fan Speed Cruise Mode.
	0100: AUXFANOUT1 is in SMART FAN™ IV Mode.
3	Reserved.
2-0	Tolerance of AUXFAN1 Target Temperature or AUXFANIN1 Target Speed_L.

9.254 AUXFAN1 Step Up Time Register - Index 94h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT1 Step Up Time Value									
DEFAULT		Α Α									

In SMART FAN™ mode, this register determines the amount of time AUXFANOUT1 takes to increase its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.255 AUXFAN1 Step Down Time Register - Index 95h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT1 Step Down Time Value									
DEFAULT		A									

In SMART FANTM mode, this register determines the amount of time AUXFANOUT1 takes to decrease its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.256 AUXFAN1 Stop Value Register – Index 96h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0				
NAME		AUXFANOUT1 Stop Value										
DEFAULT				,	1							

In Thermal Cruise mode, the AUXFANOUT1 value decreases to this eight-bit value if the temperature stays below the lowest temperature limit. This value should not be zero.

Please note that Stop Value does not mean that the fan really stops. It means that if the temperature keeps below low temperature limit, then the fan speed keeps on decreasing until reaching a minimum value, and this is Stop Value.

9.257 AUXFAN1 Start-up Value Register - Index 97h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT1 Start-Up Value									
DEFAULT				•	1						

In Thermal Cruise mode, AUXFANOUT1 value increases from zero to this eight-bit register value to provide a minimum value to turn on the fan.

9.258 AUXFAN1 Stop Time Register - Index 98h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT1 Stop Time									
DEFAULT				3	С						

In Thermal Cruise mode, Define the retention time to the fan stop. It is required by Fan Stop Function. The time unit is 0.1sec.

9.259 AUXFAN1 Output Value Select Register – Index 99h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT1 Value									
DEFAULT				F	F						

FUNCTION MODE		7	6	5	4	3	2	1	0
	•								

PWM Output	DESCRIPTION	The PWM duty cycle is equal to this eight-bit value, divided by 255, times 100%. FFh creates a duty cycle of 100%, and 00h creates a duty cycle of 0%.
		creates a duty cycle of 0%.

9.260 AUXFAN1 Temperature Critical Register - Index 9Ah (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFAN1 Temperature Critical								
DEFAULT				3						

BIT	DESCRIPTION
7-0	AUXFAN1 Temperature Critical Register.

9.261 AUXFAN1 Critical Temperature Tolerance Register – Index 9Bh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		F	Reserve	t		AUXFANOUT1 Critical Temperature Tolerance				
DEFAULT			0				0			

BIT	DESCRIPTION
7-3	Reserved.
2-0	AUXFAN1 Critical Temperature Tolerance

9.262 AUXFAN1 Enable Critical Duty / Fanout Step Register - Index 9Ch (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	3 2 1		
NAME	En_AUX1_3WFAN	Rese	rved	En_AUX1_CRITICAL_DUTY	Reserved			
DEFAULT	0	()	0	0			

BIT	DESCRIPTION
7	En_AUX1_3WFAN
	0: 4-wire fan
	1: 3-wire fan
6-5	Reserved.
4	En_AUX1_CRITICAL_FUNC
	0: Disable critical function for AUXFAN1OUT.
	1: Used Index 1D CRITICAL_DUTY Value for AUXFAN1OUT.

3-0	Reserved.
-----	-----------

9.263 AUXFAN1 Critical Duty Register - Index 9Dh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFAN1 Critical Duty								
DEFAULT					С					

BIT		DESCRIPTION
7-0	AUXFAN1 Critical Duty.	

9.264 AUXFAN1 Enable Close Loop Fan Control RPM Mode Register – Index 9Eh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		Reserved								
DEFAULT		0								

BIT	DESCRIPTION				
7-1	Reserved.				
0	En_AUX1_RPM				
	0: Disable SMART FAN™ IV Close Loop Fan Control RPM Mode.				
	1: Enable SMART FAN™ IV Close Loop Fan Control RPM Mode.				

9.265 AUXFAN1 Enable RPM High Mode / RPM Mode Tolerance Register – Index 9Fh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	En_AUX1_RPM_High	Reserved			Generic_Tol_RPM				
DEFAULT	0		0		2				

BIT	DESCRIPTION
7	En_AUX1_RPM_High
	For High Speed Fan Control at RPM Mode, the unit is 100 RPM.
	Support 100 rpm ~ 25500 rpm Fan,
	0: Disable
	1: Enable
6-4	Reserved.
3-0	Tolerance of RPM mode, unit 50 RPM. If Enable RPM High Mode, unit is 100 RPM.

-180-

9.266 AUXFAN2 Monitor Temperature Source Select Register/ STOPDUTY Enable Register – Index A0h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Stopduty_En	Rese	AUXFAN2 SOURCE[4:0]						
DEFAULT	0	(3						

BIT	DESCRIPTION
7	Stopduty_En: 0: FANOUT will decrease to zero value at most if necessary. 1: FANOUT will decrease to AUXFANOUT2 Stop Value (Bank1, IndexA6h) at most if necessary.
6-5	Reserved.
4-0	AUXFAN2 Temperature Source Select: Bits 43210 00001: Select SYSTIN as AUXFAN2 monitoring source. 00010: Select CPUTIN as AUXFAN2 monitoring source. 00011: Select AUXTIN as AUXFAN2 monitoring source. (Default) 0010: Select SMBUSMASTER 0 as AUXFAN2 monitoring source. 00101: Select SMBUSMASTER 1 as AUXFAN2 monitoring source. 00110: Select SMBUSMASTER 2 as AUXFAN2 monitoring source. 00111: Select SMBUSMASTER 3 as AUXFAN2 monitoring source. 0100: Select SMBUSMASTER 4 as AUXFAN2 monitoring source. 0100: Select SMBUSMASTER 5 as AUXFAN2 monitoring source. 0101: Select SMBUSMASTER 6 as AUXFAN2 monitoring source. 0101: Select SMBUSMASTER 7 as AUXFAN2 monitoring source. 0110: Select PECI Agent 0 as AUXFAN2 monitoring source. 0110: Select PECI Agent 1 as AUXFAN2 monitoring source. 0111: Select PCH_CHIP_CPU_MAX_TEMP as AUXFAN2 monitoring source. 0111: Select PCH_CHIP_TEMP as AUXFAN2 monitoring source. 1000: Select PCH_CHIP_TEMP as AUXFAN2 monitoring source. 1000: Select PCH_CHIP_TEMP as AUXFAN2 monitoring source. 1000: Select PCH_DIMO_TEMP as AUXFAN2 monitoring source. 1001: Select PCH_DIMO_TEMP as AUXFAN2 monitoring source. 1001: Select PCH_DIMO_TEMP as AUXFAN2 monitoring source.

9.267 AUXFAN2 Target Temperature Register / AUXFANIN2 Target Speed_L Register – Index A1h (Bank 1)

Attribute: Read/Write Size: 8 bits

	BIT	7	6	5	4	3	2	1	0
--	-----	---	---	---	---	---	---	---	---

NAME	AUXFAN2 Target Temperature / AUXFANIN2 Target Speed_L
DEFAULT	0

FUNCTION MODE		7	6	5	4	3	2	1	0
Thermal Cruise™	DESCRIPTION	AUXFAN2 Target Temperature							
Fan Speed Cruise TM	DESCRIPTION	AUXFANIN2 A2h[3:0]	Target	Spe	ed [7:0	0], [11	:8] ass	sociate	Index

9.268 AUXFANIN2 Tolerance_H / Target Speed_H Register - Index A2h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	AUXFANIN2 TOL_H			Reserved	AUXFANIN2 Target Speed_H				
DEFAULT		0	0	0					

BIT	DESCRIPTION
7-5	AUXFANIN2 Tolerance_H [5:3]
4	Reserved.
3-0	AUXFANIN2 Target Speed_H [11:8]

9.269 AUXFAN2 MODE Register / AUXFAN2 TOLERRANCE Register – Index A3h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	2 1 0			
NAME		AUXFAN	2 MODE		Reseved	AU Tempera	olerance of XFAN2 Ta ture or AU	rget XFANIN2		
DEFAULT		0			0		0			

BIT	DESCRIPTION
7-4	AUXFANOUT2 Mode Select. 0000: AUXFANOUT2 is in Manual Mode. (Default)
	0001: AUXFANOUT2 is in Thermal Cruise Mode.
	0010: AUXFANOUT2 is as Fan Speed Cruise Mode. 0100: AUXFANOUT2 is in SMART FAN™ IV Mode.
3	Reserved.
2-0	Tolerance of AUXFAN2 Target Temperature or AUXFANIN2 Target Speed_L.

9.270 AUXFAN2 Step Up Time Register - Index A4h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT2 Step Up Time Value									
DEFAULT				F	4						

In SMART FANTM mode, this register determines the amount of time AUXFANOUT2 takes to increase its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.271 AUXFAN2 Step Down Time Register - Index A5h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0				
NAME		AUXFANOUT2 Step Down Time Value										
DEFAULT		A										

In SMART FANTM mode, this register determines the amount of time AUXFANOUT2 takes to decrease its value by one step.

For PWM output:

The units are intervals of 0.1 second. The default time is 1 second.

9.272 AUXFAN2 Stop Value Register – Index A6h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT2 Stop Value									
DEFAULT		1									

In Thermal Cruise mode, the AUXFANOUT2 value decreases to this eight-bit value if the temperature stays below the lowest temperature limit. This value should not be zero.

Please note that Stop Value does not mean that the fan really stops. It means that if the temperature keeps below low temperature limit, then the fan speed keeps on decreasing until reaching a minimum value, and this is Stop Value.

9.273 AUXFAN2 Start-up Value Register - Index A7h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	7 6 5 4 3 2 1 0									
NAME		AUXFANOUT2 Start-Up Value									
DEFAULT				•	1						

-183-

Publication Release Date: September 12, 2023

In Thermal Cruise mode, AUXFANOUT2 value increases from zero to this eight-bit register value to provide a minimum value to turn on the fan.

9.274 AUXFAN2 Stop Time Register - Index A8h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT2 Stop Time									
DEFAULT				3	С						

In Thermal Cruise mode, Define the retention time to the fan stop. It is required by Fan Stop Function. The time unit is 0.1sec.

9.275 AUXFAN2 Output Value Select Register – Index A9h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFANOUT2 Value									
DEFAULT				F	F						

FUNCTION MODE		7	6	5	4	3	2	1	0
PWM Output	DESCRIPTION	255, tir	•	%. FFh	creates	,	-	alue, div 100%, a	•

9.276 AUXFAN2 Temperature Critical Register – Index Aah (Bank 1)

Attribute: Read/Write Size: 8 bits

- 0 01											
BIT	7	7 6 5 4 3 2 1 0									
NAME		AUXFAN2 Temperature Critical									
DEFAULT				3	С						

BIT	DESCRIPTION
7-0	AUXFAN2 Temperature Critical Register.

9.277 AUXFAN2 Critical Temperature Tolerance Register – Index Abh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2 1 0				
NAME		F	Reserved	k		AUXFANO	UT2 Critical Te Tolerance	emperature		

DEFAULT	0	0

BIT	DESCRIPTION			
7-3	Reserved.			
2-0	AUXFAN2 Critical Temperature Tolerance			

9.278 AUXFAN2 Enable Critical Duty / Fanout Step Register - Index Ach (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	En_AUX2_3WFAN	Reserved		En_AUX2_CRITICAL_DUTY	Reserved			
DEFAULT	0	()	0	0			

BIT	DESCRIPTION
7	En_AUX2_3WFAN
	0: 4-wire fan
	1: 3-wire fan
6-5	Reserved.
4	En_AUX2_CRITICAL_FUNC
	0: Disable critical function for AUXFAN2OUT.
	1: Used Index 1D CRITICAL_DUTY Value for AUXFAN2OUT.
3-0	Reserved.

9.279 AUXFAN2 Critical Duty Register - Index Adh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN2 Critical Duty						
DEFAULT		CC						

BIT	DESCRIPTION
7-0	AUXFAN2 Critical Duty.

9.280 AUXFAN2 Enable Close Loop Fan Control RPM Mode Register – Index Aeh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		Reserved							
DEFAULT		0							

BIT	DESCRIPTION				
7-1	Reserved.				
0	En_AUX2_RPM				
	0: Disable SMART FAN™ IV Close Loop Fan Control RPM Mode.				
	1: Enable SMART FAN™ IV Close Loop Fan Control RPM Mode.				

9.281 AUXFAN2 Enable RPM High Mode / RPM Mode Tolerance Register - Index Afh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	En_AUX2_RPM_High	Reserved			Generic_Tol_RPM				
DEFAULT	0	0			2				

BIT	DESCRIPTION
7	En_AUX2_RPM_High For High Speed Fan Control at RPM Mode, the unit is 100 RPM. Support 100 rpm ~ 25500 rpm Fan, 0: Disable 1: Enable
6-4	Reserved.
3-0	Tolerance of RPM mode, unit 50 RPM. If Enable RPM High Mode, unit is 100 RPM.

9.282 AUXFAN1 (SMART FANTM IV) Temperature 1 Register(T1) - Index D0h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN1 (SMART FANTM IV) Temperature 1							
DEFAULT		19							

BIT	DESCRIPTION
7-0	AUXFAN1 (SMART FAN TM IV) Temperature 1 Register (T1).

9.283 AUXFAN1 (SMART FAN™ IV) Temperature 2 Register(T2) – Index D1h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN1 (SMART FANTM IV) Temperature 2							
DEFAULT	23								

BIT	DESCRIPTION
7-0	AUXFAN1 (SMART FAN TM IV) Temperature 2 Register (T2).

9.284 AUXFAN1 (SMART FANTM IV) Temperature 3 Register(T3) – Index D2h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN1 (SMART FANTM IV) Temperature 3						
DEFAULT		2D						

BIT	DESCRIPTION
7-0	AUXFAN1 (SMART FAN TM IV) Temperature 3 Register (T3).

9.285 AUXFAN1 (SMART FANTM IV) Temperature 4 Register(T4) - Index D3h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN1 (SMART FANTM IV) Temperature 4						
DEFAULT		37						

BIT	DESCRIPTION
7-0	AUXFAN1 (SMART FAN TM IV) Temperature 4 Register (T4).

9.286 AUXFAN1 (SMART FAN™ IV) FD1/RPM1 Register – Index D4h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN1 (SMART FANTM IV) FD1/RPM1							
DEFAULT		8C							

BIT	DESCRIPTION
7-0	AUXFAN1 (SMART FAN TM IV) FD1/RPM1 Register.

9.287 AUXFAN1 (SMART FANTM IV) FD2/RPM2 Register – Index D5h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN1 (SMART FANTM IV) FD2/RPM2						
DEFAULT		AA						

BIT	DESCRIPTION
7-0	AUXFAN1 (SMART FAN TM IV) FD2/RPM2 Register.

9.288 AUXFAN1 (SMART FANTM IV) FD3/RPM3 Register – Index D6h (Bank 1)

Read/Write Attribute: Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN1 (SMART FANTM IV) FD3/RPM3						
DEFAULT		C8						

BIT	DESCRIPTION
7-0	AUXFAN1 (SMART FAN™ IV) FD3/RPM3 Register.

9.289 AUXFAN1 (SMART FANTM IV) FD4/RPM4 Register – Index D7h (Bank 1)

Read/Write Attribute: Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	AUXFAN1 (SMART FANTM IV) FD4/RPM4								
DEFAULT		E6							

BIT	DESCRIPTION
7-0	AUXFAN1 (SMART FAN TM IV) FD4/RPM4 Register.

9.290 AUXFAN1 Enable PECIERR DUTY Register – Index DEh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			Rese	EN_AUX1_PECIERR_DUTY				
DEFAULT			(0				

BIT	DESCRIPTION						
7-2	Reserved.						
1-0	EN_AUX1_PECIERR_DUTY						
	00 : Disable PECIERR DUTY FANOUT (default)						
	01: Enable PECIERR DUTY FANOUT						
	10,11: Keep Full Speed						

-188-

9.291 AUXFAN1 Pre-Configured Register For PECI Error – Index DFh (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	AUXFANOUT1 pre-configured register for PECI error (PECI_ERR_AUXOUT1)								
DEFAULT		FF							

BIT	DESCRIPTION
7-0	AUXFANOUT1 pre-configured register for PECI error.

9.292 AUXFAN2 (SMART FANTM IV) Temperature 1 Register(T1) - Index E0h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	AUXFAN2 (SMART FANTM IV) Temperature 1								
DEFAULT		19							

BIT	DESCRIPTION
7-0	AUXFAN2 (SMART FAN TM IV) Temperature 1 Register (T1).

9.293 AUXFAN2 (SMART FANTM IV) Temperature 2 Register(T2) – Index E1h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN2 (SMART FAN™ IV) Temperature 2							
DEFAULT		23							

BIT	DESCRIPTION
7-0	AUXFAN2 (SMART FAN™ IV) Temperature 2 Register (T2).

9.294 AUXFAN2 (SMART FANTM IV) Temperature 3 Register(T3) – Index E2h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		AUXFAN2 (SMART FANTM IV) Temperature 3							
DEFAULT		2D							

BIT	DESCRIPTION
7-0	AUXFAN2 (SMART FAN TM IV) Temperature 3 Register (T3).

9.295 AUXFAN2 (SMART FANTM IV) Temperature 4 Register(T4) – Index E3h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7 6 5 4 3 2 1									
NAME		AUXFAN2 (SMART FANTM IV) Temperature 4								
DEFAULT				3	7					

BIT	DESCRIPTION
7-0	AUXFAN2 (SMART FAN TM IV) Temperature 4 Register (T4).

9.296 AUXFAN2 (SMART FANTM IV) FD1/RPM1 Register – Index E4h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		AUXFAN2 (SMART FANTM IV) FD1/RPM1								
DEFAULT				8	С					

BIT	DESCRIPTION
7-0	AUXFAN2 (SMART FAN™ IV) FD1/RPM1 Register.

9.297 AUXFAN2 (SMART FANTM IV) FD2/RPM2 Register - Index E5h (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFAN2 (SMART FANTM IV) FD2/RPM2									
DEFAULT				А	A						

BIT	DESCRIPTION
7-0	AUXFAN2 (SMART FAN™ IV) FD2/RPM2 Register.

9.298 AUXFAN2 (SMART FANTM IV) FD3/RPM3 Register – Index E6h (Bank 1)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFAN2 (SMART FANTM IV) FD3/RPM3									
DEFAULT				С	8						

BIT DESCRIPTION	BIT DESCRIPTION	
-----------------	-----------------	--

		_
7-0	AUXFAN2 (SMART FAN™ IV) FD3/RPM3 Register.	

9.299 AUXFAN2 (SMART FAN™ IV) FD4/RPM4 Register – Index E7h (Bank 1)

Read/Write Attribute: Size: 8 bits

BIT	7	6	5	4	3	2	1	0			
NAME		AUXFAN2 (SMART FANTM IV) FD4/RPM4									
DEFAULT				E	6						

BIT	DESCRIPTION
7-0	AUXFAN2 (SMART FAN TM IV) FD4/RPM4 Register.

9.300 AUXFAN2 Enable PECIERR DUTY Register - Index Eeh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			Rese	EN_AUX2_PECIERR_DUTY				
DEFAULT			()			()

BIT	DESCRIPTION						
7-2	Reserved.						
1-0	EN_AUX2_PECIERR_DUTY						
	00 : Disable PECIERR DUTY FANOUT (default)						
	01: Enable PECIERR DUTY FANOUT						
	10,11: Keep Full Speed						

9.301 AUXFAN2 Pre-Configured Register For PECI Error – Index Efh (Bank 1)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	AUXFA	AUXFANOUT2 pre-configured register for PECI error (PECI_ERR_AUXOUT2)							
DEFAULT	FF								

BIT	DESCRIPTION
7-0	AUXFANOUT2 pre-configured register for PECI error.

9.302 Reserved Register - Index F0h~FFh (Bank 1)

9.303 PECI Function Control Registers - Index 00h~03h (Bank 2)

Publication Release Date: September 12, 2023

9.304 PECI Enable Function Register - Index 00h (Bank 2)

Attribute: Read/Write

Size: 8 bits

BIT	7	6 5 4 3				2	1	0
NAME	PECI_En		Rese	erved	Is_PECI 30	Manual _En	Routine _En	
DEFAULT	0	0	0	0	0	1	0	1

BIT	READ / WRITE	DESCRIPTION
7	R/W	Enable PECI Function.(PECI_En)
6-3	R/W	Reserved.
2	R/W	Enable PECI 3.0 Command function (Is_PECI30)
1	R/W	Enable PECI Manual Function(Manual_En)
0	R/W	Enable PECI Routine Function(Routine_En)

9.305 PECI Timing Config Register – Index 01h (Bank 2)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Polling_time		TN_Extend		Adj[2 :0]			PECI_DC
DEFAULT	0	0	0	0	0	0	1	0

BIT	READ / WRITE	DESCRIPTION
7-6	R/W	Polling_time Adjust PECI polling time. $00_{\text{BIN}} = 100 \text{ ms (Default)}$ $01_{\text{BIN}} = 250 \text{ ms}$ $10_{\text{BIN}} = 500 \text{ ms}$ $11_{\text{BIN}} = 1 \text{ s}$
5	R/W	TN_Extend[1:0] Adjust Transaction Rate, the frequency will be change by different outside loading.
4	R/W	Measurement frequency without loading as below: $00_{\text{BIN}} = 1 \qquad \text{MHz (Default)}$ $01_{\text{BIN}} = 600 \text{KHz}$ $10_{\text{BIN}} = 334 \text{KHz}$ $11_{\text{BIN}} = 177 \text{KHz}$
3	R/W	Adj[2:0]
2	R/W	Compensate the effect of rising time on physical bus
1	R/W	Default Value = 001

BIT	READ/WRITE	DESCRIPTION					
0	R/W	Adjust PECI Tbit Duty cycle selection. (PECI_DC) $0 = 75\% \text{ Tbit high duty cycle time.}$ $1 = 68\% \text{ Tbit high duty cycle time.}$					

9.306 PECI Agent Config Register - Index 02h (Bank 2)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved		En_Agt[1 :0]		Reserved		Dmn1_Agt[1 :0]	
DEFAULT	0	0	0	0	0	0	1	0

BIT	READ / WRITE	DESCRIPTION
7-6	R/W	Reserved.
5	R/W	PECI host to process related agent 31 Enable or Disable. 0 = Agent Disable 1 = Agent Enable
4	R/W	PECI host to process related agent 30 Enable or Disable. 0 = Agent Disable 1 = Agent Enable
3-2	R/W	Reserved.
1	R/W	Indicate agent 31 domain1. 0 = Agent does not have domain 1. 1 = Agent has domain 1.
0	R/W	Indicate agent 30 domain1. 0 = Agent does not have domain 1. 1 = Agent has domain 1.

9.307 PECI Temperature Config Register – Index 03h (Bank 2)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Virtual_ En	Reserved		Clamp	Reserved	RtDmn_Agt[1 :0]		RtHigher
DEFAULT	0	0	0	0	0	0	0	0

BIT	READ / WRITE	DESCRIPTION
7	R/W	Virtual Temp Function Enable.(Virtual_En) When enable this function, the temperature raw data can use LPC to write raw data to Bank7 Index 17h - Index 1Eh
6-5	R/W	Reserved.

BIT	READ / WRITE	DESCRIPTION
4	R/W	When temperature data reading is positive or less than -128, can enable this function to clamp temperature data.(Clamp)
3	R/W	Reserved.
2	R/W	Agent 31 always return the relative domain Temperature. 0 = Agent always returns the relative temperature from domain 0. 1 = Agent always returns the relative temperature from domain 1.
1	R/W	Agent 30 always return the relative domain Temperature. 0 = Agent always returns the relative temperature from domain 0. 1 = Agent always returns the relative temperature from domain 1.
0	R/W	Return High Temperature of doamin0 or domain1.(RtHigher) 0 = The temperature of each agent is returned from domain 0 or domain 1, which is controlled by (CR 04 _{HEX}) 1 = Return the highest temperature in domain 0 and domain 1 of individual Agent.

9.308 PECI Command Tbase0 Register - Index 04h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Tbase 0						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Agent0 base temperature for calculating agent0 absolute temperature.

9.309 PECI Command Tbase1 Register - Index 05h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved		Tbase 1					
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Agent1 base temperature for calculating agent1 absolute temperature.

9.310 PECI Agent Relative Temperature Register – Index 06h ~ 0Dh (Bank 2)

These registers return the raw data retrieved from PECI GetTemp(). The data may be the error code (range: 8000H~81FFH) or relative temperatures to process the defined **Tbase**. The error code will only be update in **ARTR** and absolute Temperature will not be updated when the error code is received. If the **RtHigher** mechanism is activated, the normal temperature will always be returned first. In case both 2 domains return errors, the return

priority will be Overflow Error > Underflow Error > Missing Diode > General Error. The reset value is 8001_{HEX}, in that PECI is defaulted to be off. In PECI, 8001_{HEX} means the diode is missing.

Attribute: Read / Write(When Virtual_En enable)

ADDRESS 17-1E	DESCRIPTION
06h[15:8],07h[7:0]	Domain0 Relative Temperature Agent0 [15:0]
08h[15:8],09h[7:0]	Domain1 Relative Temperature Agent0 [15:0]
0Ah[15:8],0Bh[7:0]	Domain0 Relative Temperature Agent1 [15:0]
0Ch[15:8],0Dh[7:0]	Domain1 Relative Temperature Agent1 [15:0]

<u>GetTemp() PECI Temperature format:</u>

BIT	DESCRIPTION
15	Sign Bit. (Sign) In PECI Protocol, this bit should always be 1 to represent a negative temperature.
14-6	The integer part of the relative temperature. (Temperature[8:0])
5	TEMP_2 . 0.5°C unit.
4	TEMP_4 . 0.25°C unit.
3	TEMP_8 . 0.125℃ unit.
2	TEMP_16 . 0.0625℃ unit.
1	TEMP_32 . 0.03125℃ unit.
0	TEMP_64 . 0.015625℃ unit.

GetTemp() Response Definition:

RESPONSE	MEANING
General Sensor Error (GSE)	Thermal scan did not complete in time. Retry is appropriate.
0x0000	Processor is running at its maximum temperature or is currently being reset.
All other data	Valid temperature reading, reported as a negative offset from the TCC activation temperature. The valid temperature reading is referred to GetTemp()) PECI Temperature format

Error Code	Description	Host operation
8000нех	General Sensor Error	No further processing.
8001 _{HEX}	Sensing Device Missing	
8002нех	Operational, but the temperature is lower than the sensor operation range.	Compulsorily write $0^{\circ}\mathbb{C}$ back to the temperature readouts.
8003нех	Operational, but the temperature is higher than the sensor operation range.	Compulsorily write 127°C back to the temperature readouts.

8004нех	Reserved.	No further operation.
t		
81FF _{HEX}		

9.311 PECI Command Write Data Registers - Index 10h ~ 1Fh (Bank 2)

9.312 PECI Command Address Register - Index 10h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		PECI Command Address						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.313 PECI Command Write Length Register - Index 11h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Command Write Length							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.314 PECI Command Read Length Register - Index 12h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Command Read Length							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.315 PECI Command Code Register - Index 13h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Command Code							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.316 PECI Command Write Data 1 Register - Index 14h (Bank 2)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Write Data 1							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.317 PECI Command Write Data 2 Register – Index 15h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		PECI Write Data 2						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.318 PECI Command Write Data 3 Register - Index 16h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Write Data 3							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.319 PECI Command Write Data 4 Register – Index 17h (Bank 2)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		PECI Write Data 4								
DEFAULT	0	0	0	0	0	0	0	0		

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.320 PECI Command Write Data 5 Register - Index 18h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		PECI Write Data 5							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.321 PECI Command Write Data 6 Register – Index 19h (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		PECI Write Data 6							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.322 PECI Command Write Data 7 Register – Index 1Ah (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME				PECI Wri	te Data 7			

DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.323 PECI Command Write Data 8 Register – Index 1Bh (Bank 2)

Attribute: Read/Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		PECI Write Data 8							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.324 PECI Command Write Data 9 Register - Index 1Ch (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	7 6 5 4 3 2 1 0							
NAME		PECI Write Data 9											
DEFAULT	0	0	0	0	0	0	0	0					

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.325 PECI Command Write Data 10 Register - Index 1Dh (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Write Data 10							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

 $Publication \ Release \ Date: \ September \ 12, \ 2023$

-199- Version: 2.4

9.326 PECI Command Write Data 11 Register – Index 1Eh (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Write Data 11							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.327 PECI Command Write Data 12 Register - Index 1Fh (Bank 2)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Write Data 12							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	The data would be sent to client through issuing Manual Command.

9.328 PECI Command Read Data Registers – Index 20h ~ 24h (Bank 2)

9.329 PECI Absolute Temperature value Register – Index 20h-21h (Bank 2)

[ATH_Agent [8:2] +ATL_Agent[1:0]]] = Tbase + [RTH_Agent + RTL_Agent]

9.330 PECI Absolute Temperature value Register - Index 20h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Absolute Temperature Vaule[9:2]							
DEFAULT	0	0	1	0	1	0	0	0

BIT	DESCRIPTION
7-0	Absolute Temperature value of all Agent [9] (Sign bit)
	Absolute Temperature value of all Agent [8:2] (Integer bits)

BIT	DESCRIPTION
	Absolute Temperature value of all Agent [1:0] (Fraction bits)

9.331 PECI Absolute Temperature value Register – Index 21h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved PECI Absolute Temperature Vaule[1:0]							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Absolute Temperature value of all Agent [9] (Sign bit)
	Absolute Temperature value of all Agent [8:2] (Integer bits)
	Absolute Temperature value of all Agent [1:0] (Fraction bits)

9.332 PECI Command Alive Agent and Warning Flag Register - Index 24h (Bank 2)

Attribute: Read only Size: 8 bits

0 510								
BIT	7	6	5	4	3	2	1	0
NAME	Reserved		Alive Agent[1:0]		Reserved		Alert Value[1:0]	
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-6	Reserved
5	Agent 31 Alive Bit 1: agent31 is able to respond to Ping() command. Agent alive 0: agent31 isn't able to respond to Ping() command. Agent is not alive
4	Agent 30 Alive Bit 1: agent30 is able to respond to Ping() command. Agent alive 0: agent30 isn't able to respond to Ping() command. Agent is not alive
3-2	Reserved
1	Agent31 Alert Bit (Default value is 0) 0: Agent has valid FCS. 1: Agent has invalid FCS in the previous 3 transactions.
0	Agent30 Alert Bit (Default value is 0) 0: Agent has valid FCS. 1: Agent has invalid FCS in the previous 3 transactions.

9.333 PECI Command Read Data Register - Index 30h ~ 38h (Bank 2)

9.334 PECI Command Read Data 1 Register – Index 30h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Read Data 1							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Retrieve related data from client through issuing Manual mode.
	The data would be getting from client.

9.335 PECI Command Read Data 2 Register – Index 31h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Read Data 2							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Retrieve related data from client through issuing Manual mode.
	The data would be getting from client.

9.336 PECI Command Read Data 3 Register – Index 32h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Read Data 3							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Retrieve related data from client through issuing Manual mode.
	The data would be getting from client.

-202-

Publication Release Date: September 12, 2023

Version: 2.4

9.337 PECI Command Read Data 4 Register - Index 33h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Read Data 4							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Retrieve related data from client through issuing Manual mode. The data would be getting from client.

9.338 PECI Command Read Data 5 Register - Index 34h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	PECI Read Data 5							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Retrieve related data from client through issuing Manual mode.
	The data would be getting from client.

9.339 PECI Command Read Data 6 Register - Index 35h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		PECI Read Data 6						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Retrieve related data from client through issuing Manual mode.
	The data would be getting from client.

9.340 PECI Command Read Data 7 Register – Index 36h (Bank 2)

Attribute: Read only

8 bits

Size:

BIT	7	6	5	4	3	2	1	0
NAME		PECI Read Data 7						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Retrieve related data from client through issuing Manual mode.
	The data would be getting from client.

9.341 PECI Command Read Data 8 Register – Index 37h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		PECI Read Data 8						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Retrieve related data from client through issuing Manual mode.
	The data would be getting from client.

9.342 PECI Command Read Data 9 Register - Index 38h (Bank 2)

Attribute: Read only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME				PECI Rea	ad Data 9			
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Retrieve related data from client through issuing Manual mode.
	The data would be getting from client.

PECI Manual Command Address Table

Command Bank 2	Address CR 10 _{HEX}	Write Length CR 11 _{HEX}	Read Length CR 12 _{HEX}	Command Code CR 13 _{HEX}
Ping	۸ ما ما ب	00	00	
GetDIB	Addr	01	08	F7

GetTemp	01	02	01
PCIRd30	06	02 / 03 / 05	61
PCIWr30	08 / 09 / 0B	01	65
PCIRdLocal30	05	02 / 03 / 05	E1
PCIWrLocal30	07 / 08 / 0A	01	E5
PKGRd30	05	02 / 03 / 05	A1
PKGWr30	07 / 08 / 0A	01	A5
IAMSRRd30	05	02 / 03 / 05 / 09	B1
IAMSRWr30	07 / 08 / 0A / 0E	01	B5

PECI Manual Command Read Data Table

Command	PCI Rd30	PCI Wr30	PCIRd Local30	PCIWr Local30	PKG Rd30	PKG Wr30	IAMSR Rd30	IAMSR Wr30	GetDIB	GetTemp
Command Code	61	65	E1	E5	A 1	A 5	B1	В5	F7	01
RdData 1 CR 30 _{HEX}	Ccode	Ccode	Ccode	Ccode	Ccode	Ccode	Ccode	Ccode	Х	Х
RdData 2 CR 31 _{HEX}	Х	Х	Х	Х	Х	Х	Data LSB_1	Х	Device Info	Х
RdData 3 CR 32 _{HEX}	Х	Х	Х	Х	Х	Х	Data LSB_2	Х	Revision Number	Х
RdData 4 CR 33 _{HEX}	Х	Х	Х	Х	Х	Х	Data LSB_3	Х	Reserved 1	Х
RdData 5 CR 34 _{HEX}	Х	Х	х	Х	Х	Х	Data LSB_4	Х	Reserved 2	Х
RdData 6 CR 35 _{HEX}	Data LSB_1	Х	Data LSB_1	Х	Data LSB_1	Х	Data LSB_5	Х	Reserved 3	Х
RdData 7 CR 36 _{HEX}	Data LSB_2	X	Data LSB_2	Х	Data LSB_2	X	Data LSB_6	X	Reserved 4	Х
RdData 8 CR 37 _{HEX}	Data LSB_3	Х	Data LSB_3	Х	Data LSB_3	Х	Data LSB_7	Х	Reserved 5	Temp_LB
RdData 9 CR 38 _{HEX}	Data MSB	Х	Data MSB	Х	Data MSB	Х	Data MSB	Х	Reserved 6	Temp_HB

Note: X mean don't care

PECI Manual Command Write Data Table

Command	PCI	PCI	PCIRd	PCIWr	PKG	PKG	IAMSR	IAMSR
	Rd30	Wr30	Local30	Local30	Rd30	Wr30	Rd30	Wr30
Command Code	61	65	E1	E 5	A 1	A 5	B1	B5
WrData 1	Host	Host	Host	Host	Host	Host	Host	Host
CR 14 _{HEX}	ID	ID	ID	ID	ID	ID	ID	ID

WrData 2 CR 15 _{HEX}	Addr LSB_1	Addr LSB_1	Addr LSB_1	Addr LSB_1	Index	Index	Process or ID	Process or ID
WrData 3 CR 16 _{HEX}	Addr LSB_2	Addr LSB_2	Addr LSB_2	Addr LSB_2	Param LSB	Param LSB	Addr LSB	Addr LSB
WrData 4 CR 17 _{HEX}	Addr LSB_3	Addr LSB_3	Addr MSB	Addr MSB	Param MSB	Param MSB	Addr MSB	Addr MSB
WrData 5 CR 18 _{HEX}	Addr MSB	Addr MSB	Х	Data LSB_1	Х	Data LSB_1	Х	Data LSB_1
WrData 6 CR 19 _{HEX}	Х	Data LSB_1	Х	Data LSB_2	Х	Data LSB_2	х	Data LSB_2
WrData 7 CR 1A _{HEX}	Х	Data LSB_2	Х	Data LSB_3	Х	Data LSB_3	х	Data LSB_3
WrData 8 CR 1B _{HEX}	Х	Data LSB_3	Х	Data MSB	Х	Data MSB	х	Data LSB_4
WrData 9 CR 1C _{HEX}	Х	Data MSB	Х	Х	Х	Х	Х	Data LSB_5
WrData10 CR 1D _{HEX}	Х	Х	Х	Х	Х	Х	Х	Data LSB_6
WrData11 CR 1E _{HEX}	Х	Х	Х	Х	Х	Х	Х	Data LSB_7
WrData12 CR 1F _{HEX}	Х	Х	Х	Х	Х	Х	Х	Data MSB

Note: X mean don't care

9.343 Voltage and Temperature Read Register – Index 00h~0Fh (Bank 3)

Attribute: Read only at VSB domain

Size: 8 bits

ADDRESS 00-0F	DESCRIPTION
00h	CPUVCORE reading
01h	VIN0 reading
02h	AVSB reading
03h	3VCC reading
04h	VIN1 reading
05h	VIN2 reading
06h	Reserved
07h	3VSB reading.
08h	VBAT reading
09h	VTT reading
0Ah	Reserved
0Bh	Reserved

ADDRESS 00-0F	DESCRIPTION
0Ch	SYSTIN
0Dh	CPUTIN
0Eh	AUXTIN
0Fh	Reserved

9.344 SYSTIN Temperature Sensor Offset Register - Index 11h (Bank 3)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		OFFSET<7:0>							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	SYSTIN Temperature Offset Value. The value in this register is added to the monitored value so that the read value will be the sum of the monitored value and this offset value.

9.345 CPUTIN Temperature Sensor Offset Register - Index 12h (Bank 3)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		OFFSET<7:0>							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION					
7-0	CPUTIN Temperature Offset Value. The value in this register will be added to the monitored value so that the read value is the sum of the monitored value and this offset value.					

9.346 AUXTIN Temperature Sensor Offset Register - Index13h (Bank 3)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		OFFSET<7:0>							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	AUXTIN Temperature Offset Value. The value in this register is added to the monitored value so that the read value is the sum of the monitored value and this offset value.

9.347 Reserved Register - Index 14h ~ 16h (Bank 3)

9.348 Configuration Register - Index 17h (Bank 3)

Attribute: Read/Write Size: 8 bits

BIT	7	7 6-4 3		2	1	0
NAME	INITIALIZATION	Reserved	INT_CLEAR	Reserved	Reserved	START
DEFAULT	0	0	0	0	0	1

BIT	DESCRIPTION
7	Initialization. A one restores the power-on default values to some registers. This bit clears itself since the power-on default of this bit is zero.
6	Reserved.
5	Reserved.
4	Reserved.
3	INT_Clear. A one disables the SMI# output without affecting the contents of Interrupt Status Registers. The device will stop monitoring. It will resume upon clearing of this bit.
2	Reserved.
1	Reserved.
0	 Start. A one enables startup of monitoring operations. A zero puts the part in standby mode. Note: Unlike the "INT_Clear" bit, the outputs of interrupt pins will not be cleared if the user writes a zero to this location after an interrupt has occurred.

9.349 VBAT Monitor Control Register – Index 18h (Bank 3)

BIT	7	6	5	4	3	2	1	0
NAME	Reserved				DIODES3	DIODES2	DIODES1	EN_ VBAT _MNT
DEFAULT	0	0	0	0	0	1	0	0

BIT	DESCRIPTION				
7-4	eserved.				
3	DIODES 3. Sensor type selection for AUXTIN. 1: Diode sensor. 0: Thermistor sensor. (default)				
2	DIODES 2. Sensor type selection for CPUTIN. 1: Diode sensor. (default) 0: Thermistor sensor.				

BIT	DESCRIPTION
	DIODES 1. Sensor type selection for SYSTIN.
1	1: Diode sensor.
	0: Thermistor sensor. (default)
	EN_VBAT_MNT.
0	1: Enable battery voltage monitor. When this bit changes from zero to one, it takes one monitor cycle time to update the VBAT reading value register.
	0: Disable battery voltage monitor.

9.350 Current Mode Enable Register - Index 19h (Bank 3)

Attribute: Read/Write Size: 8 bits

BIT	7 6 5 4 3				2	1	0	
NAME		ı	Reserved		EN_ AUXTIN	EN_ CPUTIN	EN_ SYSTIN	
					CURRENT MODE	CURRENT MODE	CURRENT MODE	
DEFAULT	0	0	0	0	0	0	1	0

BIT	DESCRIPTION
7-3	Reserved.
0	Enable AUXTIN Current Mode . With AUXTIN is selected to Diode sensor (Bank3, Index 18h, Bit 3 = 1).
2	1: Temperature sensing of AUXTIN by Current Mode.
	0: Temperature sensing of AUXTIN depends on the setting of Index 18h.(Default)
4	Enable CPUTIN Current Mode. With CPUTIN is selected to Diode sensor (Bank3, Index 18h, Bit 2 = 1).
1	1: Temperature sensing of CPUTIN by Current mode. (Default)
	0: Temperature sensing of CPUTIN depends on the setting of Index 18h.
	Enable SYSTIN Current Mode. With SYSTIN is selected to Diode sensor (Bank3, Index 18h, Bit 1 = 1).
0	1: Temperature sensing of SYSTIN by Current Mode.
	0: Temperature sensing of SYSTIN depends on the setting of Index 18h. (Default)

9.351 Reserved Register - Index 1Ah ~ 8Fh (Bank 3)

9.352 PECI Agent Enable Register - Index 90h (Bank 3)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME			EN_PECI1	EN_PECI0				
DEFAULT	0	0	0	0				

BIT	DESCRIPTION
7-2	Reserved.
1	Enable PECI Agent1 Mode.
0	Enable PECI Agent0 Mode.

9.353 Reserved Register - Index 91h ~ B9h (Bank 3)

9.354 AUXFAN2 Max Duty Compare Source Select Register - Index BAh (Bank 3)

Attribute: Read/Write Size: 8 bits Reset by: RSMRST#

BIT	7	6	5	4	3	2	1	0	
NAME	AUXFAN2	Max Duty (Compare Sou	ırce Select	Reserved				
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7	AUXFAN2 Max Duty Source Select
	0: Disable AUXFAN1 Duty
	1: Enable AUXFAN1 Duty
	AUXFAN2 Max Duty Source Select
6	0: Disable AUXFAN0 Duty
	1: Enable AUXFAN0 Duty
	AUXFAN2 Max Duty Source Select
5	0: Disable CPUFAN Duty
	1: Enable CPUFAN Duty
	AUXFAN2 Max Duty Source Select
4	0: Disable SYSFAN Duty
	1: Enable SYSFAN Duty
3-0	Reserved.

9.355 SYSFAN CPUFAN Max Duty Compare Source Select Register – Index BBh (Bank 3)

Attribute: Read/Write
Size: 8 bits
Reset by: RSMRST#

BIT	7	6	5	4	3	2	1	0	
NAME	CPUFAN	Max Duty Co	ompare Sou	rce Select	SYSFAN Max Duty Compare Source Select				
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7	CPUFAN Max Duty Source Select 0: Disable AUXFAN2 Duty 1: Enable AUXFAN2 Duty

Publication Release Date: September 12, 2023

Version: 2.4

BIT	DESCRIPTION
6	CPUFAN Max Duty Source Select 0: Disable AUXFAN1 Duty 1: Enable AUXFAN1 Duty
5	CPUFAN Max Duty Source Select 0: Disable AUXFAN0 Duty 1: Enable AUXFAN0 Duty
4	CPUFAN Max Duty Source Select 0: Disable SYSFAN Duty 1: Enable SYSFAN Duty
3	SYSFAN Max Duty Source Select 0: Disable AUXFAN2 Duty 1: Enable AUXFAN2 Duty
2	SYSFAN Max Duty Source Select 0: Disable AUXFAN1 Duty 1: Enable AUXFAN1 Duty
1	SYSFAN Max Duty Source Select 0: Disable AUXFAN0 Duty 1: Enable AUXFAN0 Duty
0	SYSFAN Max Duty Source Select 0: Disable CPUFAN Duty 1: Enable CPUFAN Duty

9.356 AUXFAN0 AUXFAN1 Max Duty compare Source Select Register - Index BCh (Bank 3)

Attribute: Read/Write Size: 8 bits Reset by: RSMRST#

BIT	7	6	5	4	3	2	1	0	
NAME	AUXFAN1	Max Duty C	ompare Sou	rce Select	AUXFAN0 Max Duty Compare Source Select				
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7	AUXFAN1 Max Duty Source Select
	0: Disable AUXFAN2 Duty
	1: Enable AUXFAN2 Duty
6	AUXFAN1 Max Duty Source Select
	0: Disable AUXFAN0 Duty
	1: Enable AUXFAN0 Duty
	AUXFAN1 Max Duty Source Select
5	0: Disable CPUFAN Duty
	1: Enable CPUFAN Duty
	AUXFAN1 Max Duty Source Select
4	0: Disable SYSFAN Duty
	1: Enable SYSFAN Duty
3	AUXFAN0 Max Duty Source Select

BIT	DESCRIPTION
	0: Disable AUXFAN2 Duty
	1: Enable AUXFAN2 Duty
	AUXFAN0 Max Duty Source Select
2	0: Disable AUXFAN1 Duty
	1: Enable AUXFAN1 Duty
	AUXFAN0 Max Duty Source Select
1	0: Disable CPUFAN Duty
	1: Enable CPUFAN Duty
	AUXFAN0 Max Duty Source Select
0	0: Disable SYSFAN Duty
	1: Enable SYSFAN Duty

9.357 BEEP Control Register1 - Index C0h (Bank 3)

BIT	7	6	5	4	3	2	1	0	
NAME	En3VSB_ BP	EnVHIF_ BP	EnVIN2_ BP	EnVIN1_ BP	En3VCC_ BP	EnAVSB_ BP	EnVIN0_ BP	EnCPUVCORE_ BP	
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7	En3VSB_BP
	1 : Enable 3VSB Beep function
	0 : Disable 3VSB Beep fuction
6	EnVHIF_BP
	1 : Enable VHIF Beep function
	0 : Disable VHIF Beep fuction
5	EnVIN2_BP
	1 : Enable VIN2 Beep function
	0 : Disable VIN2 Beep fuction
4	EnVIN1_BP
	1 : Enable VIN1 Beep function
	0 : Disable VIN1 Beep fuction
3	En3VCC_BP
	1 : Enable 3VCC Beep function
	0 : Disable 3VCC Beep fuction
2	EnAVSB_BP
	1 : Enable AVSB Beep function
	0 : Disable AVSB Beep fuction
1	EnVIN0_BP
	1 : Enable VIN0 Beep function
	0 : Disable VIN0 Beep fuction
0	EnCPUVCORE_BP

BIT	DESCRIPTION
	1 : Enable CPUVCORE Beep function
	0 : Disable CPUVCORE Beep fuction

9.358 BEEP Control Register2 - Index C1h (Bank 3)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		Rese	erved		Reserved	Reserved	EnVTT_	EnVBAT_
							BP	BP
DEFAULT		()		0	0	0	0

BIT	DESCRIPTION
7-4	Reserved.
3	Reserved.
2	Reserved.
1	EnVTT_BP
	1 : Enable VTT Beep function
	0 : Disable VTT Beep fuction
0	EnVBAT_BP
	1 : Enable VBAT Beep function
	0 : Disable VBAT Beep fuction

9.359 BEEP Control Register3 - Index C2h (Bank 3)

BIT	7	6	5	4	3	2	1	0
NAME			Reserved	EnT3 _BP	EnT2 _BP	EnT1 _BP		
DEFAULT			0	0	0	0		

BIT	DESCRIPTION
7-3	Reserved.
2	EnT3_BP
	1 : Enable SMIOVT3 Beep function
	0 : Disable SMIOVT3 Beep fuction
1	EnT2_BP
	1 : Enable SMIOVT2 Beep function
	0 : Disable SMIOVT2 Beep fuction
0	EnT1_BP
	1 : Enable SMIOVT1 Beep function
	0 : Disable SMIOVT1 Beep fuction

9.360 BEEP Control Register4 - Index C3h (Bank 3)

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	En AUXFANIN2 _BP	En AUXFANIN1 _BP	En AUXFANINO _BP	En CPUFANIN _BP	En SYSFANIN _BP
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-6	Reserved.
4	En AUXFANIN2_BP
	1 : Enable AUXFANIN2 Beep function
	0 : Disable AUXFANIN2 Beep fuction
3	En AUXFANIN1_BP
	1 : Enable AUXFANIN1 Beep function
	0 : Disable AUXFANIN1 Beep fuction
2	En AUXFANIN0_BP
	1 : Enable AUXFANIN0 Beep function
	0 : Disable AUXFANIN0 Beep fuction
1	En CPUFANIN _BP
	1 : Enable CPUFANIN Beep function
	0 : Disable CPUFANIN Beep fuction
0	En SYSFANIN _BP
	1 : Enable SYSFANIN Beep function
	0 : Disable SYSFANIN Beep fuction

9.361 BEEP Control Register5 - Index C4h (Bank 3)

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	Reserved	En Caseopen0_BP	Reserved	En_Beep
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-3	Reserved.
2	En Caseopen0_BP 1 : Enable Caseopen0_bp Beep function 0 : Disable Caseopen0_bp Beep fuction
1	Reserved.

BIT	DESCRIPTION
0	Enable Beep Function:
	1 : Enable Beep Function
	0 : Disable Beep Fuction

9.362 SYSFAN DUTY PER STEP Register - Index D8h (Bank 3)

Attribute: Read/Write Size: 8 bits Reset by: RSMRST#

BIT	7	6	5	4	3	2	1	0	
NAME		UP_STEP				DOWN_STEP			
DEFAULT	0	0	0	1	0	0	0	1	

BIT	DESCRIPTION
7-4	UP unit.
3-0	DOWN unit.

9.363 CPUFAN DUTY PER STEP Register - Index D9h (Bank 3)

Attribute: Read/Write Size: 8 bits Reset by: RSMRST#

BIT	7	6	5	4	3	2	1	0	
NAME		UP_STEP				DOWN_STEP			
DEFAULT	0	0	0	1	0	0	0	1	

BIT	DESCRIPTION
7-4	UP unit.
3-0	DOWN unit.

9.364 AUXFAN0 DUTY PER STEP Register – Index DAh (Bank 3)

Attribute: Read/Write
Size: 8 bits
Reset by: RSMRST#

BIT	7	6	5	4	3	2	1	0
NAME	UP_STEP				DOWN_STEP			
DEFAULT	0	0	0	1	0	0	0	1

	BIT	DESCRIPTION
I	7-4	UP unit.

3-0 DOWN unit.

9.365 AUXFAN1 DUTY PER STEP Register – Index DBh (Bank 3)

Attribute: Read/Write Size: 8 bits Reset by: RSMRST#

BIT	7	6	5	4	3	2	1	0
NAME	UP_STEP				DOWN_STEP			
DEFAULT	0	0	0	1	0	0	0	1

BIT	DESCRIPTION
7-4	UP unit.
3-0	DOWN unit.

9.366 AUXFAN2 DUTY PER STEP Register – Index DCh (Bank 3)

Attribute: Read/Write Size: 8 bits Reset by: RSMRST#

BIT	7	6	5	4	3	2	1	0	
NAME		UP_STEP				DOWN_STEP			
DEFAULT	0	0	0	1	0	0	0	1	

BIT	DESCRIPTION
7-4	UP unit.
3-0	DOWN unit.

9.367 SYSFAN Max Duty Output Register – Index E0h (Bank 3)

Attribute: Read Only Size: 8 bits Reset by: PWROK

BIT	7	6	5	4	3	2	1	0
NAME	SYSFAN Max Duty Output							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION	
0	SYSFAN Max Duty Output	

9.368 CPUFAN Max Duty Output Register – Index E1h (Bank 3)

Attribute: Read Only

Size: 8 bits **PWROK** Reset by:

BIT	7	6	5	4	3	2	1	0
NAME		CPUFAN Max Duty Output						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION	
0	CPUFAN Max Duty Output	

9.369 AUXFAN0 Max Duty Output Register - Index E2h (Bank 3)

Attribute: Read Only Size: 8 bits Reset by: **PWROK**

BIT	7	6	5	4	3	2	1	0
NAME	AUXFAN0 Max Duty Output							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
0	AUXFAN0 Max Duty Output

9.370 AUXFAN1 Max Duty Output Register - Index E3h (Bank 3)

Attribute: Read Only Size: 8 bits Reset by: **PWROK**

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN1 Max Duty Output						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION	
0	AUXFAN1 Max Duty Output	

9.371 AUXFAN2 Max Duty Output Register - Index E4h (Bank 3)

Attribute: Read Only Size: 8 bits **PWROK** Reset by:

BIT	7	6	5	4	3	2	1	0
NAME		AUXFAN2 Max Duty Output						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
II	

BIT	DESCRIPTION	
0	AUXFAN2 Max Duty Output	

9.372 HM Read Only Register

ADDRESS A6-A0	DESCRIPTION
00h	CPUVCORE reading
01h	VIN0 reading
02h	AVSB reading
03h	3VCC reading
04h	VIN1 reading
05h	VIN2 reading
06h	VHIF reading
07h	3VSB reading
08h	VBAT reading
09h	VTT reading
0Ah	Reserved
0Bh	Reserved
0Ch	Reserved
0Dh	Reserved
0Eh	Reserved
0Fh	Reserved
10h	SYSTIN temperature reading
11h	CPUTIN temperature reading
12h	AUXTIN temperature reading
13h	Reserved
14h	Reserved
15h	Reserved
16h	Reserved
17h	Local temperature reading
18h	Reserved
19h	SYSFANOUT fan control temperature reading
1Ah	CPUFANOUT fan control temperature reading
1Bh	AUXFANOUT0 fan control temperature reading
1Ch	AUXFANOUT1 fan control temperature reading
1Dh	AUXFANOUT2 fan control temperature reading
1Eh	Reserved
1Fh	SYS_Weight temperature reading
20h	CPU_Weight temperature reading

ADDRESS A6-A0	DESCRIPTION						
21h	AUX_Weight temperature reading						
22h	SYSFAN duty target or rpm target reading						
23h	CPUFAN duty target or rpm target reading						
24h	AUXFAN0 duty target or rpm target reading						
25h	AUXFAN1 duty target or rpm target reading						
26h	AUXFAN2 duty target or rpm target reading						
27h	Reserved						
28h	SYSFAN rpm reading, unit 50rpm						
29h	CPUFAN rpm reading, unit 50rpm						
2Ah	AUXFAN0 rpm reading, unit 50rpm						
2Bh	AUXFAN1 rpm reading, unit 50rpm						
2Ch	AUXFAN2 rpm reading, unit 50rpm						
2Dh	Reserved						
2Eh	SYSFANIN COUNT High-byte reading						
2Fh	SYSFANIN COUNT Low-byte reading						
30h	CPUFANIN COUNT High-byte reading						
31h	CPUFANIN COUNT Low-byte reading						
32h	AUXFANIN0 COUNT High-byte reading						
33h	AUXFANIN0 COUNT Low-byte reading						
34h	AUXFANIN1 COUNT High-byte reading						
35h	AUXFANIN1 COUNT Low-byte reading						
36h	AUXFANIN2 COUNT High-byte reading						
37h	AUXFANIN2 COUNT Low-byte reading						
38h	Reserved						
39h	Reserved						
3Ah	SYSFANIN SPEED High-byte (rpm) reading						
3Bh	SYSFANIN SPEED Low-byte (rpm) reading						
3Ch	CPUFANIN SPEED High-byte (rpm) reading						
3Dh	CPUFANIN SPEED Low-byte (rpm) reading						
3Eh	AUXFANIN0 SPEED High-byte (rpm) reading						
3Fh	AUXFANIN0 SPEED Low-byte (rpm) reading						
40h	AUXFANIN1 SPEED High-byte (rpm) reading						
41h	AUXFANIN1 SPEED Low-byte (rpm) reading						
42h	AUXFANIN2 SPEED High-byte (rpm) reading						
43h	AUXFANIN2 SPEED Low-byte (rpm) reading						
44h	Reserved						
45h	Reserved						

ADDRESS A6-A0	DESCRIPTION						
46h	Reserved						
47h	Reserved						
48h	Reserved						
49h	Reserved						
4Ah	Reserved						
4Bh	Reserved						
4Ch	SYSFANOUT Output Value reading						
4Dh	CPUFANOUT Output Value reading						
4Eh	AUXFANOUT0 Output Value reading						
4Fh	AUXFANOUT1 Output Value reading						
50h	AUXFANOUT2 Output Value reading						
51h	Reserved						
52h	PECI Agent 0 reading						
53h	Reserved						
54h	PECI Agent 1 reading						
55h	Reserved						
56h	PCH_CHIP_CPU_MAX_TEMP reading						
57h	PCH_CHIP_TEMP reading						
58h	PCH_CPU_TEMP_H reading						
59h	PCH_CPU_TEMP_L reading						
5Ah	PCH_MCH_TEMP reading						
5Bh	Agent0 Dimm0 reading						
5Ch	Agent0 Dimm1 reading						
5Dh	Agent1 Dimm0 reading						
5Eh	Agent1 Dimm1 reading						
5Fh	PCH_TSI0_TEMP_H reading						
60h	PCH_TSI0_TEMP_L reading						
61h	PCH_TSI1_TEMP_H reading						
62h	PCH_TSI1_TEMP_L reading						
63h	Reserved						
64h	Reserved						
65h	Reserved						
66h	Reserved						
67h	Reserved						
68h	Reserved						
69h	Reserved						
6Ah	Reserved						

ADDRESS A6-A0	DESCRIPTION
6Bh	Reserved
6Ch	Reserved
6Dh	Reserved
6Eh	Reserved
6Fh	ByteTemp_H reading
70h	ByteTemp_L reading
71h	Reserved
72h	Reserved
73h	Reserved
74h	Reserved
75h	SMIOVT1 temperature source reading.
76h	SMIOVT2 temperature source reading.
77h	SMIOVT3 temperature source reading.

10. UART PORT

NCT6122D / NCT6126D supports 6 UART – UART A, UART B, UART C, UART D, UART E and UART F.

10.1 UART Control Register (UCR) (Read/Write)

The UART Control Register defines and controls the protocol for asynchronous data communications, including data length, stop bit, parity, and baud rate selection.

BIT	7	6	5	4	3	2	1	0
NAME	BDLAB	SSE	PBFE	EPE	PBE	MSBE	DLS1	DLS0
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	BDLAB (Baud Rate Divisor Latch Access Bit). When this bit is set to logic 1, designers can access the divisor (in 16-bit binary format) from the divisor latches of the baud-rate generator during a read or write operation. When this bit is set to logic 0, the Receiver Buffer Register, the Transmitter Buffer Register, and the Interrupt Control Register can be accessed.
6	SSE (Set Silence Enable). A logic 1 forces the Serial Output (SOUT) to a silent state (a logical 0).
5	PBFE (Parity Bit Fixed Enable). When PBE and PBFE of UCR are both set to logic 1, (1) if EPE is logic 1, the parity bit is logical 0 when transmitting and checking; (2) if EPE is logic 0, the parity bit is logical 1 when transmitting and checking.
4	EPE (Even Parity Enable). When PBE is set to logic 1, this bit counts the number of logic 1's in the data word bits and determines the parity bit. When this bit is set to logic 1, the parity bit is set to logic 1 if an even number of logic 1's are sent or checked. When the bit is set to logic 0, the parity bit is logic 1, if an odd number of logic 1's are sent or checked.
3	PBE (Parity Bit Enable). When this bit is set to logic 1, the transmitter inserts a stop bit between the last data bit and the stop bit of the SOUT, and the receiver checks the parity bit in the same position.
2	 MSBE (Multiple Stop Bit Enable). Defines the number of stop bits in each serial character that is transmitted or received. (1) If MSBE is set to logic 0, one stop bit is sent and checked. (2) If MSBE is set to logic 1 and the data length is 5 bits, one-and-a-half stop bits are sent and checked. (3) If MSBE is set to logic 1 and the data length is 6, 7, or 8 bits, two stop bits are sent and checked.
1	DLS1 (Data Length Select Bit 1). Defines the number of data bits that are sent or checked in each serial character.
0	DLS0 (Data Length Select Bit 0). Defines the number of data bits that are sent or checked in each serial character.

DLS1	DLS0	DATA LENGTH
0	0	5 bits
0	1	6 bits

DLS1	DLS0	DATA LENGTH
1	0	7 bits
1	1	8 bits

The following table identifies the remaining UART registers. Each one is described separately in the following sections.

Table 10-1 Register Summary for UART

					Bit N	umber				
Register A	Address Base		0	1	2	3	4	5	6	7
+ 0 BDLAB = 0	Receiver Buffer Register (Read Only)	RBR	RX Data Bit 0	RX Data Bit 1	RX Data Bit 2	RX Data Bit 3	RX Data Bit 4	RX Data Bit 5	RX Data Bit 6	RX Data Bit 7
+ 0 BDLAB = 0	Transmitter Buffer Register (Write Only)	TBR	TX Data Bit 0	TX Data Bit 1	TX Data Bit 2	TX Data Bit 3	TX Data Bit 4	TX Data Bit 5	TX Data Bit 6	TX Data Bit 7
+ 1 BDLAB = 0	Interrupt Control Register	ICR	RBR Data Ready Interrupt Enable (ERDRI)	TBR Empty Interrupt Enable (ETBREI)	USR Interrupt Enable (EUSRI)	HSR Interrupt Enable (EHSRI)	0	0	0	0
+ 2	Interrupt Status Register (Read Only)	ISR	"0" if Interrupt Pending	Interrupt Status Bit (0)	Interrupt Status Bit (1)	Interrupt Status Bit (2)**	0	0	FIFOs Enabled **	FIFOs Enabled **
+ 2	UART FIFO Control Register (Write Only)	UFR	FIFO Enable	RCVR FIFO Reset	XMIT FIFO Reset	DMA Mode Select	Reserved	Reversed	RX Interrupt Active Level (LSB)	RX Interrupt Active Level (MSB)
+3	UART Control Register	UCR	Data Length Select Bit 0 (DLS0)	Data Length Select Bit 1 (DLS1)	Multiple Stop Bits Enable (MSBE)	Parity Bit Enable (PBE)	Even Parity Enable (EPE)	Parity Bit Fixed Enable PBFE)	Set Silence Enable (SSE)	Baudrate Divisor Latch Access Bit (BDLAB)
+ 4	Handshake Control Register	HCR	Data Terminal Ready (DTR)	Request to Send (RTS)	Loopback RI Input	IRQ Enable	Internal Loopback Enable	0	0	0
+ 5	UART Status Register	USR	RBR Data Ready (RDR)	Overrun Error (OER)	Parity Bit Error (PBER)	No Stop Bit Error (NSER)	Silent Byte Detected (SBD)	TBR Empty (TBRE)	TSR Empty (TSRE)	RX FIFO Error Indication (RFEI) **
+ 6	Handshake Status Register	HSR	CTS Toggling (TCTS)	DSR Toggling (TDSR)	RI Falling Edge (FERI)	DCD Toggling (TDCD)	Clear to Send (CTS)	Data Set Ready (DSR)	Ring Indicator (RI)	Data Carrier Detect (DCD)
+ 7	User Defined Register	UDR	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
+ 0 BDLAB = 1	Baudrate Divisor Latch Low	BLL	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
+ 1 BDLAB = 1	Baudrate Divisor Latch High	BHL	Bit 8	Bit 9	Bit 10	Bit 11	Bit 12	Bit 13	Bit 14	Bit 15

^{*:} Bit 0 is the least significant bit. The least significant bit is the first bit serially transmitted or received.

^{**:} These bits are always 0 in 16450 Mode.

10.2 UART Status Register (USR) (Read/Write)

This 8-bit register provides information about the status of data transfer during communication.

BIT	7	6	5	4	3	2	1	0
NAME	RF EI	TSRE	TBRE	SBD	NSER	PBER	OER	RDR
DEFAULT	0	1	1	0	0	0	0	0

BIT	DESCRIPTION
7	RF EI (RX FIFO Error Indication). In 16450 mode, this bit is always set to logical 0. In 16550 mode, this bit is set to logical 1 when there is at least one parity-bit error and no stop0bit error or silent-byte detected in the FIFO. In 16550 mode, this bit is cleared to logical 0 by reading from the USR if there are no remaining errors left in the FIFO.
6	TSRE (Transmitter Shift Register Empty). In 16450 mode, this bit is set to logical 1 when TBR and TSR are both empty. In 16550 mode, it is set to logical 1 when the transmit FIFO and TSR are both empty. Otherwise, this bit is set to logical 0.
5	TBRE (Transmitter Buffer Register Empty). In 16450 mode, when a data character is transferred from TBR to TSR, this bit is set to logical 1. If ETREI of ICR is high, and interrupt is generated to notify the CPU to write next data. In 16550 mode, this bit is set to logical 1 when the transmit FIFO is empty. It is set to logical 0 when the CPU writes data into TBR or the FIFO.
4	SBD (Silent Byte Detected). This bit is set to logical 1 to indicate that received data are kept in silent state for the time it takes to receive a full word, which includes the start bit, data bits, parity bit, and stop bits. In 16550 mode, it indicates the same condition for the data on the top of the FIFO. When the CPU reads USR, it sets this bit to logical 0.
3	NSER (No Stop Bit Error). This bit is set to logical 1 to indicate that the received data have no stop bit. In 16550 mode, it indicates the same condition for the data on the top of the FIFO. When the CPU reads USR, it sets this bit to logical 0.
2	PBER (Parity Bit Error). This bit is set to logical 1 to indicate that the received data has the wrong parity bit. In 16550 mode, it indicates the same condition for the data on the top of the FIFO. When the CPU reads USR, it sets this bit to logical 0.
1	OER (Overrun Error). This bit is set to logical 1 to indicate that the received data have been overwritten by the next received data before they were read by the CPU. In 16550 mode, it indicates the same condition, instead of FIFO full. When the CPU reads USR, it sets this bit to logical 0.
0	RDR (RBR Data Ready). This bit is set to logical 1 to indicate that the received data are ready to be read by the CPU in the RBR or FIFO. When no data are left in the RBR or FIFO, the bit is set to logical 0.

10.3 Handshake Control Register (HCR) (Read/Write)

This register controls pins used with handshaking peripherals such as modems and also controls the diagnostic mode of the UART.

BIT	7 6 5		4	3	2	1	0	
NAME	RESERVED			INTERNAL LOOPBACK ENABLE	IRQ ENABLE	LOOPBACK RI INPUT	RTS	DTR
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-5	Reserved.
4	 Internal Loopback Enable. When this bit is set to logic 1, the UART enters diagnostic mode, as follows: (1) SOUT is forced to logic 1, and SIN is isolated from the communication link. (2) The modem output pins are set to their inactive state. (3) The modem input pins are isolated from the communication link and connect internally as DTR (bit 0 of HCR) →DSR#, RTS (bit 1 of HCR) →CTS#, Loopback RI input (bit 2 of HCR) → RI# and IRQ enable (bit 3 of HCR) →DCD#. Aside from the above connections, the UART operates normally. This method allows the CPU to test the UART in a convenient way.
3	IRQ Enable. The UART interrupt output is enabled by setting this bit to logic 1. In diagnostic mode, this bit is internally connected to the modem control input DCD#.
2	Loopback RI Input. This bit is only used in the diagnostic mode. In diagnostic mode, this bit is internally connected to the modem control input RI#.
1	RTS (Request to Send). This bit controls the RTS# output. The value of this bit is inverted and output to RTS#.
0	DTR (Data Terminal Ready). This bit controls the DTR# output. The value of this bit is inverted and output to DTR#.

10.4 Handshake Status Register (HSR) (Read/Write)

This register reflects the current state of four input pins used with handshake peripherals such as modems and records changes on these pins.

BIT	7	6	5	4	3	2	1	0
NAME	DCD	RI	DSR	CTS	TDCD	FERI	TDSR	тстѕ
DEFAULT	NA	NA	NA	NA	NA	NA	NA	NA

BIT	DESCRIPTION
7	DCD (Data Carrier Detect). This bit is the inverse of the DCD# input and is equivalent to bit 3 of HCR in Loopback mode.
6	RI (Ring Indicator). This bit is the inverse of the RI# input and is equivalent to bit 2 of HCR in Loopback mode.
5	DSR (Data Set Ready). This bit is the inverse of the DSR# input and is equivalent to bit 0 of HCR in Loopback mode.
4	CTS (Clear to Send). This bit is the inverse of the CTS# input and is equivalent to bit 1 of HCR in Loopback mode.
3	TDCD (DCD# Toggling). This bit indicates that the state of the DCD# pin has changed after HSR is read by the CPU.
2	FERI (RI Falling Edge). This bit indicates that the RI# pin has changed from low to high after HSR is read by the CPU.
1	TDSR (DSR# Toggling). This bit indicates that the state of the DSR# pin has changed after HSR is read by the CPU.
0	TCTS (CTS# Toggling). This bit indicates that the state of the CTS# pin has changed after HSR is read by the CPU.

Publication Release Date: September 12, 2023

10.5 UART FIFO Control Register (UFR) (Write only)

This register is used to control the FIFO functions of the UART.

BIT	7	6	5	4	3	2	1	0
NAME	MSB	LSB	RESER	RVED	DMA MODE SELECT	TRANSMITTER FIFO RESET	RECEIVER FIFO RESET	FIFO ENABLE
DEFAULT	0	0	NA	NA	0	0	0	0

BIT	DESCI	RIPTION			
7	MSB (RX Interrupt Active Level).	These two bits are used to set the active level of the receiver FIFO interrupt. The active level is the number of bytes that			
6	LSB (RX Interrupt Active Level).	must be in the receiver FIFO to generate an interrupt.			
5-4	Reserved.				
3	DMS MODE SELECT. When this bit is set to logic 1, DMA mode changes from mode 0 to mode 1 if UFR bit 0 = 1.				
2	TRANSMITTER FIFO RESET. Setting this bit to logic 1 resets the TX FIFO counter logic to its initial state.				
1	RECEIVER FIFO RESET. Setting this bit to logic 1 resets the RX FIFO counter logic to its initial state.				
0	FIFO ENABLE. This bit enables 16550 (FIFO) mode. This bit should be set to logic 1 before other UFR bits are programmed.				

UFR_	UFR_	RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)								
BIT 7	BIT 6	FIFO_LEVEL_ MODE (CRF8_B7:6 = 00)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 01)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 10)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 11)					
0	0	01	16	80	112					
0	1	04	32	88	116					
1	0	08	48	96	120					
1	1	14	64	104	124					

10.6 Interrupt Status Register (ISR) (Read only)

This register reflects the UART interrupt status.

BIT	7	6	5	4	3	2	1	0
NAME	FIFOS ENABLED		RESERVED		INTERRUPT STATUS BIT 2	INTERRUPT STATUS BIT 1	INTERRUPT STATUS BIT 0	0 IF INTERRUPT PENDING
DEFAULT	0	0	0	0	0	0	0	1

BIT	DESCRIPTION
-----	-------------

7-6	FIFOS ENABLED. Set to logical 1 when UFR, bit 0 = 1.					
5-4	Reserved.					
3	INTERRUPT STATUS BIT 2. In 16450 mode, this bit is logical 0. In 16550 mode, bits 3 and 2 are set to logical 1 when a time-out interrupt is pending. Please see the table below.					
2	INTERRUPT STATUS BIT 1.	These two bits identify the priority level of the pending interrupt, as shown in the table				
1	INTERRUPT STATUS BIT 0.	below.				
0	0 IF INTERRUPT PENDING. This bit is logic 1 if there is no interrupt pending. If one of the interrupt sources has occurred, this bit is set to logical 0.					

	IS	R			INTE	RRUPT SET AND FUNCTION	
Bit 3	Bit 2	Bit 1	Bit 0	Interrupt priority	Interrupt Type	Interrupt Source	Clear Interrupt
0	0	0	1	-	-	No Interrupt pending	-
0	1	1	0	First	UART Receive Status	1. OER = 1 2. PBER = 1 3. NSER = 1 4. SBD = 1	Read USR
0	1	0	0	Second	RBR Data Ready	RBR data ready FIFO interrupt active level reached	Read RBR Read RBR until FIFO data under active level
1	1	0	0	Second	FIFO Data Timeout	Data present in RX FIFO for 4 characters period of time since last access of RX FIFO.	Read RBR
0	0	1	0	Third	TBR Empty	TBR empty	Write data into TBR Read ISR (if priority is third)
0	0	0	0	Fourth	Handshake status	1. TCTS = 1 2. TDSR = 1 3. FERI = 1 4. TDCD = 1	Read HSR

^{**} Bit 3 of ISR is enabled when bit 0 of UFR is logical 1.

10.7 Interrupt Control Register (ICR) (Read/Write)

This 8-bit register enables and disables the five types of controller interrupts separately. A selected interrupt can be enabled by setting the appropriate bit to logical 1. The interrupt system can be totally disabled by setting bits 0 through 3 to logical 0.

BIT	7	6	5 4		3	2	1	0
NAME	RESERVED	RESERVED	RESERVED		EHSRI	EUSRI	ETBREI	ERDRI
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-4	Reserved.
3	EHSRI (Handshake Status Interrupt Enable). Set this bit to logical 1 to enable the handshake status register interrupt.
2	EUSRI (UART Receive Status Interrupt Enable). Set this bit to logical 1 to enable the UART status register interrupt.
1	ETBREI (TBR Empty Interrupt Enable). Set this bit to logical 1 to enable the TBR empty interrupt.

BIT	DESCRIPTION
0	ERDRI (RBR Data Ready Interrupt Enable). Set this bit to logical 1 to enable the RBR data ready interrupt.

10.8 Programmable Baud Generator (BLL/BHL) (Read/Write)

Two 8-bit registers, BLL and BHL, compose a programmable baud generator that uses 24 MHz to generate a 1.8461 MHz frequency and divide it by a divisor from 1 to $(2^{16} - 1)$. The output frequency of the baud generator is the baud rate multiplied by 16, and this is the base frequency for the transmitter and receiver. The table below illustrates the use of the baud generator with a frequency of 1.8461 MHz. In high-speed UART mode (CR0C, bits 7 and 6), the programmable baud generator directly uses 24 MHz and the same divisor as the normal speed divisor. As a result, in high-speed mode, the data transmission rate can be as high as 1.5M bps.

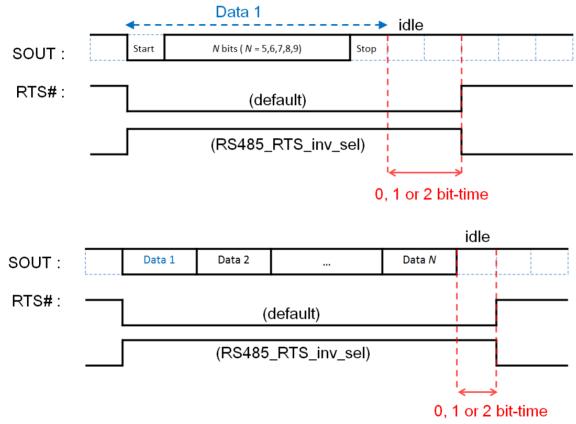
BAUD RATE FROM DIFFERENT PRE-DIVIDER								
PRE-DIV: 13 1.8461M HZ	PRE- DIV:1.625 14.769M HZ	PRE-DIV: 1.0 24M HZ	DECIMAL DIVISOR USED TO GENERATE 16X CLOCK	ERROR PERCENTAGE				
50	400	650	2304	**				
75	600	975	1536	**				
110	880	1430	1047	0.18%				
134.5	1076	1478.5	857	0.099%				
150	1200	1950	768	**				
300	2400	3900	384	**				
600	4800	7800	192	**				
1200	9600	15600	96	**				
1800	14400	23400	64	**				
2000	16000	26000	58	0.53%				
2400	19200	31200	48	**				
3600	28800	46800	32	**				
4800	38400	62400	24	**				
7200	57600	93600	16	**				
9600	76800	124800	12	**				
19200	153600	249600	6	**				
38400	307200	499200	3	**				
57600	460800	748800	2	**				
115200	921600	1497600	1	**				

^{**} Unless specified, the error percentage for all of the baud rates is 0.16%.

Note: Pre-Divisor is determined by CRF0 of UART A.

10.9 User-defined Register (UDR) (Read/Write)

This is a temporary register that can be accessed and defined by the user.


10.10 Extending FIFO

NCT6122D / NCT6126D supports FIFO size extending to 128bytes for RX and TX block. (Enable bit: CRF8, Bit0)

10.11 UART RS485 Auto Flow Control

NCT6122D / NCT6126D supports RS485 auto flow control function for UARTA ~ UARTF. When enabling the RS485 auto control function, it will automatically drive RTS# pin to logic high or low for UARTA ~ UARTF when UART TX block transmits the data.

The diagram shown below illustrates the RS485 auto flow control function for UARTA ~ UARTF.

The default behavior of RTS# pin will drive logic low the time edge between **Start bit** and **bit0** when the UART TX Block start to transmits the data on SOUT pin. Then the RTS# pin will drive logic high later than **Stop bit** about 0, 1 or 2 Bit-Time when UART TX Block completes the data transmission. The driving behavior of RTS# will be inverted when we set RS485_RTS_inv_sel bit = 1'b1. (Bit-time: Depends on the baud rate of transmission)

The bellowing control register table relates to the RS485 auto flow control function for UARTA ~ UARTF.

	UARTA	UARTB	UARTC	UARTD	UARTE	UARTF
RTS485_enable	Logical Device 2, CRF2_Bit1	Logical Device 3, CRF2_Bit1	Logical Device 10, CRF2_Bit1	Logical Device 11, CRF2_Bit1	Logical Device 12, CRF2_Bit1	Logical Device 13, CRF2_Bit1
RTS485_inv_sel	Logical Device 2, CRF2_Bit4	Logical Device 3, CRF2_Bit4	Logical Device 10, CRF2_Bit4	Logical Device 11, CRF2_Bit4	Logical Device 12, CRF2_Bit4	Logical Device 13, CRF2_Bit4

RTS_low_time_sel	Logical Device 2, CRF2_Bit5	Logical Device 3, CRF2_Bit5	9	Logical Device 11, CRF2_Bit5	 9
RTS485_no_delay	Logical Device 2, CRF7_Bit5	Logical Device 3, CRF7_Bit5	9	Logical Device 11, CRF7_Bit5	 9

10.12 UART 9BIT-MODE

10.12.1 Function Description

► Tx function block:

- 1. 9bit-TX block supports 9bit-mode or original RS232 mode TX signal output.
- 9bit-TX block supports sending address byte
 (Setting En_9bit_mode =1 and En_address_byte =1 will force parity bit turned to high bit)
- 3. 9bit-TX block supports 9bit-mode RS485 RTS or original RS232 mode RTS signal output.
- 4. 9bit-TX block supports 9bit-mode inverted and time selected for the RS485 RTS signal. (RS485 RTS time selected: one or two TXC period)
- 5. 9bit-TX block supports clear "en_address_byte" bit automatic.

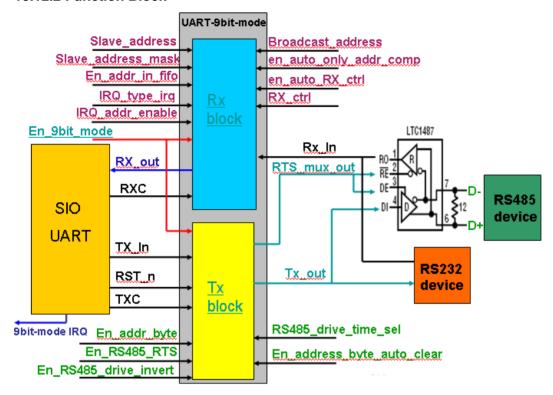
	Register	Register	Register	Register	Register	Register
	location	location	location	location	location	location
	(UART A)	(UART B)	(UART C)	(UART D)	(UART E)	(UART F)
	Logical	Logical	Logical	Logical	Logical	Logical
	Device 2	Device 3	Device 10	Device 11	Device 12	Device 13
En_address_byte	CRF7_B7	CRF7_B7	CRF7_B7	CRF7_B7	CRF7_B7	CRF7_B7

► Rx function block:

- 1. 9bit-RX block supports 9bit-mode or original RS232 mode RX signal output.
- 2. 9bit-RX block supports comparison between with the slave address and broadcast address byte determined by the two registers. (see blow: slave address and slave address mask registers)

- 3. 9bit-RX block supports received address byte pass into RX block FIFO.
- 4. 9bit-RX block supports UART 9bit-mode IRQ output and could select to be issued only when receiving any address bytes or only received address matched.
- 5. 9bit-RX block will automatic modify parity bit of address/data byte to meet parity check from UART receiver block when using 9bit-bit mode.
- 6. 9bit-RX block supports different mode that have different functions by setting RX_ctrl_set[2:0]. (default: RX_ctrl_set[2:0] = 000)

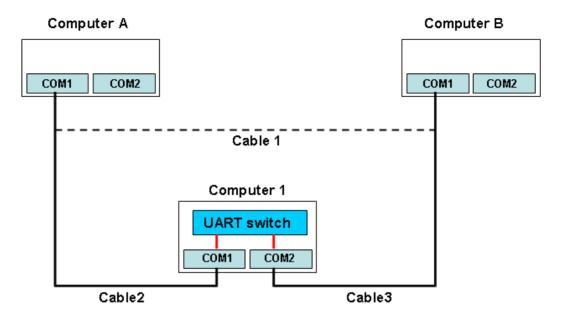
	Register location (UART A) Logical Device 2	Register location (UART B) Logical Device 3	Register location (UART C) Logical Device 10	Register location (UART D) Logical Device 11	Register location (UART E) Logical Device 12	Register location (UART F) Logical Device 13
RX_ctrl_set[2]: (en_auto_only_addr_comp)	CRF2_B6	CRF2_B6	CRF2_B6	CRF2_B6	CRF2_B6	CRF2_B6
RX_ctrl_set[1]: (en_auto_RX_ctrl)	CRF2_B7	CRF2_B7	CRF2_B7	CRF2_B7	CRF2_B7	CRF2_B7
RX_ctrl_set[0]: (RX_ctrl)	CRF7_B6	CRF7_B6	CRF7_B6	CRF7_B6	CRF7_B6	CRF7_B6


RX_ctrl_set[2:0]	Function Description
000	9bit-mode RX block function will pass all data or address bytes to UART receiver block directly.
	9bit-mode RX block function will not compare any address byte.
	3. 9bit-mode RX block function will correct parity check bit before sending any data or address byte into UART receiver block.
	4. 9bit-mode RX block function will generate IRQ. (Refer to CRF6 description.)
001	9bit-mode RX block function will only pass address bytes to UART receiver block.
	2. 9bit-mode RX block function will not compare any address byte.
	3. 9bit-mode RX block function will correct parity check bit before sending any data or address byte into UART receiver block.
	4. 9bit-mode RX block function will generate IRQ. (Refer to CRF6 description.)
010	9bit-mode RX block function will update RX_ctrl Bit automatically.
	When RX_ctrl = 0:
	If receive address byte, 9bit-mode RX block function will update RX_ctrl=1 automatically. In order to receive address byte at next byte cycle.
	(RX block function will ignore the current address byte. Then the transmitter needs to resend this address byte again.)
	Spit-mode RX block function will compare the address byte automatically and will pass the matched address or not depending on CRF2_B2 setting.
	3. 9bit-mode RX block function will correct parity check bit before sending any data or address byte into UART receiver block.
	4. 9bit-mode RX block function will generate IRQ. (Refer to CRF6 description.)
011	9bit-mode RX block function will update RX_ctrl Bit automatically.
	When RX_ctrl = 1:
	If address byte matched, 9bit-mode RX block function will update RX_ctrl=0 automatically. In order to receive data byte at next byte cycle.
	9bit-mode RX block function will compare the address byte automatically and will pass the matched address or not depending on CRF2_B2 setting.
	3. 9bit-mode RX block function will correct parity check bit before sending any data or address byte into UART receiver block.

	4. 9bit-mode RX block function will generate IRQ. (Refer to CRF6 description.)
100 (The same as 000)	9bit-mode RX block function will pass all data or address bytes to UART receiver block directly.
	2. 9bit-mode RX block function will not compare any address byte.
	3. 9bit-mode RX block function will correct parity check bit before sending any data or address byte into UART receiver block.
	4. 9bit-mode RX block function will generate IRQ. (Refer to CRF6 description.)
101 (The same as 001)	9bit-mode RX block function will only pass address bytes to UART receiver block.
	2. 9bit-mode RX block function will not compare any address byte.
	3. 9bit-mode RX block function will correct parity check bit before sending any data or address byte into UART receiver block.
	4. 9bit-mode RX block function will generate IRQ. (Refer to CRF6 description.)
110	9bit-mode RX block function will not update RX_ctrl Bit automatically.
	When RX_ctrl = 0:
	If receive address byte, in order to receive the address byte, we need set RX_ctrl = 1 manually.
	2. 9bit-mode RX block function will compare the address byte automatically and will pass the matched address or not depending on CRF2_B2 setting.
	3. 9bit-mode RX block function will correct parity check bit before sending any data or address byte into UART receiver block.
	4. 9bit-mode RX block function will generate IRQ. (Refer to CRF6 description.)
111	9bit-mode RX block function will not update RX_ctrl Bit automatically.
	When RX_ctrl = 1:
	If address byte matched, in order to receive the proceeding data bytes, we need set RX_ctrl = 0 manually.
	9bit-mode RX block function will compare the address byte automatically and will pass the matched address or not depending on CRF2_B2 setting.
	3. 9bit-mode RX block function will correct parity check bit before sending any data or address byte into UART receiver block.
	4. 9bit-mode RX block function will generate IRQ. (Refer to CRF6 description.)

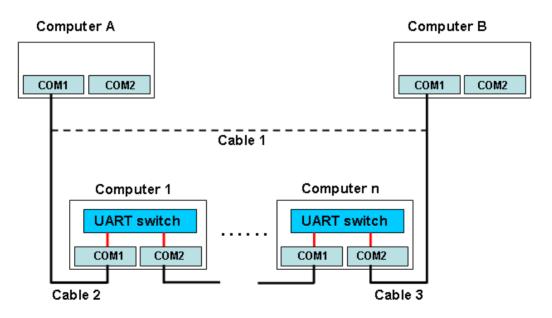
10.12.2 Function Block

10.13 UART switch


Due to the limitation length of the cable for the communication of UART,

We support 3 sets of switches to fix this limitation. They are UARTAB, UARTCD and UARTEF switches.

Switch Name	Switch Enable Bit	Description
UARTAB switch	Logical Device 02, IndexF8_Bit4	Connection with UARTA and UARTB
UARTCD switch	Logical Device 10, IndexF8_Bit4	Connection with UARTC and UARTD
UARTEF switch	Logical Device 12, IndexF8_Bit4	Connection with UARTE and UARTF


For example, if computer A and computer B will transfer data to each other with UART, but the distance between computer A and B is over the limitation length of the cable. See the figure in below, the cable 1 is over the limitation. And we could use UART switch to fix this limitation. If the switch of computer1 is enabled, computer A could transfer data to computer 1 and computer 1 would bypass the data to computer B. In the same method, computer B also could achieve the goal to transfer data to computer A.

The connection of UART switch with single computer

We also could connect multi-switch to fix the limitation length of the cable, if the distance between computer A and computer B is too far. Below figure shows the connection method of multi-switch.

The connection of UART switch with multi-computer

11. PARALLEL PORT

11.1 Printer Interface Logic

The NCT6122D / NCT6126D parallel port can be attached to devices that accept eight bits of parallel data at standard TTL level. The NCT6122D / NCT6126D supports the IBM XT/AT compatible parallel port (SPP), the bidirectional parallel port (BPP), the Enhanced Parallel Port (EPP), and the Extended Capabilities Parallel Port (ECP).

The following tables show the pin definitions for different modes of the parallel port.

Table 11-1 Pin Descriptions for SPP, EPP, and ECP Modes

HOST CONNECTOR	PIN NUMBER OF NCT6122D / NCT6126D	PIN ATTRIBUTE	SPP	EPP	ECP
1	47	0	Nstb	nWrite	nSTB, HostClk ²
2-9	35-42	I/O	PD<7:0>	PD<7:0>	PD<7:0>
10	34	I	nACK	Intr	nACK, PeriphClk ²
11	33	1	BUSY	nWait	BUSY, PeriphAck ²
12	32	1	PE	PE	Peerror, nAckReverse ²
13	31	1	SLCT	Select	SLCT, Xflag ²
14	46	0	Nafd	nDStrb	nAFD, HostAck ²
15	45	1	nERR	nError	nFault ¹ , nPeriphRequest ²
16	44	0	Ninit	nInit	nINIT ¹ , nReverseRqst ²
17	43	0	nSLIN	nAStrb	nSLIN ¹ , ECPMode ²

Notes:

n<name > : Active Low
1. Compatible Mode

2. High Speed Mode

3. For more information, please refer to the IEEE 1284 standard.

HOST CONNECTOR	PIN NUMBER OF NCT6122D / NCT6126D	PIN ATTRIBUTE	SPP
1	47	0	nSTB
2	42	I/O	PD0
3	41	I/O	PD1
4	40	I/O	PD2
5	39	I/O	PD3
6	38	I/O	PD4
7	37	I/O	PD5
8	36	I/O	PD6
9	35	I/O	PD7
10	34	1	nACK
11	33	1	BUSY
12	32	1	PE
13	31	1	SLCT
14	46	0	nAFD
15	45	1	nERR

Publication Release Date: September 12, 2023

HOST CONNECTOR	PIN NUMBER OF NCT6122D / NCT6126D	PIN ATTRIBUTE	SPP
16	44	0	nINIT
17	43	0	nSLIN

11.2 Enhanced Parallel Port (EPP)

The following table lists the registers used in the EPP mode and identifies the bit map of the parallel port and EPP registers. Some of the registers are used in other modes as well.

A2	A1	A0	REGISTER	NOTE
0	0	0	Data pot (R/W)	1
0	0	1	Printer status buffer (Read)	1
0	1	0	Printer control latch (Write)	1
0	1	0	Printer control swapper (Read)	1
0	1	1	EPP address port (R/W)	2
1	0	0	EPP data port 0 (R/W)	2
1	0	1	EPP data port 1 (R/W)	2
1	1	0	EPP data port 2 (R/W)	2
1	1	1	EPP data port 2 (R/W)	2

Table 11-2 EPP Register Addresses

Notes:

- 1. These registers are available in all modes.
- 2. These registers are available only in EPP mode.

7 REGISTER 6 5 4 3 2 1 0 PD7 PD5 PD4 PD3 PD1 PD0 Data Port (R/W) PD6 PD2 BUSY# PΕ SLCT Status Buffer (Read) ACK# ERROR# **TMOUT** 1 1 AUTOFD# Control Swapper (Read) 1 1 1 **IRQEN** SLIN INIT# STROBE# DIR SLIN INIT# **AUTOFD#** STROBE# Control Latch (Write) **IRQ EPP Address Port** PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 (R/W) EPP Data Port 0 (R/W) PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PD5 PD4 PD0 EPP Data Port 1 (R/W) PD7 PD6 PD3 PD2 PD1 EPP Data Port 2 (R/W) PD7 PD5 PD4 PD3 PD2 PD1 PD0 PD6 EPP Data Port 3 (R/W) PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0

Table 11-3 Address and Bit Map for SPP and EPP Modes

Each register (or pair of registers, in some cases) is discussed below.

11.2.1 Data Port (Data Swapper)

The CPU reads the contents of the printer's data latch by reading the data port.

11.2.2 Printer Status Buffer

The CPU reads the printer status by reading the printer status buffer. The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
-----	---	---	---	---	---	---	---	---

NAME	BUSY#	ACK#	PE	SLCT	ERROR#	RESERVED		TMOUT
DEFAULT	NA	NA	NA	NA	NA	1	1	0

BIT	DESCRIPTION
7	BUSY#. This signal is active during data entry, when the printer is off-line during printing, when the print head is changing position, or during an error state. When this signal is active, the printer is busy and cannot accept data.
6	ACK#. This bit represents the current state of the printer's ACK# signal. A logical 0 means the printer has received a character and is ready to accept another. Normally, this signal is active for approximately 5 μs before BUSY# stops.
5	PE. A logical 1 means the printer has detected the end of paper.
4	SLCT. A logical 1 means the printer is selected.
3	ERROR#. A logical 0 means the printer has encountered an error condition.
2-1	Reserved.
0	TMOUT. This bit is only valid in EPP mode. A logical 1 indicates that a 10-μs time-out has occurred on the EPP bus; a logical 0 means that no time-out error has occurred. Writing a logical 1 to this bit clears the time-out status bit; writing a logical 0 has no effect.

11.2.3 Printer Control Latch and Printer Control Swapper

The CPU reads the contents of the printer control latch by reading the printer control swapper. The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	RESERVED		DIR	IRQ ENABLE	SLCT IN	INIT#	AUTO FD	STROBE
DEFAULT	1	1	NA	0	NA	NA	NA	NA

BIT	DESCRIPTION
7-6	Reserved. These two bits are always read as logical 1 and can be written.
5	DIR (Direction Control Bit). When this bit is logical 1, the parallel port is in the input mode (read). When it is logical 0, the parallel port is in the output mode (write). This bit can be read and written. In SPP mode, this bit is invalid and fixed at zero.
4	IRQ ENABLE. A logical 1 allows an interrupt to occur when ACK# changes from low to high.
3	SLCT IN. a logical 1 selects the printer.
2	INIT#. A logical 0 starts the printer (50 microsecond pulse, minimum).
1	AUTO FD. A logical 1 causes the printer to line-feed after a line is printed.
0	STROBE. A logical 1 generates an active-high pulse for a minimum of 0.5 μ s to clock data into the printer. Valid data must be presented for a minimum of 0.5 μ s before and after the strobe pulse.

11.2.4 EPP Address Port

The address port is available only in EPP mode. Bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

The contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write operation. The leading edge of IOW# causes an EPP address write cycle to be performed, and the trailing edge of IOW# latches the data for the duration of the EPP write cycle.

PD0-PD7 ports are read during a read operation. The leading edge of IOR# causes an EPP address read cycle to be performed and the data to be output to the host CPU.

11.2.5 EPP Data Port 0-3

These four registers are available only in EPP mode. The bit definitions for each data port are the same and as follows:

BIT	7	6	5	4	3	2	1	0
NAME	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

When any EPP data port is accessed, the contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write operation. The leading edge of IOW# causes an EPP data write cycle to be performed, and the trailing edge of IOW# latches the data for the duration of the EPP write cycle.

During a read operation, ports PD0-PD7 are read, and the leading edge of IOR# causes an EPP read cycle to be performed and the data to be output to the host CPU.

11.2.6 EPP Pin Descriptions

EPP NAME	TYPE	EPP DESCRIPTION
Nwrite	0	Denotes read or write operation for address or data.
PD<0:7>	I/O	Bi-directional EPP address and data bus.
Intr	I	Used by peripheral device to interrupt the host.
Nwait	I	Inactivated to acknowledge that data transfer is complete. Activated to indicate that the device is ready for the next transfer.
PE	I	Paper end; same as SPP mode.
Select	I	Printer-select status; same as SPP mode.
NDStrb	0	This signal is active low. It denotes a data read or write operation.
Nerror	I	Error; same as SPP mode.
Ninits	0	This signal is active low. When it is active, the EPP device is reset to its initial operating mode.
NAStrb	0	This signal is active low. It denotes an address read or write operation.

11.2.7 EPP Operation

When EPP mode is selected, the PDx bus is in standard or bi-directional mode when no EPP read, write, or address cycle is being executed. In this situation, all output signals are set by the SPP Control Port and the direction is controlled by DIR of the Control Port.

Publication Release Date: September 12, 2023

A watchdog timer is required to prevent system lockup. The timer indicates that more than 10 μ S have elapsed from the start of the EPP cycle to the time WAIT# is deasserted. The current EPP cycle is aborted when a time-out occurs. The time-out condition is indicated in status bit 0.

The EPP operates on a two-phase cycle. First, the host selects the register within the device for subsequent operations. Second, the host performs a series of read and/or write byte operations to the selected register. Four operations are supported on the EPP: Address Write, Data Write, Address Read, and Data Read. All operations on the EPP device are performed asynchronously.

11.2.8 EPP Version 1.9 Operation

The EPP read/write operation can be completed under the following conditions:

- a. If nWait is active low, the read cycle (nWrite inactive high, nDStrb/nAStrb active low) or write cycle (nWrite active low, nDStrb/nAStrb active low) starts, proceeds normally, and is completed when nWait goes inactive high.
- b. If nWait is inactive high, the read/write cycle cannot start. It must wait until nWait changes to active low, at which time it starts as described above.

11.2.9 EPP Version 1.7 Operation

The EPP read/write cycle can start without checking whether nWait is active or inactive. Once the read/write cycle starts, however, it does not finish until nWait changes from active low to inactive high.

11.3 Extended Capabilities Parallel (ECP) Port

This port is software- and hardware-compatible with existing parallel ports, so the NCT6122D / NCT6126D parallel port may be used in standard printer mode if ECP is not required. It provides an automatic high burst-bandwidth channel that supports DMA for ECP in both the forward (host-to-peripheral) and reverse (peripheral-to-host) directions.

Small FIFOs are used in both forward and reverse directions to improve the maximum bandwidth requirement. The size of the FIFO is 16 bytes. The ECP port supports an automatic handshake for the standard parallel port to improve compatibility mode transfer speed.

The ECP port hardware supports run-length-encoded (RLE) decompression. Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates how many times the next byte is to be repeated. RLE compression is required; the hardware support is optional.

For more information about the ECP Protocol, refer to the Extended Capabilities Port Protocol and ISA Interface Standard.

The NCT6122D / NCT6126D ECP supports the following modes.

Table 11-4 ECP Mode Description

MODE	DESCRIPTION
000	SPP mode
001	PS/2 Parallel Port mode
010	Parallel Port Data FIFO mode
011	ECP Parallel Port mode
100	EPP mode (If this option is enabled in the CRF0h to select ECP/EPP mode)

Publication Release Date: September 12, 2023 Version: 2.4

-239-

MODE	DESCRIPTION
101	Reserved
110	Test mode
111	Configuration mode

The mode selection bits are bits 7-5 of the Extended Control Register.

Base+401h

Base+402h

11.3.1 ECP Register and Bit Map

cnfgB

ecr

The next two tables list the registers used in ECP mode and provide a bit map of the parallel port and ECP registers.

NAME **ADDRESS** I/O **ECP MODES FUNCTION** R/W data Base+000h 000-001 Data Register R/W ecpAFifo Base+000h 011 ECP FIFO (Address) ΑII dsr Base+001h R Status Register Base+002h R/W ΑII Control Register dcr cFifo Base+400h R/W 010 Parallel Port Data FIFO ecpDFifo Base+400h R/W 011 ECP FIFO (DATA) tFifo Base+400h R/W 110 **Test FIFO** Base+400h R 111 cnfgA Configuration Register A

Table 11-5 ECP Register Addresses

Note: The base addresses are specified by CR60 and 61, which are determined by configuration register or hardware setting.

R/W

R/W

D0 **NOTE D7** D6 **D5** D4 D3 D2 D1 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 Data Address or RLE field ecpAFifo Addr/RLE 2 Dsr nBusy nAck Perror Select nFault 1 1 1 1 Dcr Directio ackIntEn SelectIn nInit Autofd strobe 1 Parallel Port Data FIFO cFifo 2 **ECP Data FIFO** ecpFifo 2 Test FIFO tFifo 2 cnfgA 0 0 0 1 0 0 0 0 intrValue 1 1 cnfgB compress 1 MODE Ecr nErrIntrEn dmaEn serviceIntr full empty

-240-

Table 11-6 Bit Map of the ECP Registers

111

ΑII

Configuration Register B

Extended Control Register

Notes:

- 1. These registers are available in all modes.
- 2. All FIFOs use one common 16-byte FIFO.

Each register (or pair of registers, in some cases) is discussed below.

Publication Release Date: September 12, 2023

11.3.2 Data and ecpAFifo Port

Modes 000 (SPP) and 001 (PS/2) (Data Port)

During a write operation, the Data Register latches the contents of the data bus on the rising edge of the input, and the contents of this register are output to PD0-PD7. During a read operation, ports PD0-PD7 are read and output to the host. The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

Mode 011 (ECP FIFO-Address/RLE)

A data byte written to this address is placed in the FIFO and tagged as an ECP Address/RLE. The hardware at the ECP port transmits this byte to the peripheral automatically. This operation is defined only for the forward direction. The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	Address/RLE		Address or RLE					

11.3.3 Device Status Register (DSR)

These bits are logical 0 during a read of the Printer Status Register. The bits of this status register are defined as follows:

BIT	7	6	5	4	3	2	1	0
NAME	nBusy	nAck	Perror	Select	nFault	1	1	1

BIT	DESCRIPTION
7	nBusy. This bit reflects the complement of the Busy input.
6	nAck. This bit reflects the nAck input.
5	Perror. This bit reflects the Perror input.
4	Select. This bit reflects the Select input.
3	nFault. This bit reflects the nFault input.
2-0	These three bits are not implemented and are always logical 1 during a read.

11.3.4 Device Control Register (DCR)

The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	Reserved		Director	ackInEn	Selectin	nlnit	Autofd	Strobe
DEFAULT	1	1	NA	NA	NA	NA	NA	NA

BIT	DESCRIPTION
7-6	Reserved. These two bits are always read as logical 1 and cannot be written.
5	Director. If the mode is 000 or 010, this bit has no effect and the direction is always out. In other modes,

BIT	DESCRIPTION
	0: The parallel port is in the output mode.
	1: The parallel port is in the input mode.
4	ackinEn (Interrupt Request Enable). When this bit is set to logical 1, it enables interrupt requests from the parallel port to the CPU on the low-to-high transition on ACK#.
	SelectIn. This bit is inverted and output to the SLIN# output.
3	0: The printer is not selected.
	1: The printer is selected.
2	nInit. This bit is output to the INIT# output.
1	Autofd. This bit is inverted and output to the AFD# output.
0	Strobe. This bit is inverted and output to the STB# output.

11.3.5 CFIFO (Parallel Port Data FIFO) Mode = 010

This mode is defined only for the forward direction. Bytes written or DMAed to this FIFO are transmitted by a hardware handshake to the peripheral using the standard parallel port protocol. Transfers to the FIFO are byte-aligned.

11.3.6 ECPDFIFO (ECP Data FIFO) Mode = 011

When the direction bit is 0, bytes written or DMAed to this FIFO are transmitted by a hardware handshake to the peripheral using the ECP parallel port protocol. Transfers to the FIFO are byte-aligned.

When the direction bit is 1, data bytes from the peripheral are read via automatic hardware handshake from ECP into this FIFO. Reads or DMAs from the FIFO return bytes of ECP data to the system.

11.3.7 TFIFO (Test FIFO Mode) Mode = 110

Data bytes may be read, written, or DMAed to or from the system to this FIFO in any direction. Data in the tFIFO is not transmitted to the parallel port lines. However, data in the tFIFO may be displayed on the parallel port data lines.

11.3.8 CNFGA (Configuration Register A) Mode = 111

This register is a read-only register. When it is read, 10H is returned. This indicates that this is an 8-bit implementation.

11.3.9 CNFGB (Configuration Register B) Mode = 111

The bit definitions are as follows:

BIT	7	6	5	4	3	2	1	0
NAME	COMPRESS	intrVALUE	IRQx2	IRQx1	IRQx0		RESERVED	
DEFAULT	0	0	0	0	0	1	1	1

BIT	DESCRIPTION
7	Compress. This bit is read-only. It is logical 0 during a read, which means that this chip does not support hardware RLE compression.
6	intrValue. Returns the value on the ISA IRQ line to determine possible conflicts.

BIT		DESCRIPTION							
		Reflects the IRQ resource assigned for ECP port.							
5	IRQx2.	cnfgB[5:3]	IRQ resource						
		000	Reflects other IRQ resources selected by PnP register (default)						
		001	IRQ7						
	IRQx1.	010	IRQ9						
4		011	IRQ10						
-		100	IRQ11						
		101	IRQ14						
		110	IRQ15						
		111	IRQ5						
3	IRQx0.								
2-0	Reserved. TI	nese three bits are log	ical 1 during a read and can be written.						

11.3.10ECR (Extended Control Register) Mode = all

This register controls the extended ECP parallel port functions. The bit definitions are follows:

BIT	7	6	5	4	3	2	1	0
NAME	MODE			nErrIntrEn	dmaEn	ServiceIntr	Full	Empty
DEFAULT	0	0	0	1	0	1	0	1

BIT		DESCRIPTION					
	Mode. R	Read/Write. These bits select the mode.					
	000	Standard Parallel Port (SPP) mode. The FIFO is reset in this mode.					
	001	PS/2 Parallel Port mode. This is the same as SPP mode except that direction may be used to tri-state the data lines. Furthermore, reading the data register returns the value on the data lines, not the value in the data register.					
7.5	010	Parallel Port FIFO mode. This is the same as SPP mode except that bytes are written or DMAed to the FIFO. FIFO data are automatically transmitted using the standard parallel port protocol. This mode is useful only when direction is 0.					
7-5	011	ECP Parallel Port Mode. When the direction is 0 (forward direction), bytes placed into the ecpDFifo and bytes written to the ecpAFifo are placed in a single FIFO and automatically transmitted to the peripheral using the ECP Protocol. When the direction is 1 (reverse direction), bytes are moved from the ECP parallel port and packed into bytes in the ecpDFifo.					
	100	EPP Mode. EPP mode is activated if the EPP mode is selected.					
	101	Reserved.					
	110	Test Mode. The FIFO may be written and read in this mode, but the data is not transmitted on the parallel port.					

BIT	DESCRIPTION						
	Configuration Mode. The confgA and confgB registers are accessible at 0x400 and 0x401 in this mode.						
4	nErrIntrEn. Read/Write (Valid only in ECP Mode) 0: Enables the interrupt generated on the falling edge of nFault. This prevents interrupts from being lost in the time between the read of the ECR and the write of the ECR. 1: Disables the interrupt generated on the asserting edge of nFault.						
3	dmaEn. Read/Write. 0: Disable DMA unconditionally. 1: Enable DMA.						
2	 serviceIntr. Read/Write. 0: Enable one of the following cases of interrupts. When one of the serviced interrupts occurs, this bit is set to logical 1 by the hardware. This bit must be rest to logical 0 to re-enable the interrupts. (a) dmaEn = 1: During DMA, this bit is set to logical 1 when terminal count is reached. (b) dmaEn = 0, direction = 0: This bit is set to logical 1 whenever there are writeIntr threshold or more bytes free in the FIFO. (c) dmaEn = 0, direction = 1: This bit is set to logical 1 whenever there are readIntr threshold or more valid bytes to be read from the FIFO. 1: Disable DMA and all of the service interrupts. Writing a logical 1 to this bit does not cause an interrupt. 						
1	Full. Read Only. 0: The FIFO has at least one free byte. 1: The FIFO is completely full; it cannot accept another byte.						
0	Empty. Read Only. 0: The FIFO contains at least one byte of data. 1: The FIFO is completely empty.						

11.3.11ECP Pin Descriptions

NAME	TYPE	DESCRIPTION
Nstrobe (HostClk)	0	This pin loads data or address into the slave on its asserting edge during write operations. This signal handshakes with Busy.
PD<7:0>	I/O	These signals contain address, data or RLE data.
nAck (PeriphClk)	ı	This signal indicates valid data driven by the peripheral when asserted. This signal handshakes with nAutoFd in reverse.
Busy (PeriphAck)	ı	This signal deasserts to indicate that the peripheral can accept data. In the reverse direction, it indicates whether the data lines contain ECP command information or data. Normal data are transferred when Busy (PeriphAck) is high, and an 8-bit command is transferred when it is low.
Perror (nAckReverse)	ı	This signal is used to acknowledge a change in the direction of the transfer (asserted = forward). The peripheral drives this signal low to acknowledge nReverseRequest. The host relies upon nAckReverse to determine when it is permitted to drive the data bus.
Select (Xflag)	Ī	Indicates printer on-line.

NAME	TYPE	DESCRIPTION
NautoFd (HostAck)	0	Requests a byte of data from the peripheral when it is asserted. In the forward direction, this signal indicates whether the data lines contain ECP address or data. Normal data are transferred when nAutoFd (HostAck) is high, and an 8-bit command is transferred when it is low.
nFault (nPeriphReuqest)	Ι	Generates an error interrupt when it is asserted. This signal is valid only in the forward direction. The peripheral is permitted (but not required) to drive this pin low to request a reverse transfer during ECP mode.
nInit (nReverseRequest)	0	This signal sets the transfer direction (asserted = reverse, deasserted = forward). This pin is driven low to place the channel in the reverse direction.
nSelectIn (ECPMode)	0	This signal is always deasserted in ECP mode.

11.3.12 ECP Operation

The host must negotiate on the parallel port to determine if the peripheral supports the ECP protocol before ECP operation. After negotiation, it is necessary to initialize some of the port bits.

- (a) Set direction = 0, enabling the drivers.
- (b) Set strobe = 0, causing the nStrobe signal to default to the deasserted state.
- (c) Set autoFd = 0, causing the nAutoFd signal to default to the deasserted state.
- (d) Set mode = 011 (ECP Mode)

ECP address/RLE bytes or data bytes may be sent automatically by writing the ecpAFifo or ecpDFifo, respectively.

11.3.12.1. Mode Switching

The software must handle P1284 negotiation and all operations prior to a data transfer in SPP or PS/2 modes (000 or 001). The hardware provides an automatic control line handshake, moving data between the FIFO and the ECP port, only in the data transfer phase (mode 011 or 010).

If the port is in mode 000 or 001, it may switch to any other mode. If the port is not in mode 000 or 001, it can only be switched into mode 000 or 001. The direction can only be changed in mode 001.

In extended forward mode, the software should wait for the FIFO to be empty before switching back to mode 000 or 001. In ECP reverse mode, the software should wait for all the data to be read from the FIFO before changing back to mode 000 or 001.

11.3.12.2. Command/Data

ECP mode allows the transfer of normal 8-bit data or 8-bit commands. In the forward direction, normal data are transferred when HostAck is high, and an 8-bit command is transferred when HostAck is low. The most significant bits of the command indicate whether it is a run-length count (for compression) or a channel address.

In the reverse direction, normal data are transferred when PeriphAck is high, and an 8-bit command is transferred when PeriphAck is low. The most significant bit of the command is always zero.

11.3.12.3. Data Compression

The NCT6122D / NCT6126D hardware supports RLE decompression and can transfer compressed data to a peripheral. Odd (RLE) compression is not supported in the hardware, however. In order to transfer data in ECP mode, the compression count is written to ecpAFifo and the data byte is written to ecpDFifo.

11.3.13 FIFO Operation

The FIFO threshold is set in CR5. All data transferred to or from the parallel port can proceed in DMA or Programmed I/O (non-DMA) mode, as indicated by the selected mode. The FIFO is used in Parallel Port FIFO mode or ECP Parallel Port Mode. After a reset, the FIFO is disabled.

11.3.14 DMA Transfers

DMA transfers are always to or from the ecpDFifo, tFifo, or Cfifo. DMA uses the standard PC DMA services. The ECP requests DMA transfers from the host by activating the PDRQ pin. The DMA empties or fills the FIFO using the appropriate direction and mode. When the terminal count in the DMA controller is reached, an interrupt is generated, and serviceIntr is asserted, which will disable the DMA.

11.3.15 Programmed I/O (NON-DMA) Mode

The ECP and parallel port FIFOs can also be operated using interrupt-driven, programmed I/O. Programmed I/O transfers are

- 1. To the ecpDFifo at 400H and ecpAFifo at 000H
- 2. From the ecpDFifo located at 400H
- 3. To / from the tFifo at 400H.

The host must set dmaEn and serviceIntr to 0 and also must set the direction and state accordingly in the programmed I/O transfers.

The ECP requests programmed I/O transfers from the host by activating the IRQ pin. The programmed I/O empties or fills the FIFO using the appropriate direction and mode.

-246-

Publication Release Date: September 12, 2023

12. KEYBOARD CONTROLLER

The NCT6122D / NCT6126D KBC (8042 with licensed KB BIOS) circuit is designed to provide the functions needed to interface a CPU with a keyboard and/or a PS/2 mouse and can be used with IBM®-compatible personal computers or PS/2-based systems. The controller receives serial data from the keyboard or PS/2 mouse, checks the parity of the data, and presents the data to the system as a byte of data in its output buffer. Then, the controller asserts an interrupt to the system when data are placed in its output buffer. The keyboard and PS/2 mouse are required to acknowledge all data transmissions. No transmission should be sent to the keyboard or PS/2 mouse until an acknowledgement is received for the previous data byte.

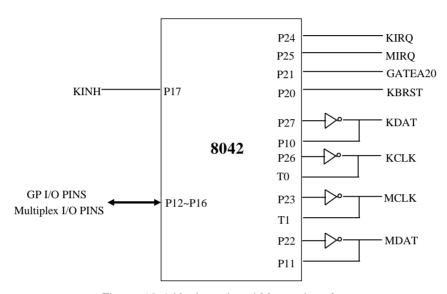


Figure 12-1 Keyboard and Mouse Interface

12.1 Output Buffer

The output buffer is an 8-bit, read-only register at I/O address 60H (Default, PnP programmable I/O address LD5-CR60 and LD5-CR61). The keyboard controller uses the output buffer to send the scan code (from the keyboard) and required command bytes to the system. The output buffer can only be read when the output buffer full bit in the register (in the status register) is logical 1.

12.2 Input Buffer

The input buffer is an 8-bit, write-only register at I/O address 60h or 64h (Default, PnP programmable I/O address LD5-CR60, LD5-CR61, LD5-CR62, and LD5-CR63). Writing to address 60h sets a flag to indicate a data write; writing to address 64h sets a flag to indicate a command write. Data written to I/O address 60h is sent to the keyboard (unless the keyboard controller is expecting a data byte) through the controller's input buffer only if the input buffer full bit (in the status register) is logical 0.

12.3 Status Register

The status register is an 8-bit, read-only register at I/O address 64h (Default, PnP programmable I/O address LD5-CR62 and LD5-CR63) that holds information about the status of the keyboard controller and interface. It may be read at any time.

Table 12-1 Bit Map of Status Register

BIT	BUT FUNCTION	DESCRIPTION
0	Output Buffer Full	Output buffer empty Output buffer full
1	Input Buffer Full	0: Input buffer empty 1: Input buffer full
2	System Flag	This bit may be set to 0 or 1 by writing to the system flag bit in the command byte of the keyboard controller. It defaults to 0 after a power-on reset.
3	Command/Data	0: Data byte 1: Command byte
4	Inhibit Switch	Keyboard is inhibited Keyboard is not inhibited
5	AUXiliary Device Output Buffer	O: AUXiliary device output buffer empty 1: AUXiliary device output buffer full
6	General Purpose Time- out	0: No time-out error 1: Time-out error
7	Parity Error	0: Odd parity 1: Even parity (error)

-248-

12.4 Commands

Table 12-2 KBC Command Sets

COMMAND	FUNCTION							
20h	Read Command Byte of Keyboard Controller							
60h	Write Co	Write Command Byte of Keyboard Controller						
	ВІТ	BIT DEFINITION						
	7	Reserved						
	6	IBM Keyboard Translate Mode						
	5	Disable Auxiliary Device						
	4	Disable Keyboard						
	3	Reserve						
	2	System Flag						
	1	Enable Auxiliary Interrupt						
	0	Enable Keyboard Interrupt						
A4h	Test Pas	sword						
, , , , , ,		0Fah if Password is loaded						
	Returns	0F1h if Password is not loaded						
A5h	Load Pa	ssword						
		ssword until a logical 0 is received from the sys	stem					
A6h		Password						
A 71-		ne checking of keystrokes for a match with the	password					
A7h		AUXiliary Device Interface						
A8h A9h	Interface	UXiliary Device Interface						
A9fi	BIT	1	_					
	-	No Error Detected						
	00	Auxiliary Device "Clock" line is stuck low						
	02	Auxiliary Device "Clock" line is stuck high						
	03	Auxiliary Device "Data" line is stuck low						
	04	Auxiliary Device "Data" line is stuck low						
Aah	Self-test	·						
		055h if self-test succeeds						
Abh	Interface	Test						
	ВІТ	BIT DEFINITION						
	00							
	01	Keyboard "Clock" line is stuck low						
	02	Keyboard "Clock" line is stuck high						
	03	Keyboard "Data" line is stuck low						
	04	Keyboard "Data" line is stuck high						
Adh	Disable I	Keyboard Interface						

COMMAND	FUNCTION
Aeh	Enable Keyboard Interface
C0h	Read Input Port (P1) and send data to the system
C1h	Continuously puts the lower four bits of Port1 into the STATUS register
C2h	Continuously puts the upper four bits of Port1 into the STATUS register
D0h	Send Port 2 value to the system
D1h	Only set / reset GateA20 line based on system data bit 1
D2h	Send data back to the system as if it came from the Keyboard
D3h	Send data back to the system as if it came from AUXiliary Device
D4h	Output next received byte of data from system to AUXiliary Device
E0h	Reports the status of the test inputs
FXh	Pulse only RC (the reset line) low for 6µs if the Command byte is even

-250-

Publication Release Date: September 12, 2023

12.5 Hardware GATEA20/Keyboard Reset Control Logic

The KBC includes hardware control logic to speed-up GATEA20 and KBRESET. This control logic is controlled by LD5-CRF0 as follows:

12.5.1 KB Control Register (Logical Device 5, CR-F0)

BIT	7	6	5	4	3	2	1	0
NAME	KCLKS1	KCLKS0		RESERVE)	P92EN	HGA20	HKBRST#
DEFAULT	1	0	0	0	0	0	1	1

BIT	DESCR	IPTION					
7	KCLKS1.	Select the KBC clock rate. Bits 7 6 0 0: Reserved					
6	KCLKS0.	0 1: Reserved 1 0: KBC clock input is 12 MHz. 1 1: Reserved					
5-3	Reserved.						
2	P92EN (Port 92 Enable). 1: Enables Port 92 to control GATEA20 and R 0: Disables Port 92 functions.	KBRESET.					
1	HGA20 (Hardware GATEA 20). 1: Selects hardware GATE A20 control logic to the control logic functions.	HGA20 (Hardware GATEA 20). 1: Selects hardware GATE A20 control logic to control GATE A20 signal.					
0	HKBRST# (Hardware Keyboard Reset). 1: Selects hardware KB RESET control logic 0: Disables hardware KB RESET control logic	-					

When the KBC receives data that follows a "D1" command, the hardware control logic sets or clears GATE A20 according to received data bit 1. Similarly, the hardware control logic sets or clears KBRESET depending on received data bit 0. When the KBC receives an "FE" command, the KBRESET is pulse low for 6 μ s (Min.) with a 14 μ s (Min.) delay.

GATE A20 and KBRESET are controlled by either software or hardware logic, and they are mutually exclusive. Then, GATE A20 and KBRESET are merged with Port92 when the P92EN bit is set.

12.5.2 Port 92 Control Register (Default Value = 0x24)

BIT	7	6	5	4	3	2	1	0
NAME	RES. (0)		RES. (1)	RES. (0)		RES. (1)	SGA20	PLKBRST#
DEFAULT	0	0	1	0	0	1	0	0

BIT	DESCRIPTION
7-6	RES. (0)
5	RES. (1)
4-3	RES. (0)
2	RES. (1)
1	SGA20 (Special GATE A20 Control) 1: Drives GATE A20 signal to high. 0: Drives GATE A20 signal to low.
0	PLKBRST# (Pulled-low KBRESET). A logical 1 on this bit causes KBRESET to drive low for 6 μ S(Min.) with a 14 μ S(Min.) delay. Before issuing another keyboard-reset command, the bit must be cleared.

-252-

13. CONSUMER INFRARED REMOTE (CIR)

Regarding the receiving of IR Block, the hardware uses the sampling rates of 1us, 25us, 50us and 100us to calculate the widths of High and Low Level. The results are saved/stored in 32 bytes RX FIFO. The max widths of High and Low Level will be determined by Sample Limit Count Register. During the receiving, the hardware will reflect the FIFO status in RX FIFO Status Register. In addition, the hardware also generates status, such as Data Ready, Trigger Level Reach, FIFO Overrun and FIFO underrun, in RC Status Register.

13.1 CIR Register Table

Table 13-1 CIR Register Table

				RC	Block				
ExtAddr	Name	7	7 6 5 4 3 2 1					0	
base+0	IRCON	F	Reserved		RXEN	Reserved	RXINV	Sample	Period Select
base+1	IRSTS	RDR	RTR	PE	RFO	R	eserved		GH
base+2	IREN	RDR	RTR	PE	RFO	R	eserved		GH
base+3	RXFCONT				RXFIF	O Count			
base+4					Res	served			
base+5					Res	served			
base+6	SLCH				Sample Limit	Count High Byte	9		
base+7	SLCL				Sample Limit	Count Low Byte)		
base+8	FIFOCON		F	र		RXFIFOCLR	R	Rx Tı	rigger Level
base+9	IRFIFOSTS	IR_Pending	RX_GS	RX_FTA	RX_Empty	RX_Full		Reserv	ed
base+A	SRXFIFO				Sample	RX FIFO			
base+B					Res	served			
base+C					Res	served			
base+D			Reserved						
base+E					Res	served			
base+F	IRFSM	R		Decoder F	SM MS		Rese	erved	

-253-

Publication Release Date: September 12, 2023

13.1.1 IR Configuration Register - Base Address + 0

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Resevered			RXEN	Reserved	RXINV	Sample Pe	riod Select
DEFAULT	0	0	0	0	0	1	0	0

BIT	DESCRIPTION
7-5	Reserved.
4	RX Enable
3	Reserved.
2	IR Rx Invert Enable
	0: Dongle Carrier ON is high, OFF (Idle) is low.
	1: Dongle Carrier ON is low, OFF (Idle) is high.
1-0	Sample Period Select
	00:1us, 01: 25us, 10: 50us, 11: 100us
	Note: In the 1us mode, the pulse mode will not function due to the IR regulations.

13.1.2 IR Status Register - Base Address + 1

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	RDR	RTR	PE	RFO	Reserved			GH
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	RX Data Ready (Writing 1 will clear the bit).
6	RX FIFO Trigger Level Reach (Writing 1 will clear the bit).
5	Packet End (Writing 1 will clear the bit).
4	RX FIFO Overrun (Overrun and Data Ready will be simultaneously generated. Writing 1 will clear the bit).
3-1	Reserved.
0	Min Length Detected (Writing 1 will clear the bit)
	1: The IR Data length received is shorter than the default value.0: The IR Data length received is longer than the default value.

Publication Release Date: September 12, 2023

13.1.3 IR Interrupt Configuration Register – Base Address + 2

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	RDR	RTR	PE	RFO	Reserved			GH
DEFAULT	0	0	0	0	0	0	0	0

1: Enable interrupt; 0: Disable interrupt

BIT	DESCRIPTION
7	RX Data Ready
6	RX FIFO Trigger Level Reach
5	Packet End
4	RX FIFO Overrun (Overrun and Data Ready will be simultaneously generated).
3-1	Reserved.
0	Min Length Detected

Note. When an Interrupt occurs, it only can be cleared by writing IR Status Register to 1.

13.1.4 RX FIFO Count- Base Address + 3

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	FIFO Count							
DEFAULT	0	0	0	0	0	0	0	0

1: Enable; 0: Disable

BIT	DESCRIPTION
7-0	RX FIFO Count

13.1.5 IR RX Sample Limited Count High Byte Register (SLCH) - Base Address + 6

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Sample Limited Count High Byte							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	This byte is defined as the high byte of the limited count in the IR RX mode.

13.1.6 IR RX Sample Limited Count Low Byte Register (SLCL) - Base Address + 7

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Sample Limited Count low Byte							
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	This byte is defined as the low byte of the limited count in the IR RX mode.

Note. (RCLCH, RCLCL) is defined as 16 bits value of the limited count in the IR RX mode. When the RX date length reaches the limited count, Packet End status will appear.

13.1.7 IR FIFO Configuration Register (FIFOCON) - Base Address + 8

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		Reserve	ed		RXFIFOCLR	Reserved	RX Trigg	jer Level
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-4	Reserved.
3	RX FIFO Cleared.
2	Reserved.
1-0	RX Trigger Level
	Bits
	10
	00:1
	01:8
	1 0 : 16
	11:24

13.1.8 IR Sample RX FIFO Status Register - Base Address + 9

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	IR_Pending	RX_GS	RX_FTA	RX_Empty	RX_Full	Reserved		
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION

BIT	DESCRIPTION
7	IR Pending
	1: No Interrupt
	0: Interrupt issue
6	Minimum Length Detect Status. This bit will be cleared when Packet End appears.
5	RX FIFO Trigger Level Active.
4	RX FIFO Empty Flag.
3	RX FIFO Full Flag.
2-0	Reserved.

13.1.9 IR Sample RX FIFO Register - Base Address + A

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Voltage Level			Sa	ımple RX FII	FO		

BIT	DESCRIPTION
7	Voltage Level
	0: Low, 1: High
6-0	RX data length (Unit : Sample Period)
	Note:
	1. 0x80 is Packet End. The hardware enters the Idle state after checking Rx Channel.
	2. When 0x00 represents the glitch packet, it means pulses shorter than 3/4 sample period are received.
	3. Pulses that are shorter than 1/4 sample periods will be ignored automatically.

13.1.10 IR FSM Status Register (IRFSM) - Base Address + F

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved	Decoder FSM			Reserved				
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7	Reserved.
6	Decoder over status
5	Decoder continuing status
4	Decoder wait H status
	1: idle, 0: RX busy
3-0	Reserved.

14. CONSUMER INFRARED REMOTE (CIR) WAKE-UP

One of the features of the NCT6122D / NCT6126D is system boot-up by a remote controller. The hardware will store a specifically appointed key command from the IR remote controller in the FIFO of 67Byte.

The same key is required to re-boot the system after the computer shut-down. Such way can be applied to any remote controllers. Learning is necessary only at the first time.

14.1 CIR WAKE-UP Register Table

Table 14-1 CIR Wake-Up Register Table

	RC Block									
ExtAddr	Name	7	6	5	4	3	2	1	0	
base+0	IRCON	DEC_RST	Mode[1]	Mode[0]	RXEN	IgnoreEN	RXINV	Sample Period Select		
base+1	IRSTS	RDR	RTR	PE	RFO	GH	R	R R IR Pending		
base+2	IREN	RDR	RTR	PE	RFO	GH		R		
Base+3					FIFO_C	OMPARE_DEEP				
base+4				F	IFO_COM	PARE_TOLERAN	NCE			
base+5					F	TFO_Count				
Base+6	SLCH		Sample Limit Count High Byte							
base+7	SLCL		Sample Limit Count Low Byte							
base+8	FIFOCON		R			RXFIFOCLR	R	Rx T	rigger Level	
base+9	SRXFSTS	GS	FTA	Empty	Full		ſ	R		
base+A					Sar	nple RX FIFO				
base+B					WR	_FIFO_DATA				
Base+C			Read FIFO Only							
Base+D			Read FIFO Only Index							
Base+E	IGNORE		FIFO_Ignore							
Base+F	IRFSM	R	D	ecoder FSM	I	_	R	•	Wakeup Event	

14.1.1 IR Configuration Register - Base Address + 0

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	DEC_RST	Mode[1]	Mode[0]	RXEN	Ignore EN	RXINV	Sample Period Select	
DEFAULT	0	0	1	0	0	1	1	0

BIT	DESCRIPTION
7	Reset CIR DECODER (Write 1 to clear)
6	Mode[1]:
	FIFO can't be written FIFO can be written
5	Mode[0] 0: Learning Mode 1: Wake up Mode (Before enter in Power S3 state, this bit should be set) This bit reset by VCC.
4	RX Enable
3	Ignore Bit Enable
2	IR Rx Invert Enable 0: Dongle Carrier ON is high, OFF (Idle) is low. 1: Dongle Carrier ON is low, OFF (Idle) is high.
1-0	Sample Period Select
	00:1us, 01: 25us, 10: 50us, 11: 100us
	Note: In the 1us mode, the pulse mode will not function due to the IR regulations.

14.1.2 IR Status Register - Base Address + 1

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	RDR	RTR	PE	RFO	GH	Reserved		IR_Pending
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	RX Data Ready (Writing 1 will clear the bit).
6	RX FIFO Trigger Level Reach (Writing 1 will clear the bit).
5	Packet End (Writing 1 will clear the bit).
4	RX FIFO Overrun
	(Overrun and Data Ready will be simultaneously generated. Writing 1 will clear the bit).
3	Min Length Detected (Writing 1 will clear the bit)
	1: The IR Data length received is shorter than the default value.
	0: The IR Data length received is longer than the default value.

BIT	DESCRIPTION					
2-1	Reserved.					
0	IR Pending					
	1: No Interrupt					
	0: Interrupt issue					

14.1.3 IR Interrupt Configuration Register - Base Address + 2

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	RDR	RTR	PE	RFO	GH	Reserved		
DEFAULT	0	0	0	0	0	0	0	0

1: Enable interrupt; 0: Disable interrupt

BIT	DESCRIPTION
7	RX Data Ready
6	RX FIFO Trigger Level Reach
5	Packet End
4	RX FIFO Overrun (Overrun and Data Ready will be simultaneously generated).
3	Min Length Detected
2-0	Reserved.

Note. When an Interrupt occurs, it only can be cleared by writing IR Status Register to 1.

14.1.4 IR FIFO Compare Depth Configuration Register - Base Address + 3

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		FIFO Compare Depth						
DEFAULT	0	1	0	0	0	0	1	1

14.1.5 IR FIFO Compare Tolerance Configuration Register - Base Address + 4

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME		FIFO Compare Tolerance							
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-0	FIFO Data Tolerance between Learning mode and Wakeup mode. (Every byte)
	FIFO Date Tolerance = (Learning mode data) - (Wakeup mode data)

14.1.6 RX FIFO Count- Base Address + 5

Attribute: Read Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		FIFO Count						
DEFAULT	0	0	0	0	0	0	0	0

1: Enable; 0: Disable

BIT	DESCRIPTION
7-0	RX FIFO Count

14.1.7 IR RX Sample Limited Count High Byte Register (SLCH) - Base Address + 6

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		Sample Limited Count High Byte								
DEFAULT	0	0	0	0	0	0	0	0		

BIT	DESCRIPTION
7-0	This byte is defined as the high byte of the limited count in the IR RX mode.

14.1.8 IR RX Sample Limited Count Low Byte Register (SLCL) - Base Address + 7

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0		
NAME		Sample Limited Count low Byte								
DEFAULT	0	0	0	0	0	0	0	0		

BIT	DESCRIPTION
7-0	This byte is defined as the low byte of the limited count in the IR RX mode.

Note. (RCLCH, RCLCL) is defined as 16 bits value of the limited count in the IR RX mode. When the RX date length reaches the limited count, Packet End status will appear.

14.1.9 IR FIFO Configuration Register (FIFOCON) - Base Address + 8

Attribute: Read/Write Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved				RXFIFOCLR	Reserved	RX Trigg	jer Level
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-4	Reserved.
3	RX FIFO Cleared.
2	Reserved.
1-0	RX Trigger Level
	Bits
	10
	0 0: 67
	0 1: 66
	1 0: 65
	1 1: 64

14.1.10 IR Sample RX FIFO Status Register - Base Address + 9

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	GS	FTA	Empty	Full	Reserved			
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	Minimum Length Detect Status. This bit will be cleared when Packet End appears.
6	RX FIFO Trigger Level Active.
5	RX FIFO Empty Flag.
4	RX FIFO Full Flag.
3-0	Reserved.

14.1.11 IR Sample RX FIFO Register - Base Address + A

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Voltage Level	Sample RX FIFO						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-6	Voltage Level 0: Low, 1: High
	
0	RX data length (Unit : Sample Period)
	Note:
	1. 0x80 is Packet End. The hardware enters the Idle state after checking Rx Channel.
	2. When 0x00 represents the glitch packet, it means pulses shorter than 3/4 sample period are received.
	3. Pulses that are shorter than 1/4 sample periods will be ignored automatically.

14.1.12 Write FIFO - Base Address + B

Attribute: Write Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Voltage Level		Write Sample RX FIFO						
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION
7-6	Voltage Level 0: Low, 1: High
0	RX data length (Unit : Sample Period)

Note. Before writing FIFO Data, mode[1] register should be set.

14.1.13 Read FIFO Only - Base Address + C

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0	
NAME	Voltage Level		Sample RX FIFO						
DEFAULT	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION					
	Voltage Level 0: Low, 1: High					
0	RX data length (Unit : Sample Period)					

Note. Only Read FIFO Data.

14.1.14 Read FIFO Index - Base Address + D

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		FIFO Index						
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-0	Indicate that FIFO Index when only read FIFO data(Base Address + C)

Note. Only Read FIFO Data.

14.1.15 FIFO Ignore (IGNORE) - Base Address + E

Attribute: Read / Write

Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved		FIFO Ignore					
DEFAULT	0	0	1	0	0	1	1	1

BIT	DESCRIPTION					
7	Reserved.					
6-0	Ignore the three data from the indicated fifo index (def. d'39)					

14.1.16 IR FSM Status Register (IRFSM) - Base Address + F

Attribute: Read Only Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Decoder FSM			Reserved			Wakeup event
DEFAULT	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7	Reserved.
6-4	CIR State Machine
3-1	Reserved.
0	Wake up event: 0 : CIR wake up event has not been triggered. 1 : CIR wake up event has been triggered. (Wake up event Read clear.)

Publication Release Date: September 12, 2023

15. POWER MANAGEMENT EVENT

The PME# (pin 86) signal is connected to the South Bridge and is used to wake up the system from S1 ~ S5 sleeping states.

One control bit and five registers in the NCT6122D / NCT6126D are associated with the PME# function. The control bit is at Logical Device A, CR[F2h], bit[0] and is for enabling or disabling the PME# function. If this bit is set to "0", the NCT6122D / NCT6126D won't output any PME# signal when any of the wake-up events has occurred and is enabled. The five registers are divided into PME# status registers and PME# interrupt registers of wake-up events Note.1

- 1) The PME# status registers of wake-up event:
 - At Logical Device A, CR[F3h] and CR[F4h]
 - Each wake-up event has its own status
 - The PME# status should be cleared by writing a "1" before enabling its corresponding bit in the PME# interrupt registers

-265-

- 2) The PME# interrupt registers of wake-up event:
 - At Logical Device A, CR[F5h], CR[F6h] and CR[F7h]
 - Each wake-up event can be enabled / disabled individually to generate a PME# signal

Note.1 PME# wake-up events that the NCT6126D supports include:

- i. Supporting S0, S1 states
 - UART IRQ event (A~F)
 - IR IRQ event
 - Hardware Monitor IRQ event
 - WDT1 event
 - Printer IRQ event
- ii. Supporting S0i3 Note.2, S3, S5 states
 - Mouse event
 - Keyboard event
 - GPIO event (GPIO 44/45/63/64)
 - RIA (UARTA Ring Indicator) PIN event
 - RIB (UARTB Ring Indicator) PIN event

Note.2 For activating PME# in S0i3, please reference to LDE_CRFB[6].

15.1 Power Control Logic

This chapter describes how the NCT6122D / NCT6126D implements its ACPI function via these power control pins: PSIN# (Pin 68), PSOUT# (Pin 67), SLP_S3# (Pin 73) and PSON# (Pin 72). The following figure illustrates the relationships.

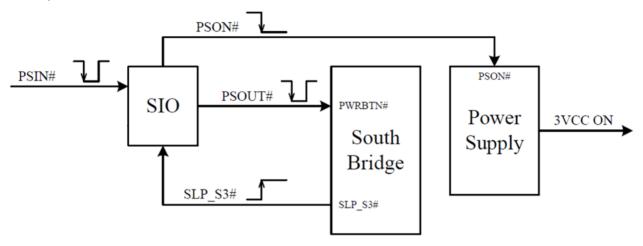


Figure 15-1 Power Control Mechanism

15.1.1 PSON# Logic

15.1.1.1. Normal Operation

The PSOUT# signal will be asserted low if the PSIN# signal is asserted low. The PSOUT# signal is held low for as long as the PSIN# is held low. The South Bridge controls the SLP_S3# signal through the PSOUT# signal. The PSON# is directly connected to the power supply to turn on or off the power.

-266-

Figure 16-2 shows the power on and off sequences.

The ACPI state changes from S5 to S0, then to S5

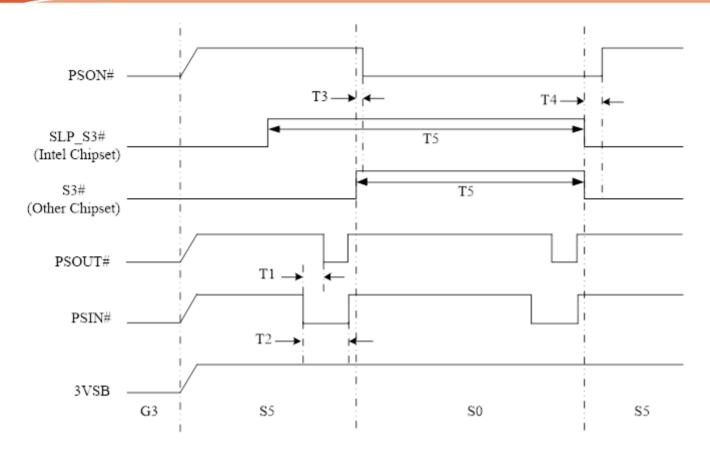


Figure 15-2 Power Sequence from S5 to S0, then Back to S5

15.1.2 AC Power Failure Resume

By definition, AC power failure means that the standby power is removed. The power failure resume control logic of the NCT6122D / NCT6126D is used to recover the system to a pre-defined state after AC power failure. Two control bits at Logical Device A, CR[E4h], bits[6:5] indicate the pre-defined state. The definition of these two bits is listed in the following table:

LOGICAL DEVICE A, CR[E4H], BITS[6 :5]	DEFINITION
00	System always turns off when it returns from AC power failure
01	System always turns on when it returns from AC power failure
10	System turns off / on when it returns from power failure depending on the state before the power failure. (Please see Note 1)
11	User defines the state before the power failure. (The previous state is set at CRE6[4]. Please see Note 2)

Table 15-1 Bit Map of Logical Device A, CR[E4h], Bits[6:5]

Note1. The NCT6122D / NCT6126D detects the state before power failure (on or off) through the SLP_S3# signal and the 3VCC power. The relation is illustrated in the following two figures.

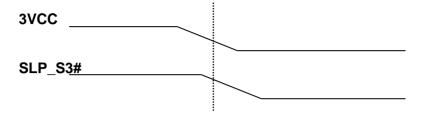


Figure 15-3 The previous state is "on" 3VCC falls to 2.6V and SLP_S3# keeps at 2.0V.

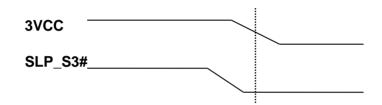


Figure 15-4 The previous state is "off". 3VCC falls to 2.6V and SLP_S3# keeps at 0.8V.

Note 2.

Logical Device A, CR[E6h] bit [4]	Definition
0	User defines the state to be "on"
1	User defines the state to be "off"

To ensure that VCC does not fall faster than VSB in various ATX Power Supplies, the NCT6122D / NCT6126D adds the option of "user define mode" for the pre-defined state before AC power failure. BIOS can set the pre-defined state to be "On" or "Off". According to this setting, the system is returned to the pre-defined state after the AC power recovery.

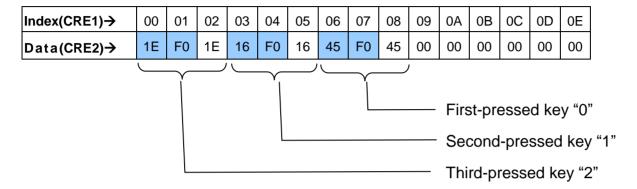
15.2 Wake Up the System by Keyboard and Mouse

The NCT6122D / NCT6126D generates a low pulse through the PSOUT# pin to wake up the system when it detects a key code pressed or mouse button clicked. The following sections describe how the NCT6122D / NCT6126D works.

15.2.1 Waken up by Keyboard events

The keyboard Wake-Up function is enabled by setting Logical Device A, CR[E0h], bit 6 to "1".

There are two keyboard events can be used for the wake-up


- 1) Any key Set bit 0 at Logical Device A, CR[E0h] to "1" (Default).
- Specific keys (Password) Set bit 0 at Logical Device A, CR[E0h] to "0".

Three sets of specific key combinations are stored at Logical Device A. CR[E1h] is an index register to indicate which byte of key code storage (0x00h ~ 0x0Eh, 0x30h ~ 0x3Eh, 0x40h ~ 0x4Eh) is going to be read or written through CR[E2h]. According to IBM 101/102 keyboard specification, a complete key code contains a 1-byte make

code and a 2-byte break code. For example, the make code of "0" is 0x45h, and the corresponding break code is 0xF0h, 0x45h.

The approach to implement Keyboard Password Wake-Up Function is to fill key codes into the password storage. Assume that we want to set "012" as the password. The storage should be filled as below. Please note that index 0x09h ~ 0x0Eh must be filled as 0x00h since the password has only three numbers.

15.2.2 Waken up by Mouse events

The mouse Wake-Up function is enabled by setting Logical Device A, CR[E0h], bit 5 to "1".

The following specific mouse events can be used for the wake-up:

- Any button clicked or any movement
- One click of the left or the right button
- One click of the left button
- One click of the right button
- Two clicks of the left button
- Two clicks of the right button.

Three control bits (ENMDAT_UP, MSRKEY, MSXKEY) define the combinations of the mouse wake-up events. Please see the following table for the details.

ENMDAT_UP (LOGICAL DEVICE A, CR[E6H], BIT 7)	MSRKEY (LOGICAL DEVICE A, CR[E0H], BIT 4)	MSXKEY (LOGICAL DEVICE A, CR[E0H], BIT 1)	WAKE-UP EVENT
1	Х	1	Any button clicked or any movement.
1	Х	0	One click of the left or right button.
0	0	1	One click of the left button.
0	1	1	One click of the right button.
0	0	0	Two clicks of the left button.
0	1	0	Two clicks of the right button.

Table 15-2 Definitions of Mouse Wake-Up Events

15.3 Resume Reset Logic

The RSMRST# (Pin 75) signal is a reset output and is used as the VSB power on reset signal for the South Bridge.

When the NCT6122D / NCT6126D detects the 3VSB voltage rises to "V1", it then starts a delay – "t1" before the rising edge of RSMRST# asserting. If the 3VSB voltage falls below "V2", the RSMRST# de-asserts immediately.

Timing and voltage parameters are shown in Figure 15-5 and Table 15-3.

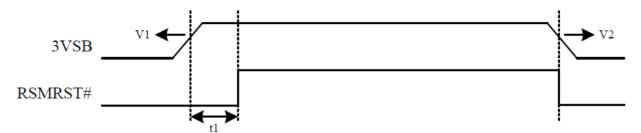


Figure 15-5 Mechanism of Resume Reset Logic

Table 15-3 Timing and Voltage Parameters of RSMRST#

NAME	PARAMETER	MIN.	MAX.	UNIT
V1	3VSB Valid Voltage	-	3.1	V
V2	3VSB Ineffective Voltage	2.92	-	V
t1	Valid 3VSB to RSMRST# inactive	200	300	mS

16. SERIALIZED IRQ

The NCT6122D / NCT6126D supports a serialized IRQ scheme. This allows a signal line to be used to report the parallel interrupt requests. Since more than one device may need to share the signal serial SERIRQ signal, an open drain signal scheme is employed. The clock source is the PCI clock. The serialized interrupt is transferred on the SERIRQ signal, one cycle consisting of three frames types: the Start Frame, the IRQ/Data Frame, and the Stop Frame.

16.1 Start Frame

There are two modes of operation for the SERIRQ Start Frame: Quiet mode and Continuous mode.

In the Quiet mode, the NCT6122D / NCT6126D drives the SERIRQ signal active low for one clock, and then tristates it. This brings all the state machines of the NCT6122D / NCT6126D from idle to active states. The host controller (the South Bridge) then takes over driving SERIRQ signal low in the next clock and continues driving the SERIRQ low for programmable 3 to 7 clock periods. This makes the total number of clocks low 4 to 8 clock periods. After these clocks, the host controller drives the SERIRQ high for one clock and then tri-states it.

In the Continuous mode, the START Frame can only be initiated by the host controller to update the information of the IRQ/Data Frame. The host controller drives the SERIRQ signal low for 4 to 8 clock periods. Upon a reset, the SERIRQ signal is defaulted to the Continuous mode for the host controller to initiate the first Start Frame.

Please see the diagram below for more details.

Start Frame Timing with source sampled a low pulse on IRQ1.

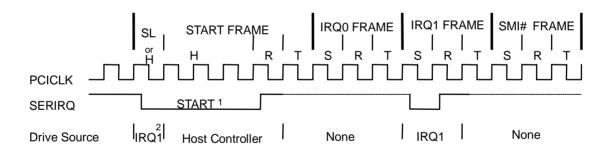


Figure 16-1 Start Frame Timing with Source Sampled A Low Pulse on IRQ1

H=Host Control SL=Slave Control R=Recovery T=7

T=Turn-around

S=Sample

Note:

1. The Start Frame pulse can be 4-8 clocks wide.

2. The first clock of Start Frame is driven low by the NCT6122D / NCT6126D because IRQ1 of the NCT6122D / NCT6126D needs an interrupt request. Then the host takes over and continues to pull the SERIRQ low.

-271-

Publication Release Date: September 12, 2023

16.2 IRQ/Data Frame

Once the Start Frame has been initiated, the NCT6122D / NCT6126D must start counting frames based on the rising edge of the start pulse. Each IRQ/Data Frame has three clocks: the Sample phase, the Recovery phase, and the Turn-around phase.

During the Sample phase, the NCT6122D / NCT6126D drives SERIRQ low if the corresponding IRQ is active. If the corresponding IRQ is inactive, then SERIRQ must be left tri-stated. During the Recovery phase, the NCT6122D / NCT6126D device drives the SERIRQ high. During the Turn-around phase, the NCT6122D / NCT6126D device leaves the SERIRQ tri-stated. The NCT6122D / NCT6126D starts to drive the SERIRQ line from the beginning of "IRQ0 FRAME" based on the rising edge of PCICLK.

The IRQ/Data Frame has a specific numeral order, as shown in Table 16-1.

Table 16-1 SERIRQ Sampling Periods

	SERIRQ SAMP	LING PERIODS	
IRQ/DATA FRAME	SIGNAL SAMPLED	# OF CLOCKS PAST START	EMPLOYED BY
1	IRQ0	2	Reserved
2	IRQ1	5	Keyboard
3	SMI#	8	H/W Monitor & SMI
4	IRQ3	11	IR
5	IRQ4	14	UART A
6	IRQ5	17	-
7	IRQ6	20	
8	IRQ7	23	LPT
9	IRQ8	26	-
10	IRQ9	29	-
11	IRQ10	32	-
12	IRQ11	35	-
13	IRQ12	38	Mouse
14	IRQ13	41	Reserved
15	IRQ14	44	-
16	IRQ15	47	-
17	IOCHCK#	50	-
18	INTA#	53	-
19	INTB#	56	-
20	INTC#	59	-
21	INTD#	62	-
32:22	Unassigned	95	-

16.3 Stop Frame

After all IRQ/Data Frames have completed, the host controller will terminates SERIRQ with a Stop frame. Only the host controller can initiate the Stop Frame by driving SERIRQ low for 2 or 3 clocks. If the Stop Frame is low for 2 clocks, the Sample mode of next SERIRQ cycle's Sample mode is the Quiet mode. If the Stop Frame is low for 3 clocks, the Sample mode of next SERIRQ cycle is the Continuous mode.

Please see the diagram below for more details.

Stop Frame Timing with Host Using 17 SERIRQ sampling period.

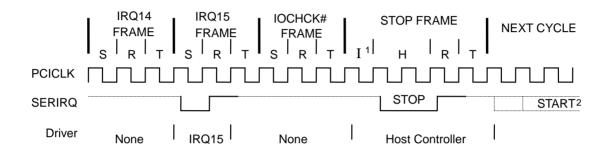


Figure 16-2 Stop Frame Timing with Host Using 17 SERIRQ Sampling Period

H=Host Control R=Recovery T=Turn-around S=Sample I= Idle.

Note:

- 1. There may be none, one or more Idle states during the Stop Frame.
- 2. The Start Frame pulse of next SERIRQ cycle <u>may</u> or may not start immediately after the turn-around clock of the Stop Frame.

-273-

17. WATCHDOG TIMER

The Watchdog Timer of the NCT6122D / NCT6126D consists of an 8-bit programmable time-out counter and a control and status register. GPIO0, GPIO2, GPIO3, GPIO5, GPIO6, GPIO7, GPIO8, GPIO9 and GPIOA provide an alternative WDT1 function. This function can be configured by the relative GPIO control register. WDT1 enable register is Logical Device 8 CR[30] bit[0]. The units of Watchdog Timer counter can be selected at Logical Device 8, CR[F0h], bit[3]. The time-out value is set at Logical Device 8 CR[F1h]. Writing zero disables the Watchdog Timer function. Writing any non-zero value to this register causes the counter to load this value into the Watchdog Timer counter and start counting down.

When Watchdog Timer 1 time-out event is occurring, GPIO0 bit[1], [5], GPIO2, bit[3], [7], GPIO3 bit[1], [5], GPIO5 bit[0], [4], GPIO6 bit[2], [7], GPIO7 bit[0], [4], GPIO8 bit[1], [5], GPIO9 bit[4] and GPIOA bit[4] will trigger a low pulse about 100mS. Also the event could go to pin77 WDTO#. When the value is counted down to zero, the timer stops, and the NCT6122D / NCT6126D sets the WDT1 status bit in Logical Device 8, CR[F2h], bit[4]. Writing a zero will clear the status bit. This bit will also be cleared if LRESET# or PWROK signal is asserted.

Watchdog Timer 1 also provides ACPI associate functions. Write Logical Device D CRF0 bit[7] and [6] as 2'b01 make Watchdog Timer 1 event trigger 250ms low pulse on RSMRST#. Enable Logical Device 16 CRE3 bit[2] can generate 100ms PSOUT# low pulse after 1.5 second of RSMRST# low pulse. Timing illustrations are defined in Figure 17-1. Write Logical Device D CRF0 bit [7] and [6] as 2'b10 or 2'b11 make Watchdog Timer 1 event trigger PWROK or Internal SLPS3# make system get into DeepS5 state. Timing illustrations are defined in Figure 17-2 and 17-3.

The Watchdog Timer 2 of the NCT6122D / NCT6126D consists of an 8-bit programmable time-out counter register (Logical Device D, CRE2) and status register (Logical Device D, CRE4 bit7). When Logical Device D, CRE3[bit0] and Logical Device D, CRF0 bit[1] both are set to one, the timer will start count down. The timeout event will trigger PWROK pin to generate a 100ms low pulse. When Logical Device D, CRE3 bit[0] and CRF0 bit[1] are set to 2'b01. The timer will start count down when LRESET# drop. The timeout event will trigger PWROK pin to generate a 100ms low pulse.

The Watchdog Timer 3 can bit enable by Logical Device 9, CRE4 bit[2]. It will trigger 100ms low pulse to pin77 WDTO# at 6 second after entering S0 state each time system get into S0 state.

Watchdog Timer Time-Out Trigger Event	Watchdog Timer 1	Watchdog Timer 2	Watchdog Timer 3
KBRST#	✓	×	*
PWROK	×	✓	×
GPIO Pin	✓	×	*
WDTO# Pin	✓	×	√
RSMRST# Event	✓	×	*
PWROK Event Then Into Deep S5	✓	×	*

-274-

Publication Release Date: September 12, 2023

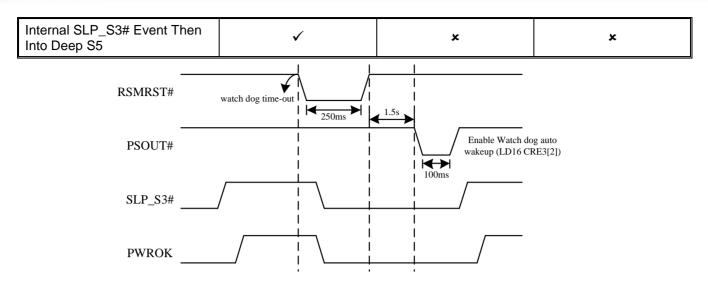


Figure 17-1 RSMRST# Event When Logical Device D CRF0 Bit[7] and Bit[6] as 2'b01

Enable auto wakeup by LD16 CRE3[2]. PSOUT# will pull low 100ms after Watchdog timer 1 to RSMRST# Event end for 1.5 second. If SLP_S3# pull high before the PSOUT# triggered. PSOUT# low pulse event will cancel.

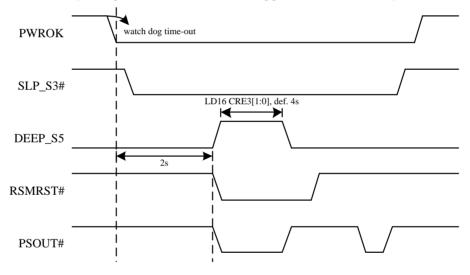


Figure 17-2 PWROK Event When Logical Device D CRF0 Bit[7] and Bit[6] as 2'b10

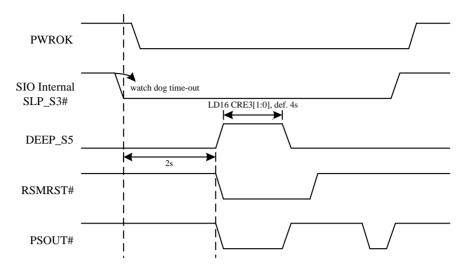


Figure 17-3 SLP_S3# Event When Logical Device D CRF0 Bit[7] and Bit[6] as 2'b11

18. GENERAL PURPOSE I/O

18.1 GPIO ARCHITECTURE

The NCT6122D / NCT6126D provides 72 input/output ports that can be individually configured to perform a simple basic I/O function or alternative, pre-defined function. GPIO port $0 \sim 7$ is configured through control registers in Logical Device 7. Users can configure each individual port to be an input or output port by programming respective bit in selection register (0 = output, 1 = input). Invert port value by setting inversion register (0 = non-inverse, 1 = inverse). Port value is read/written through data register.

In addition, only GP63, GP64, GP44 and GP45 are designed to be able to assert PSOUT# or PME# signal to wake up the system if any of them has falling transitions. The following table gives more detailed register map on GP63, GP64, GP44 and GP45.

Table 18-1 Relative Control Registers of GPIO 63, 64, 44 and 45 that Support Wake-Up Function

	EVENTROUTE I (PSOUT#)	EVENTROUTE II (PME#)	EVENT STATUS (PSOUT#, W1C)	EVENT STATUS (PME, W1C)
	0: DISABLE 1: ENABLE	0: DISABLE 1: ENABLE		
GP63	LD9, CR E3h, Bit[7]	LD9, CR E3h, Bit[3]	LDE, CR E3h, Bit[7]	LDA, CRFAh, Bit[7]
GP64	LD9, CR E3h, Bit[6]	LD9, CR E3h, Bit[2]	LDE, CR E3h, Bit[6]	LDA, CRFAh, Bit[6]
GP44	LD9, CR E3h, Bit[5]	LD9, CR E3h, Bit[1]	LDE, CR E3h, Bit[5]	LDA, CRFAh, Bit[5]
GP45	LD9, CR E3h, Bit[4]	LD9, CR E3h, Bit[0]	LDE, CR E3h, Bit[4]	LDA, CRFAh, Bit[4]

Table 18-2 GPIO Group Programming Table

Equips maximum 72-pin GPIOs.

GPIO0 Group

Enable: Logical Device 7, CR30[0] Data: Logical Device 7, E0h~E3h

Multi-function: YLW, GRN, WDTO#, SUSLED (Logical Device 8, CRE0[7-0])

Reset: Logical Device 9, CRE2[0] OD/PP: Logical Device F, CRE0

		<u>'</u>			
Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GP00	109	GP00	input	3VSB	
GP01	110	GP01	input	3VSB	
GP02	111	GP02	input	3VSB	
GP03	112	GP03	input	3VSB	
GP04	113	GP04	input	3VSB	
GP05	114	GP05	input	3VSB	
GP06	115	GP06	input	3VSB	
GP07	116	GP07	input	3VSB	

GPIO1 Group

Enable: Logical Device 7, CR30[1] Data: Logical Device 7, E4h~E7h

Multi-function: YLW, GRN, BEEP, SMI (Logical Device 8, CRE1[7-0])

Reset: Logical Device 9, CRE2[1] OD/PP: Logical Device F, CRE1

Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GP10	117	GP10	input	3VSB	
GP11	118	GP11	input	3VSB	
GP12	119	GP12	input	3VSB	
GP13	120	GP13	input	3VSB	
GP14	121	GP14	input	3VSB	
GP15	122	GP15	input	3VSB	
GP16	123	GP16	input	3VSB	
GP17	124	GP17	input	3VSB	

GPIO2 Group

Enable: Logical Device 7, CR30[2] Data: Logical Device 7, E8h~Ebh

Multi-function: WDTO#, BEEP, SMI, PLED (Logical Device 8, CRE2[7-0])

Reset: Logical Device 9, CRE2[2]
OD/PP: Logical Device F, CRE2

O D,	_09.00	21 201100 1 , 01122			
Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GP20	125	GP20	input	3VSB	
GP21	126	GP21	input	3VSB	
GP22	127	GP22	input	3VSB	
GP23	128	GP23	input	3VSB	
GP24	1	GP24	input	3VSB	
GP25	2	GP25	input	3VSB	
GP26	3	GP26	input	3VSB	
GP27	4	GP27	input	3VSB	

GPIO3 Group

Enable: Logical Device 7, CR30[3] Data: Logical Device 7, Ech~Efh

Multi-function: BEEP, SMI, WDTO#, SUSLED (Logical Device 8, CRE3[7-0])

Reset: Logical Device 9, CRE2[3] OD/PP: Logical Device F, CRE3

Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GP30	32	GP30	input	3VSB	
GP31	33	GP31	input	3VSB	
GP32	34	GP32	input	3VSB	
GP33	35	GP33	input	3VSB	
GP34	36	GP34	input	3VSB	

GP35	37	GP35	input	3VSB
GP36	38	GP36	input	3VSB
GP37	39	GP37	input	3VSB

GPIO4 Group

Enable: Logical Device 7, CR30[4] Data: Logical Device 7, F0h~F3h

Multi-function: YLW, GRN, PLED, SMI (Logical Device 8, CRE4[7-0])

Reset: Logical Device 9, CRE2[4] OD/PP: Logical Device F, CRE4

		,			
Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GP40	40	GP40	input	3VSB	
GP41	41	GP41	input	3VSB	
GP42	42	GP42	input	3VSB	
GP43	43	GP43	input	3VSB	
GP44	44	GP44	input	3VSB	
GP45	45	GP45	input	3VSB	
GP46	46	GP46	input	3VSB	
GP47	47	GP47	input	3VSB	

GPIO5 Group

Enable: Logical Device 7, CR30[5] Data: Logical Device 7, F4h~F7h

Multi-function: YLW, GRN, BEEP, WDTO# (Logical Device 8, CRE5[7-0])

Reset: Logical Device 9, CRE2[5]
OD/PP: Logical Device F, CRE5

Name	Pin	Default fur	nction	Default t	уре	GPIO power plane	Switch default function to GPIO
		(KBC_EN)		(KBC_EN	٧)		
GP50	62	0	SDA	0	output (OD)	3VSB	CR1A[3] = 1
		1	KCLK	1	bi-direction]	
		(KBC_EN)		(KBC_EN	۷)		
GP51	63	0	SCL	0	output (OD)	3VSB	CR1A[3] = 1
		1	KDAT	1	bi-direction		
		(KBC_EN)		(KBC_EN	۷)		
GP52	65	0	GP52	0	input	3VSB	
		1	MCLK	1	bi-direction		
		{KBC_EN}		{KBC_ E	N}		
GP53	66	0	GP53	0	input	3VSB	
		1	MDAT	1	bi-direction		
GP54	67	PSOUT#		output		3VSB	CR1A[1] = 1
GP55	68	PSIN#		input		3VSB	CR1A[0] = 1
GP56	70	SLP_S5#		input		3VSB	CR1B[7] = 1
GP57	71	PWROK		output (C	DD)	VRTC	CR1B[6] = 1

GPIO6 Group

Enable: Logical Device 7, CR30[6] Data: Logical Device 7, F8h~FBh

Multi-function: YLW, GRN, BEEP, SMI, WDTO#, SUSLED, PLED (Logical Device 8, CRE6[7-0], CRE7[7-5])

Reset: Logical Device 9, CRE2[6] OD/PP: Logical Device F, CRE6

Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GP60	72	PSON#	output (OD)	3VSB	CR1B[5] = 1
GP61	73	SLP_S3#	input	3VSB	CR1B[4] = 1
GP62	75	RSMRST#	output (OD)	VRTC	CR1B[3] = 1
GP63	94	SDA	input	3VSB	CR1B[1:0] = 2'b00, CR2A[1]=0
GP64	96	SCL	input	3VSB	CR1B[1:0] = 2'b00, CR2A[1]=0
GP65	106	SUSLED	output	3VSB	CR1C[6]=1
GP66	107	THERMTRIP#	input	3VSB	LD9_CRE1[4]=0, CR1C[5]=1
GP67	108	GP67	input	3VSB	LDA_CRF8[2:1]=01

GPIO7 Group

Enable: Logical Device 7, CR30[7] Data: Logical Device 7, FCh~FFh

Multi-function: YLW, GRN, BEEP, SMI, WDTO#, SUSLED, PLED (Logical Device 8, CRE8[7-0])

Reset: Logical Device 9, CRE2[7] OD/PP: Logical Device F, CRE7

Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GP70	5	GP70	input	3VSB	
GP71	17	GP71	input	3VSB	
GP72	7	GP72	input	3VSB	
GP73	8	GP73	input	3VSB	
GP74	9	GP74	input	3VSB	
GP75	10	GP75	input	3VSB	
GP76	11	GP76	input	3VSB	
GP77	13	GP77	input	3VSB	

GPIO8 Group

Enable: Logical Device 9, CR30[0] Data: Logical Device 9, F0h~F3h

Multi-function: YLW, GRN, BEEP, SMI, WDTO#, SUSLED, PLED (Logical Device 8, CRE9[7-0])

Reset: Logical Device 9, CRE1[0] OD/PP: Logical Device F, CRE8

Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GP80	14	AUXFANOUT0	output	3VSB	CR2B[4] = 1
GP81	6	AUXFANINO	input	3VSB	CR2B[4] = 1
GP82	18	GP82	input	3VSB	CR2B[3] = 0
GP83	69	GP83	Input	3VSB	
GP84	77	WDTO#	output (OD)	3VSB	CR2A[3] = 1

GP85	86	PME#	output (OD)	3VSB	LDE_CRE6[7] = 1
GP86	87	GP86	Input	3VSB	
GP87	95	OVT#	Output(OD)	3VSB	CR1D[3:2] = 1x

GPIO9 Group

Enable: Logical Device 9, CR30[1] Data: Logical Device 9, F4h~F7h

Multi-function: SUSLED, BEEP, SMI, WDT1, YLW, GRN,SMI, PLED (Logical Device 8, CREA[7-0])

Reset: Logical Device 9, CRE1[1] OD/PP: Logical Device F, CRE9

		,			
Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GP90	78	CTSB#	input	3VSB	CR2C[3:2]=0x or 10
GP91	79	DSRB#	input	3VSB	CR2C[3:2]=0x or 10
GP92	80	RTSB#	input	3VSB	CR2C[3:2]=0x
GP93	81	DTRB#	Input	3VSB	CR2C[3:2]=0x or 10
GP94	82	SINB	input	3VSB	CR2C[3:2]=00
GP95	83	SOUTB#	input	3VSB	CR2C[3:2]=00
GP96	84	DCDB#	input	3VSB	CR2C[3:2]=0x or 10
GP97	85	RIB#	input	3VSB	CR2C[3:2]=0x or 10

GPIOA Group

Enable: Logical Device 9, CR30[2] Data: Logical Device 9, F8h~FBh

Multi-function: SUSLED, BEEP, SMI, WDT1, YLW, GRN,SMI, PLED (Logical Device 8, CREB[7-0])

Reset: Logical Device 9, CRE1[2] OD/PP: Logical Device F, CREA

Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GPA0	49	CTSA#	input	3VSB	CR2C[1:0]=0x or 10
GPA1	50	DSRA#	input	3VSB	CR2C[1:0]=0x or 10
GPA2	51	RTSA#	input	3VSB	CR2C[1:0]=0x
GPA3	52	DTRA#	Input	3VSB	CR2C[1:0]=0x or 10
GPA4	53	SINA	input	3VSB	CR2C[1:0]=00
GPA5	54	SOUTA	input	3VSB	CR2C[1:0]=00
GPA6	56	DCDA#	input	3VSB	CR2C[1:0]=0x or 10
GPA7	57	RIA#	input	3VSB	CR2C[1:0]=0x or 10

GPIOB Group

Enable: Logical Device 9, CR30[3] Data: Logical Device 9, FCh~FFh

Multi-function:BEEP (Logical Device 8, CREC[0])

Reset: Logical Device 9, CRE1[3] OD/PP: Logical Device F, CREB

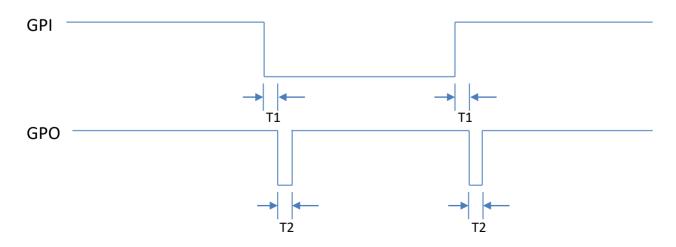
Name	Pin	Default function	Default type	GPIO power plane	Switch default function to GPIO
GPB0	19	GPB0	input	3VSB	LDE_CRF4[3]

Table 18-3 GPIO Multi-Function Routing Table

					GPI	O Multi-Functi	on Routing					
Bit	GPIO0	GPIO1	GPIO2	GPIO3	GPIO4	GPIO5	GPIO6	GPIO7	GPIO8	GPIO9	GPIOA	GPIOB
7	0: GPIO07 1: YLW	0: GPIO17 1: YLW	0: GPIO27 1: WDTO#		0: GPIO47 1: YLW	0: GPIO57 1: YLW	-	0: GPIO77 1: PLED	0: GPIO87 1: YLW	0: GPIO97 1: SUSLED	0: GPIOA7 1: SUSLED	-
6	0: GPIO06 1: GRN	0: GPIO16 1: GRN	0: GPIO26 1: BEEP	0: GPIO36 1: SMI	0: GPIO46 1: GRN	0: GPIO56 1: GRN	0: GPIO66 1: YLW	0: GPIO76 1: BEEP	0: GPIO86 1: SMI	0: GPIO96 1: BEEP	0: GPIOA6 1: BEEP	-
5	0: GPIO05 1: WDTO#	0: GPIO15 1: BEEP	0: GPIO25 1: SMI	0: GPIO35 1: WDTO#	0: GPIO45 1: PLED	0: GPIO55 1: BEEP	0: GPIO65 1: GRN	0: GPIO75 1: SMI	0: GPIO85 1: WDT1	0: GPIO95 1: SMI	0: GPIOA5 1: SMI	-
4	0: GPIO04 1: SUSLED		0: GPIO24 1: PLED	0: GPIO34 1: SUSLED	0: GPIO44 1: SMI	0: GPIO54 1: WDTO#	0: GPIO64 1: BEEP	0: GPIO74 1: WDT1	0: GPIO84 1: BEEP	0: GPIO94 1: WDT1	0: GPIOA4 1: WDT1	-
3	0: GPIO03 1: YLW	0: GPIO13 1: YLW	0: GPIO23 1: WDTO#		0: GPIO43 1: YLW	0: GPIO53 1: YLW	0: GPIO63 1: SMI	0: GPIO73 1: PLED	0: GPIO83 1: YLW	0: GPIO93 1: YLW	0: GPIOA3 1: YLW	-
2	0: GPIO02 1: GRN	0: GPIO12 1: GRN	0: GPIO22 1: BEEP	0: GPIO32 1: SMI	0: GPIO42 1: GRN	0: GPIO52 1: GRN	0: GPIO62 1: WDTO#	0: GPIO72 1: BEEP	0: GPIO82 1: SMI	0: GPIO92 1: GRN	0: GPIOA2 1: GRN	-
1	0: GPIO01 1: WDTO#	0: GPIO11 1: BEEP	0: GPIO21 1: SMI	0: GPIO31 1: WDTO#	0: GPIO41 1: PLED	0: GPIO51 1: BEEP	0: GPIO61 1: SUSLED	0: GPIO71 1: SMI	0: GPIO81 1: WDT1	0: GPIO91 1: SMI	0: GPIOA1 1: SMI	-
0	0: GPIO00 1: SUSLED	0: GPIO10 1: SMI	0: GPIO20 1: PLED	0: GPIO30 1: SUSLED	0: GPIO40 1: SMI	0: GPIO50 1: WDTO#	0: GPIO60 1: PLED	0: GPIO70 1: WDT1	0: GPIO80 1: BEEP	0: GPIO90 1: PLED	0: GPIOA0 1: PLED	0: GPIOB 1 :BEEP

18.2 ACCESS CHANNELS

There are two different channels to set up/access the GPIO ports. The first one is the indirect access via register 2E/2F (4E/4F, it depends by HEFRAS strapping). The registers can be read / written only when the respective Logical Device ID and port number are selected.


The other is the direct access through GPIO register table that can be configured by {CR61, CR60} of logic device 8. The mapped 7 registers are defined in table 18-4. Base address plus 0 to 4 are GPIO registers, base address plus 5 ,6 and 7 are watchdog registers. Since the base address is set, the GPIO number can be selected by writing the group number to GSR [INDEX] (GPIO Select Register, #0~#7 for GPIO0 ~ GPIO7 respectively). Then the I/O register, the Data register, the Inversion register and the Status register are mapped to addresses Base+1, Base+2, Base+3 and Base+4 respectively. Only one GPIO can be accessed at one time.

ADDRESS	ABBR	BIT NUMBER								
ADDRESS	ADDK	7	6	5	4	3	2	1	0	
Base + 0	GSR		Rese	erved		INDEX				
Base + 1	IOR		GPIO I/O Register							
Base + 2	DAT		GPIO Data Register							
Base + 3	INV			GI	PIO Invers	ion Regis	ter			
Base + 4	DST			(SPIO Statu	us Registe	er			
Base + 5	Wdtmod	W	Watchdog Timer I(WDT1) and KBC P20 Control Mode Register							
Base + 6	Wdttim	Watchdog Timer I (WDT1) Counter Register								
Base + 7	Wdtsts		Watchdog Timer I (WDT1) Control & Status Register							

Table 18-4 GPIO Register Addresses

18.3 GPIO TRANSITION

NCT6122D / NCT6126D support GPIO transition function, CR[1A] bit[5:4] control GPIO transition pins from other function to this, when CR[1A] bit[5:4] set to 2'b10, two pins select to GPIO transition function, AFD# is GPI control pin, and STB# is GPO output pin. The GPIO transition timing chart shows as below, when GPI transition (high to low or low to high), after about 100ms (T1 delay), to issue about 10ms, 50ms, 100ms(default), or 200ms pulse (T2 delay) to trigger GPO pin, the pulse (T2 delay) controlled by LDF CR[F4] bit[7:6]. The GPIO transition function must be work under GPIO transition enable bit as one, which controlled by LDF CR[F4] bit[0].

Publication Release Date: September 12, 2023

19. SMBUS MASTER INTERFACE

19.1 General Description

The SMBus interface module is two wire serial interface compatible to the SMBus physical layer. It is also compatible with Intel's SMBus and Philips' I²C bus.

The rest of this section introduces the various features of the SMBus master capability. These features are divided into the following sections:

- ♦ SMBus and I²C compliant
- ◆ AMD-TSI
- ◆ PCH
- SMBus master

19.2 Introduction to the SMBus Master

19.2.1 Data Transfer Format

Every byte transferred on the bus consists of 8 bits. After the start condition, the master places the 7-bit address to the slave device it wants to address on the bus. The address followed an eight bit indicating the direction of the data transfer (R/W#); a zero indicates a transmission for data while a one indicates a request for data. Each byte is transferred with the most significant bit first, and after each byte, an acknowledge signal must follow. A data transfer is always terminated by stop condition generated by master.

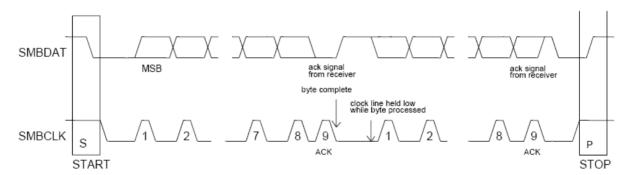


Figure 19-1 Data Transfer Format

19.2.2 Arbitration

Arbitration takes place on the SMBDAT data line while the SMBCLK line is high. Two devices may generate a start condition at the same time and enter the arbitration procedure. Arbitration continues until one master generates a HIGH level on the SMBDAT line while another competing master generates a LOW level on the SMBDAT line while SMBCLK is high. The master device which generated the HIGH level on SMBDAT loses arbitration. If a device loses arbitration during the first byte following a start condition i.e. while transmitting a slave address it becomes a slave receiver and monitors the address for a potential match. Arbitration may also be lost in the master receive mode during the acknowledge cycle.

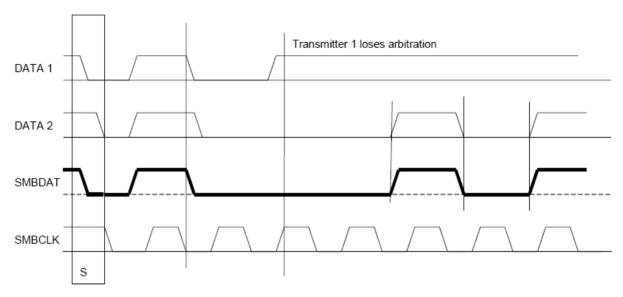


Figure 19-2 SMBus Arbitration

19.2.3 Clock Synchronization

Clock synchronization is performed while the arbitration procedure described above is in effect. Clock Synchronization takes place between two competing devices by utilizing the wired-AND nature of the SMBCLK line. The SMBCLK line will go low as soon as the master with the shortest high time pulls SMBCLK low. SMBCLK will remain low until the device with the longest SMBCLK low time relinquishes the SMBCLK line. Therefore, the SMBCLK high time is determined by device with the shortest high time while the SMBCLK low time is determined by the device with the longest low time.

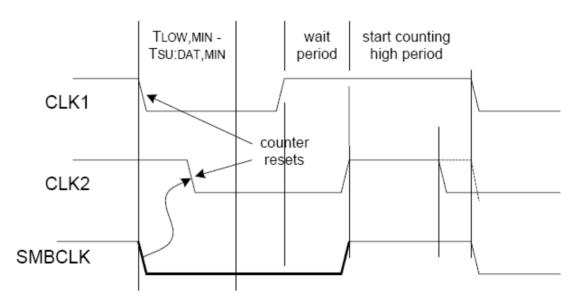


Figure 19-3 Clock synchronization

19.3 SB-TSI

The combined-format repeated start sequence is not supported in standard-mode and fast-mode.

- Only 7-bit SMBus addresses are supported.
- ◆ SB-TSI implements the Send/Receive Byte and Read/Write Byte protocols.
- ◆ SB-TSI registers can only by written using a write byte command.
- ◆ Address Resolution Protocol (ARP) is not implemented.
- ◆ Packet Error Checking (PEC) is not supported.

19.3.1 SB-TSI Address

The SMBus address is really 7 bits. The SB-TSI address is normally 98h or 4Ch. The address could vary with address select bits.

Address Select Bits	SB-TSI Address
000b	98h
001b	9Ah
010b	9Ch
011b	9Eh
100b	90h
101b	92h
110b	94h
111b	96h

Table 19-1 SB-TSI Address Encoding

19.4 PCH

The PCH provide system thermal data to EC. The EC can manage the fans and other cooling elements based on this data. A subset of the thermal collection is that the PCH and be programmed to alert the EC when a device has gone outside of its temperature limits.

19.4.1 Command Summary

Table 19-2 PCH Command Summary

Trans-action	Slave Addr.	Data Byte 0 =Com mand	Data Byte 1 =Byte Count	Data Byte 2	Data Byte 3	Data Byte 4	Data Byte 5	Data Byte 6	Data Byte 7
Write STS Preferences	I2C	0x41	0x6	STS [47:40]	STS [39:32]	STS [31:24]	STS [23:16]	STS [15:8]	STS [7:0]
Write CPU Temp Limits	I2C	0x42	0x6	Lower Limit [15:8]	Lower Limit [7:0]	Limit	Upper Limit [15:8]		
Write MCH Temp Limits	I2C	0x43	0x2	Lower Limit [7:0]	Upper Limit [7:0]	na	na		

Publication Release Date: September 12, 2023

Write IBX Temp Limits	I2C	0x44	0x2	Lower Limit [7:0]	Upper Limit [7:0]	na	na	
Write DIMM Temp Limits	I2C	0x45	0x2	Lower Limit [7:0]	Upper Limit [7:0]	na	na	
Write MPC CPU Power Clamp	I2C	0x50	0x2	Lower Limit [7:0]	Power Clamp [7:0]			
Block Read	Block Read Address	0x40	Block Read Address	Byte Count	Data 0	Data N	PEC (optional)	

19.5 SMBus Master

19.5.1 Block Diagram

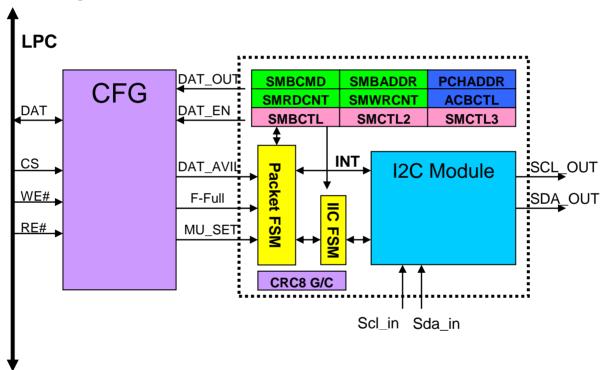
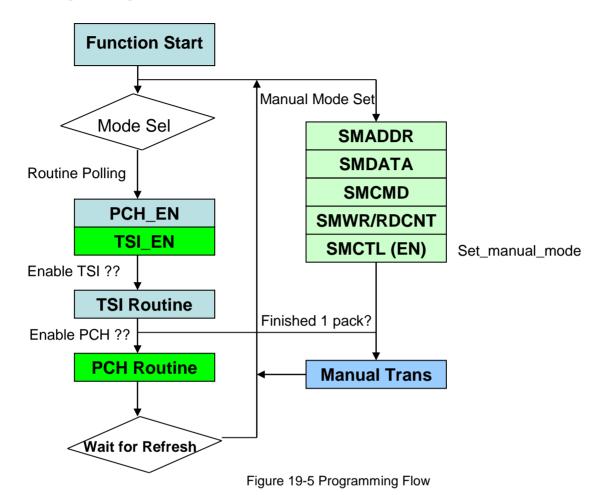



Figure 19-4 SMBus Master Block Diagram

19.5.2 Programming Flow

Publication Release Date: September 12, 2023

-288-

19.5.3 TSI Routine

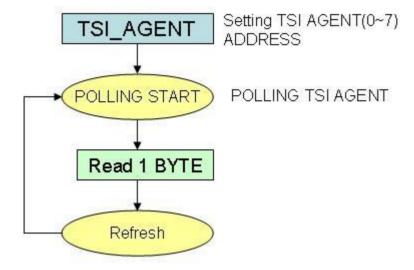


Figure 19-6 TSI Routine

19.5.4 PCH Routine

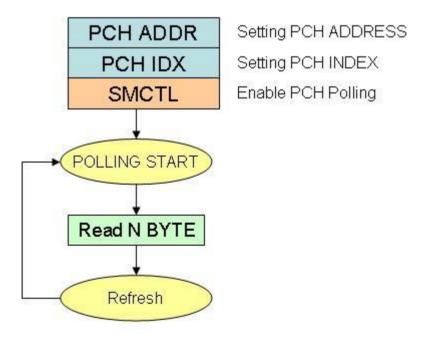


Figure 19-7 PCH Routine

19.5.5 BYTE Routine

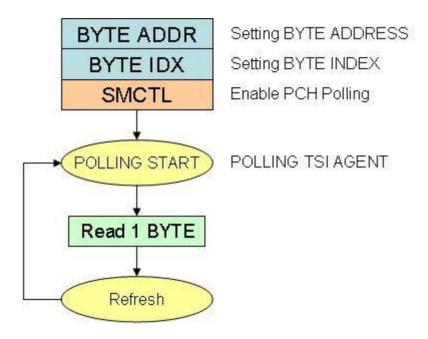


Figure 19-8 Byte Routine

19.5.6 Manual Mode interface

The SMBus host supports Block/Word/Byte Write and Block/Word/Byte read with PEC. The SMBus host can use the interface to access the SMBus slave. The timing diagrams below illustrate how to use the SMBus interface to write the data or read the data to the SMBus slave.

Publication Release Date: September 12, 2023

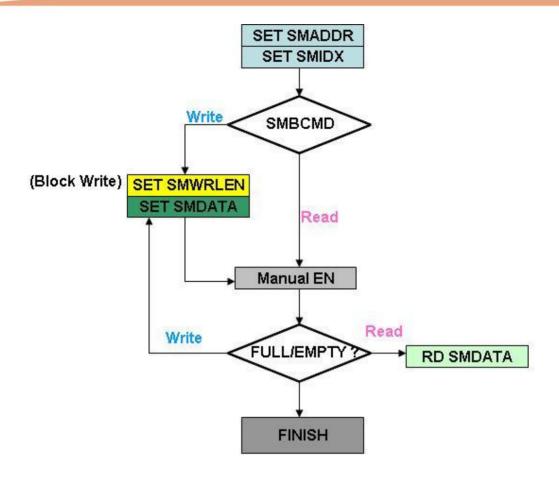


Figure 19-9 Manual Mode Programming Flow

19.6 Register Type Abbreviations

The following abbreviations are used to indicate the Register Type:

- ◆ R/W = Read/Write.
- R = Read from register.
- ♦ W = Write.
- ♠ RO = Read-only.

To program the SMBus master configuration registers, the following configuration procedures must be followed in sequence:

- (1). Enter the Extended Function Mode.
- (2). Configure the configuration registers.

19.6.1 Enter the Extended Function Mode

To place the chip into the Extended Function Mode, two successive writes of 0x87 must be applied to Extended Function Enable Registers (EFERs, i.e. 2Eh or 4Eh).

-291-

Publication Release Date: September 12, 2023

19.6.2 Configure the Configuration Registers

The chip selects the Logical Device and activates the desired Logical Devices through Extended Function Index Register (EFIR) and Extended Function Data Register (EFDR). The EFIR is located at the same address as the EFER, and the EFDR is located at address (EFIR+1).

First, write the Logical Device Number (i.e. 0x07) to the EFIR and then write the number of the desired Logical Device to the EFDR. If accessing the Chip (Global) Control Registers, this step is not required.

Secondly, write the address of the desired configuration register within the Logical Device to the EFIR and then write (or read) the desired configuration register through the EFDR.

19.7 SMBus Master Register Set

19.7.1 SMBus Register Map

SMBus Master base address in register Logical Device B CR62h(MSB), CR63h(LSB).

Table 19-3 SMBus Master Bank 0 Registers

Offset	Туре	Name	Section
0	R/W	SMDATA	19.7.2
1	R/W	SMWRSIZE	19.7.3
2	R/W	SMBCMD	19.7.4
3	R/W	SMIDX	19.7.5
4	R/W	SMCTL	19.7.6
5	R/W	SMADDR	19.7.7
6	R/W	SCLFREQ	19.7.8
7	RO	Reserved	
8	R/W	PCHADDR	19.7.9
9	R/W	Error_status	19.7.10
Α	R/W	Reserved	19.7.11
В	R/W	PCHCMD	19.7.13
D	R/W	TSI_AGENT	19.7.12
E	R/W	SMCTL3	19.7.13
F	R/W	SMCTL2	19.7.14
10	R/W	BYTE_ADDR0	19.7.15
11	R/W	BYTE_ADDR1	19.7.16
12	R/W	BYTE_IDX_H	19.7.17
13	R/W	BYTE_IDX_L	19.7.18
14-15	R/W	Reserved	
16	R/W	TSI AGENTO ADDR	19.7.19
17	R/W	TSI AGENT1 ADDR	19.7.20

-292-

Publication Release Date: September 12, 2023

19.7.2 SMBus Data (SMDATA) - Bank 0

This 32 bits register is the data in and out register of SMBus data register. Before writing to SMDATA register, this register contains the input data, after writing to SMDATA register, this register contains the output data.

Offset: 0h Type: R/W

Byte	3	2	1	0
Name	SMFIFO3	SMFIFO2	SMFIFO1	SMFIFO0
Default	00h	00h	00h	00h

Byte	Description
3	SMFIFO3 (SMBus FIFO 3). This byte represents the high byte of the 32 bits SMBus data.
2	SMFIFO2 (SMBus FIFO 2). This byte represents the second byte of the 32 bits SMBus data.
1	SMFIFO1 (SMBus FIFO 1). This byte represents the first byte of the 32 bits SMBus data.
0	SMFIFO0 (SMBus FIFO 0). This byte represents the low byte of the 32 bits SMBus data.

19.7.3 SMBus Write Data Size (SMWRSIZE) - Bank 0

Offset: 1h Type: R/W

Bit	7	6	5	4	3	2	1	0
Name		Reserved		SMWRSIZE				
Default	0	0	0	0	0	0	0	0

Bit	Descriptio
7-5	Reserved.
4-0	SMWRSIZE (SMBus Write Byte Counter). This field sets the write byte counter, the max counter size is 32 bytes, and the minimal size is bytes.

19.7.4 SMBus Command (SMCMD) - Bank 0

Offset: 2h Type: R/W

Bit	7	6	5	4	3	2	1	0	
Name		Rese	erved			SMBCMD			
Default	0	0	0	0	0	0	0	0	

Bit	Description
7-4	Reserved.
3-0	SMBCMD (SMBus Command).
	This field sets SMBus Command:
	0000 : Read Byte (Default)
	0001 : Read Word
	0010 : Read Block
	0011 : Block Write and Read Process Call
	0100 : Process Call
	1000 : Write Byte
	1001 : Write Word
	1010 : Write Block

19.7.5 SMBus INDEX (SMIDX) - Bank 0

Offset: 3h Type: R/W

Bit	7	6	5	4	3	2	1	0	
Name		SMIDX							
Default	0	0	0	0	0	0	0	0	

Bit	Description
7-0	SMIDX (SMBus INDEX). This field represents the index data of the SMBus.

19.7.6 SMBus Control (SMCTL) - Bank 0

Offset: 4h Type: R/W

Bit	7	6	5	4	3	2	1	0
Name	MMODE_S	S_RST	CRC8_EN	REFRESH_time			BYTE_EN	PCH_EN
Default	0	0	0	0	0	0	0	0

Bit	Descriptio					
7	MODE_S (Manual Mode Set).					
	0: Disable.					
	1: Enable.					
6	S_RST (Soft Reset SMBus).					
	0: Disable.					
	1: Enable					

Publication Release Date: September 12, 2023

5	CRC8_EN (CRC8 Enable).
	0: Disable.
	1: Enable.
4-2	REFRESH_time (Refresh time length Select).
	000, 100 – 128ms
	001, 101 – 256ms
	010, 110 – 512ms
	011, 111 – 64ms (1KHz)
1	BYTE_EN (BYTE Enable).
	0: BYTE function is disabled.
	1 : BYTE function is enabled.
0	PCH_EN (PCH Enable).
	0: PCH function is disabled.
	1 : PCH function is enabled.

19.7.7 SMBus Address (SMADDR) - Bank 0

Offset: 5h Type: R/W

Bit	7	6	5	4	3	2	1	0
Name	SMADDR							Reserved
Default	0	0	0	0	0	0	0	0

Bit	Description
7-1	SMADDR (SMBus Address). AMD-TSI only supports 7-bit SMBus address.
0	Reserved.
	0 : Write. If the protocol is write, the WR SIZE can't be zero. (Default)

19.7.8 SCL FREQ (SCLFREQ) - Bank 0

Offset: 6h Type: R/W

Bit	7	6	5	4	3	2	1	0
Name		Re	served		SCLFQ			
Default	0	0	0	0	0	1	1	1

Bit	Description
7-4	Reserved

3-0 **SCLFQ (SMBCLK Frequency).** This field defines the SMBCLK period (low time and high time). The clock low time and high time ate defined as follows:

0000 : 365KHz 0001 : 261KHz 0010 : 200KHz 0011 : 162KHz 0100 : 136KHz 0101 : 117KHz 0110 : 103KHz

0111: 91.5KHz (Default)

1000 : 83KHz 1001 : 76KHz 1010 : 70KHz 1011 : 65KHz 1100 : 61KHz 1101 : 57KHz 1110 : 53KHz 1111 : 47KHz

19.7.9 PCH Address (PCHADDR) - Bank 0

Offset: 8h Type: R/W

Bit	7	6	5	4	3	2	1	0
Name	•	PCHADDR						
Default	1	0	0	1	0	1	0	0

Bit	Description
7-1	PCHADDR (PCH Address). PCH supports 8-bit SMBus address. The default address is 94h. The last bit is read or write bit. It needs to set to "0".

19.7.10 SMBus Error Status (Error_status) - Bank 0

Offset: 9h
Type: RO/W1C

Bit	7	6	5	4	3	2	1	0
Name	Reserved		ADNACK	Timeout	Reserved	BER	NACK	Reserved
Default	1	0	0	1	0	1	0	0

Bit	Description
7-6	Reserved.
5	ADDR Non ACK. This bit reflects SMBus occurring ADDRESS NON ACK in Manual mode
4	Timeout. This bit reflects when SMBus occurring timeout.

3	Reserved.
2	BER (Bus Error). This bit reflects when a start or stop condition is detected during data transfer, or when an arbitration problem is detected.
1	NACK (Negative acknowledge). This bit is set by hardware when a transmission is not acknowledged on the ninth clock. While NACK is set SCL will be drive low and subsequent bus transactions are stalled until NACK is cleared.
0	Reserved.

19.7.11 PCH Command (PCHCMD) - Bank 0

Offset: Bh Type: R/W

Bit	7	6	5	4	3	2	1	0
Name	PCHCMD							
Default	0	1	0	0	0	0	0	0

Bit	Description
7-0	PCHCMD (PCH Command).
	This field represents the command data of the PCH. The default command is block read (40h).

19.7.12 TSI Agent Enable Register (TSI_AGENT) - Bank0

Offset: Dh Type: R/W

Bit	7	6	5	4	3	2	1	0
Name		AG1	AG0					
Default		0	0					

Bit	Description
7-2	Reserved.
	TSI AGENT1 Enable.: This bit reflects AMD-TSI Agent Select. 0: Disable 1: Enable
	TSI AGENT0 Enable.: This bit reflects AMD-TSI Agent elect. 0: Disable 1: Enable

19.7.13 SMBus Control 3 Register (SMCTL3) - Bank 0

Offset: Eh Type: W/R

Publication Release Date: September 12, 2023

Bit	7	6	5	4	3	2	1	0
Name	Reserved				CRC_CHK	M_MODE	F_FULL	F_EMPT
Default	0	0	0	0	0	0	0	0

Bit	Description
7-4	Reserved.
3	CRC_CHK (CRC Check). 0: incorrect 1: correct
2	M_MODE (Manual Mode). 0: Non-active 1: Active
1	F_FULL (fifo_full).: This bit reflects SMBus data fifo is full. 0: Non-full 1: Full
0	F_EMPT (fifo empty). : This bit reflects the SMBus data fifo is empty. 0: Non-empty 1: Empty

19.7.14 SMBus Control 2 Register (SMCTL2) - Bank 0

Offset: Fh
Type: R/W

71.	-							
Bit	7	6	5	4	3	2	1	0
Name	Rese	rved	INT_LCH_E	Rese	Reserved BYTE_SEL		BANKSEL	
Default	0	0	0	0	0	0	0	0

Bit	Description
7-6	Reserved.
5	INT_LCH_E (Interrupt Latch Enable).: This bit will latch the I2CSTA register. 0: Disable. 1: Enable.
2	BYTE_SEL: This field represents byte polling 8-bit/16bit select bits. 0: BYTE_TEMP is 16 bit data 1: BYTE_TEMP is 8 bit data
1-0	BANKSEL (Bank Select). 00 – Bank 0. 01 – Bank 1. 10 – Bank 2.

19.7.15 BYTE ADDRESS0 (BYTE ADDR) - Bank 0

Offset: 10h Type: R/W

Bit	7	6	5	4	3	2	1	0
Name	BYTE_ADDRESS0							
Default	0	1	0	0	0	0	0	0

Bit	Description
7-0	BYTE ADDRESS0 (BYTE ADDR).
	This field represents the address data of the BYTE.

19.7.16 BYTE ADDRESS1 (BYTE ADDR) - Bank 0

Offset: 11h
Type: R/W

<u> </u>								
Bit	7	6	5	4	3	2	1	0
Name	BYTE_ADDRESS1							
Default	0	1	0	0	0	0	0	0

Bit	Description
7-0	BYTE ADDRESS1 (BYTE ADDR).
	This field represents the address data of the BYTE.

19.7.17 BYTE INDEX_H (BYTE_IDX_H) - Bank 0

Offset: 12h

Type: R/W

Bit	7	6	5	4	3	2	1	0
Name	BYTE_IDX_H							
Default	0	0	0	0	0	0	0	1

Bit	Description
7-0	BYTE_IDX_H (High BYTE INDEX).
	This field represents the high byte index of the Byte polling. The default command is byte read (01h).

19.7.18 BYTE INDEX_L (BYTE_IDX_L) - Bank 0

Offset: 13h

Publication Release Date: September 12, 2023

Type: R/W

Bit	7	6	5	4	3	2	1	0
Name	BYTE_IDX_L							
Default	0	0	0	1	0	0	0	0

Bit	Description
7-0	BYTE_IDX_L (LOW BYTE INDEX).
	This field represents the low byte index of the Byte polling. The default command is byte read (10h).

19.7.19 TSI AGENTO ADDR (TSI0_ADDR) - Bank 0

Offset: 16h Type: R/W

Bit	7	6	5	4	3	2	1	0
Name	TSI_AGENT0_ADDR[7:1]							
Default	1	0	0	1	1	0	0	0

Bit	Description
7-0	TSI_AGENT0_ADDR[7:1].
	This field represents the slave address of the TSI polling. The default command is byte read (98h).

19.7.20 TSI AGENT1 ADDR (TSI1_ADDR) - Bank 0

Offset: 17h
Type: R/W

71.	-							
Bit	7	6	5	4	3	2	1	0
Name	TSI_AGENT1_ADDR[7:1]						Reserved	
Default	1	0	0	1	1	0	1	0

Bit	Description
7-0	TSI_AGENT1_ADDR[7:1]. This field represents the slave address of the TSI polling. The default command is byte read (9Ah).

The EC may read thermal information from IBX using the SMBus block read command. The IBX doesn't support byte-read or word-read SMBus commands. The read use a different address that the writes. The address must be different so that the IBX knows which target Is intended, either the I2C target or the block read buffer.

The IBX and EC are set up by BIOS with the length of the read that is supported by the platform. The EC must always do reads of the lengths set up by BIOS. There is no way to change the length of the read after BIOS has set things up.

An EC that only wants the single highest temperature among MCH, and CPU could read one byte. A 2 byte read would provide both IBX and CPU/MCH package temperature. An EC that wanted each components temperature would do a 4 byte read. An EC that also wanted DIMM information would read 9 bytes. If an EC wanted to read the HOST STS status, it must read 19 bytes. An EC can also read the energy data provided by the CPU by reading 12 bytes.

Publication Release Date: September 12, 2023 Version: 2.4

-301-

20. FADING LED

The NCT6122D / NCT6126D provide Fading LED interface that can be change LED speed of bright or dark through different frequency or duty cycle. Furthermore, the constrast of LED bright or dark can be decided by maximum duty cycle, minimum duty cycle, and middle value.

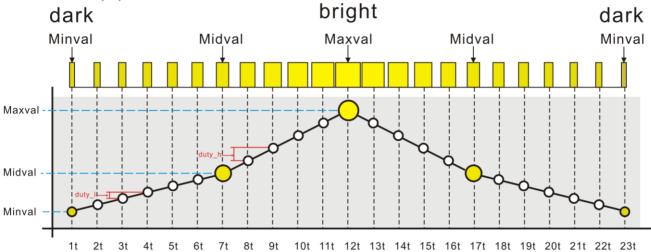


Figure 20-1 Example of Fading LED

NCT6122D / NCT6126D GRN/YLW, SUSLED and PLED supports fading LED function. The duty cycle can be increase and decrease contrl by LD15 CRE3 and CRE4, as table 20-1. Besides LD15 CRE6 and CRE7 also supports bright and dark extend control as table 20-2.

The Fading LED Frequency Divider Register (LD15 CRE8) and Fading led proval repeat register (LD15 CRE5 B7-4) are set as 0x10 and as 0x1 in table 20-1 and table 20-2.

LD15 CRE3	LD15 CRE4	Increase Time	Decrease Time	
0x88	0x38	1.06 sec	1.93 sec	
0x56	0x56 0x56		1.54 sec	
0x44	0x33	2.10 sec	2.79 sec	

Table 20-1 Duty cycle increase/decrease time

Table 20-2 Bright/Dark extend time

LD15 CRE6/CRE7	Bright/Dark Extend Time	
0x0F	0.96 sec	
0x17	1.47 sec	
0x1E	1.92 sec	

Use the ratio between two groups can quickly find out the setup value. It only suit for increase (or decrease) duty cycle value low and high register are equal. (The example time below is based on the Fading LED Frequency Divider Register (LD15 CRE8) is 0x10 and fading_led_proval repeat register (LD15 CRE5 B7-4) is 0x1)

Time: Duty cycle value = 4.2 sec: 0x02 = 2.1 sec: 0x04 = 1.06 sec: 0x08 = 0.56 sec: 0x0F

Publication Release Date: September 12, 2023 Version: 2.4

21. RESETIC LOGIC

The ResetIC function controls the PWROK on/off. The PWROK is turned off for a period 140ms when detect pin RESETIC falling edge. If RESETIC low for a long while, PWROK will turn off again after a while. Please refer to the figure below.

The main function is enable by LDE_CRE6[1]

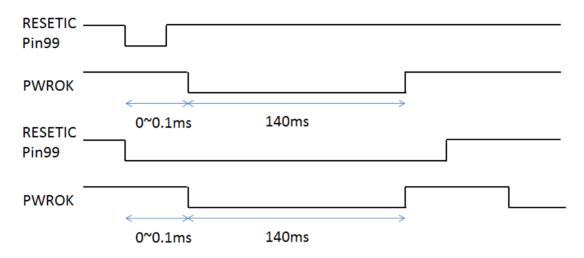


Figure 21-1 RESET IC Timing Chart

-303-

22. PORT80 TO UART

The NCT6122D / NCT6126D provides UART interface to transfer PORT80 information to other peripheral devices. Default baud rate is 115200Hz for universal UART protocol and it could be change by LD14 CRE2 and LD14 CRE3. When BIOS program PORT80 LED, in proportion to UART baud rate, it changes very frequently. Thus, some information might be losing. But we make sure the last one would be send.

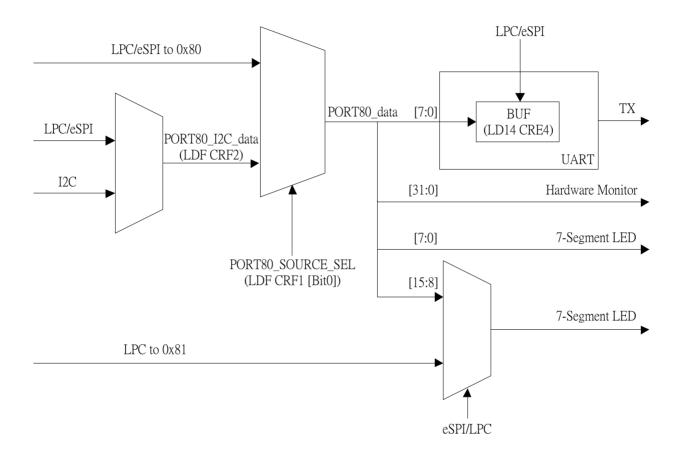


Figure 22-1 PORT80 to UART Block Diagram

After enter OS, we support other root to control PORT80 LED by write LDF CRF2 and LDF CRF1 to change other path. The UART could be control by other root, too. It is set by LD14 CRE4.

Publication Release Date: September 12, 2023 Version: 2.4

23. CONFIGURATION REGISTER

23.1 Chip (Global) Control Register

CR 02h. Software Reset Register

Location: Address 02h Attribute: Write Only Power Well: VSB Reset by: LRESET#

Default : Size: 8 bits

BIT	READ/WRITE	TE DESCRIPTION				
7-1	Reserved.					
0	Write "1" Only	Software RESET.				

CR 07h. Logical Device Selection

Location: Address 07h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION			
7-0	R/W	Logical Device Number.			

CR 10h. Device IRQ TYPE Selection

Location: Address 10h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	Reserved.	
6	R/W	PRT IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
5	R/W	UARTA IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
4	R/W	UARTB IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.

BIT	READ / WRITE	DESCRIPTION
		KBC IRQ TYPE SELECT (note1.)
3	R/W	0: Edge.
		1: Level.
		MOUSE IRQ TYPE SELECT (note1.)
2	R/W	0: Edge.
		1: Level.
		CIR IRQ TYPE SELECT (note1.)
1	R/W	0: Edge.
		1: Level.
		CIRWAKUP IRQ TYPE SELECT (note1.)
0	R/W	0: Edge.
		1: Level.

Note1: Before accessing CR10, CR11, CR13 and CR14, CR26 [Bit4] must be set to logic 1.

CR 11h. Device IRQ TYPE Selection

Location: Address 11h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : Feh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	HM IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
6	R/W	WDTO IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
5	R/W	UARTC IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
4	R/W	UARTD IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
3	R/W	UARTE IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.
2	R/W	UARTF IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.

BIT	READ / WRITE	DESCRIPTION					
1	R/W	SMI IRQ TYPE SELECT (note1.) 0: Edge. 1: Level.					
0	Reserved.						

Note1: Before accessing CR10, CR11, CR13 and CR14, CR26 [Bit4] must be set to logic 1.

CR 13h. Device IRQ Polarity Selection

Location: Address 13h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION			
7-0	R/W	IRQ Channel<15:8> Polarity (note1.) 0: High. 1: Low.			

Note1: Before accessing CR10, CR11, CR13 and CR14, CR26 [Bit4] must be set to logic 1.

CR 14h. Device IRQ Polarity Selection

Location: Address 14h Attribute: Read/Write Power Well: VAB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION			
7-0	R/W	IRQ Channel<7:0> Polarity (note1.) 0: High. 1: Low.			

Note1: Before accessing CR10, CR11, CR13 and CR14, CR26 [Bit4] must be set to logic 1.

CR 1Ah. Multi-Function Selection

Location: Address 1Ah Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

Publication Release Date: September 12, 2023

BIT	READ / WRITE	DESCRIPTION						
		Pin87 function selection						
		LDE_C RFA[6]	CR1C [Bit7]	CR1A [Bit7]	CR1B [Bit2]	Pin87		
		1	х	Х	х	PCH_PSON#		
7	R/W	0	1	Х	х	IRRX		
		0	0	1	х	CIRRX		
		0	0	0	1	TSIC		
		0	0	0	0	GP86		
6	Reserved.							
		Pin31 fun	ction sele	ction				
			PORT80_ SEL	LDB_0	CRF6[4]	CR1A [Bit5-4]	Pin31	
			1		0	00	LEDA	
		1			1	xx	Port80_Bit1	
		0			Х	00	PLED	
		0			Х	01	SLCT	
		0			Х	1x	PLED	
		Pin32 fun						
		GPIO_PORT80_ SEL		LDB_0	CRF6[4]	CR1A [Bit5-4]	Pin32	
	5 / 14/	1			0	00	LEDB	
5-4	R/W	1			1	xx	Port80_Bit2	
			0		х	00	GP30	
			0		Х	01	PE	
			0		Х	1x	GP30	
		Pin33 fun	ction sele	ction				
			PORT80_ EL	LDB_0	CRF6[4]	CR1A [Bit5-4]	Pin33	
			1		0	00	LEDC	
			1		1	xx	Port80_Bit3	
			0		х	00	GP31	
			0		х	01	BUSY	
			0		х	1x	GP31	

BIT	READ / WRITE	DESCRIPTION						
		Pin34 function selection						
		GPIO_PORT80_ SEL	LDB_CRF6[4]	CR1A [Bit5-4]	Pin34			
		1	0	00	LEDD			
		1	1	xx	Port80_Bit4			
		0	х	00	GP32			
		0	х	01	ACK#			
		0	x	1x	GP32			
		Pin35 function select	tion					
		GPIO_PORT80_ SEL	LDB_CRF6[4]	CR1A [Bit5-4]	Pin35			
		1	0	00	LEDE			
		1	1	xx	Port80_Bit5			
		0	х	00	GP33			
		0	x	01	PD7			
5-4	R/W	0	x	1x	GP33			
3-4	IX / VV	Pin36 function selection						
		GPIO_PORT80_ SEL	LDB_CRF6[4]	CR1A [Bit5-4]	Pin36			
		1	0	00	LEDF			
		1	1	XX	Port80_Bit6			
		0	x	00	GP34			
		0	x	01	PD6			
		0	x	1x	GP34			
		Pin37 function select	ion					
		GPIO_PORT80_ SEL	LDB_CRF6[4]	CR1A [Bit5-4]	Pin37			
		1	0	00	LEDG			
		1	1	xx	Port80_Bit7			
		0	х	00	GP35			
		0	х	01	PD5			
		0	х	1x	GP35			

BIT	READ / WRITE	DESCRIPTION							
		Pin38 function select							
		GPIO_PORT80_ SEL	LDB_CRF6[4]	CR1A [Bit5-4]	Pin38				
		1	0	00	DGH0#				
		1	1	XX	Port80_Bit8				
		0	x	00	GP36				
		0	x	01	PD4				
		0	x	1x	GP36				
		Pin39 function select	tion						
		GPIO_PORT80_ SEL	LDB_CRF6[4]	CR1A [Bit5-4]	Pin39				
		1	0	xx	DGL0#				
		1	1	00	GP37				
		1	1	01	PD3				
		1	1	1x	GP37				
		0	x	00	GP37				
		0	х	01	PD3				
		0	x	1x	GP37				
5-4	R/W	Pin40 function selection							
5-4	R/W	GPIO_PORT80_ SEL	LDB_CRF6[4]	CR1A [Bit5-4]	Pin40				
		1	0	xx	DGH1#				
		1	1	00	GP40				
		1	1	01	PD2				
		1	1	1x	GP40				
		0	х	00	GP40				
		0	x	01	PD2				
		0	x	1x	GP40				
		Pin41 function select	tion						
		GPIO_PORT80_ SEL	LDB_CRF6[4]	CR1A [Bit5-4]	Pin41				
		1	0	xx	DGL1#				
		1	1	00	GP41				
		1	1	01	PD1				
		1	1	1x	GP41				
		0	х	00	GP41				
		0	х	01	PD1				
		0	х	1x	GP41				

Publication Release Date: September 12, 2023 Version: 2.4

BIT	READ / WRITE	DESCRIPTION				
		Pin42 function selection				
		CR1A [Bit5-4]	Pin42			
		00	GP42			
		01	PD0			
		1x	GP42			
		Pin43 function selection		•		
		CR1A [Bit5-4]	Pin43			
		00	GP43			
		01	SLIN#			
		1x	GP43			
		Pin44 function selection				
		CR1A [Bit5-4]	Pin44			
		00	GP44			
		01	INIT#			
		1x	GP44			
5-4	R/W	Pin45 function selection	1			
0 4	10, 44	CR1A [Bit5-4]	Pin45			
		00	GP45			
		01	ERR#			
		1x	GP45			
		Pin46 function selection		1		
		CR1A [Bit5-4]	Pin46			
		00	GP46			
		01	AFD#			
		10	GPI_TRANS			
		11	GP46			
		Pin47 function selection		1		
		CR1A [Bit5-4]	Pin47			
		00	GP47			
		01	STB#			
		10	GPO_TRANS			
		11	GP47			

BIT	READ / WRITE		DESCRIPTION						
		Pin62 function	selection		•				
		CR2F[4] (KBC_EN)	CR1A [3]	CR2A[0]	Pin	62			
		0	1	х	GP:	50			
		1	х	х	KCI	LK			
		0	0	1	MSI	DA			
3	R/W	0	0	0	SD	PΑ			
3	K / VV	Pin63 function	selection						
		CR2F[4] (KBC_EN)	CR1A [3]	CR2A[0]	Pin	63			
		0	1	х	GP:	51			
		1	х	х	KD/	AT			
		0	0	1	MS	CL			
		0	0	0	SC	CL			
		Pin65 function	Pin65 function selection						
		CR2F[4] (KBC_EN) CR1A		Pin65					
		0	0	GP52					
		1	х	MCLK					
2	R/W	0	1	AUXFANI	N1				
2	K / VV	Pin66 function	selection			_			
		CR2F[4] (KBC_EN)	CR1A [2]	Pin66					
		0	0	GP53					
		1	х	MDAT					
		0	1	AUXFANO	UT1				
		Pin67 function	selection						
1	R/W	CR1A	[1]	Pin67					
'	IX / VV	0		PSOUT#					
		1		GP54					
		Pin68 function	selection						
0	R/W	CR1A	[0]	Pin68					
J	IX / VV	0		PSIN#					
		1		GP55					

CR 1Bh. Multi-Function Selection

Location: Address 1Bh Attribute: Read/Write Power Well: VSB

Reset by: RSMRST#

Default: 03h Size: 8 bits

bits	ı	1							
BIT	READ / WRITE			DES	SCRIP	TION			
		Pin70 function	selection						
		CR1B [7]	LDE_CF	RE6[6]		Pin70			
7	R/W	0	0			SLP_S5#			
		1	0			GP56			
		Х	1		SLP_	_S5# (out,	OD)		
		Pin71 function	selection						
6	R/W	CR1B [E	Bit6]		Pin71				
0	K / VV	0		ſ	PWRO	K			
		1			GP57				
		Pin72 function	selection						
5	R/W	CR1B [E	Bit5]		Pin72				
3	1X / VV	0			PSON	#			
		1			GP60				
		Pin73 function	selection						
		CR1B [E	Bit4]	LDI	LDE_CRE6[6]		Pin73		
4	R/W	0	0		0		SLP_S3#		
		1			0			GP61	
		0			1		SLI	P_S3#(out, OD)
		Pin75 function	selection						
3	R/W	CR1B [E	Bit3]	Pin75					
	17, 77	0		RSMRST#					
		1			GP62				
		Pin87 function	selection	1		T			1
		LDE_CRFA [6]	CR1C[7]	CR1	A[7]	CR1B[2	2]	Pin87	
		1	х	2	X	х	F	PCH_PSON#	
		0	1		X	Х		IRRX	
2	D //W	0	0		1	х		CIRRX	
2	R/W	0	0		0	1		TSIC	
		0	0	()	0		GP86	
		Pin88 function							
		CR1B	[2]		Pin88				
		0			PECI				
		1			TSID				

BIT	READ / WRITE	DESCRIPTION				
		Pin94 function selecti	ion			
		CR1B [Bit1-0]	CR2A[1]	Pin94		
		1x	x	SDA		
		00	0	GP63		
		01)1 x M	MSDA		
1-0	R/W	00	1	AUXFANIN2		
1-0	K / VV	Pin96 function selecti		_		
		CR1B [Bit1-0]	CR2A[1]	Pin96		
		1x	x	SCL		
		00	0	GP64		
		01	Х	MSCL		
		00	1	AUXFANOUT2		

CR 1Ch. Multi-Function Selection

Location: Address 1Ch Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 10h Size: 8 bits

BIT	READ / WRITE		DESCRIPTION						
		Pin87 function	Pin87 function selection						
		LDE_CRFA [6]	CR1C[7]	CR1A[7]	CR1B[2]	Pin87			
		1	Х	х	х	PCH_PSON#			
7	R/W	0	1	х	Х	IRRX			
		0	0	1	Х	CIRRX			
		0	0	0	1	TSIC			
		0	0	0	0	GP86			
		Pin106 functio	n selection						
	5 / 14/	CR1C[6]	Pin106						
6	R/W	0	SUSLED						
		1	GP65						
		Pin107 functio	n selection						
		LD9_CRE1	LD9_CRE1[4] CR		Pin107				
5	R/W	1		Х	THERMTRIP#	!			
		0		1	GP66				
		0		0	THERMTRIP#	!			

BIT	READ / WRITE		DESCRIPTION					
4	Reserved							
		Pin109-116 function se	election					
		CR1D[4] (SOUTC_P80_SEL)	CR1C[3:2]	Pin109-116				
		1	XX	GP0x, SOUTC_P80				
3-2	2 R/W	0	00	GP0x				
		0	10	SOUTC/SINC/RTSC (RS485), GP0x				
		0	01	SOUTC/SINC (RS422), GP0x				
		0	11	UARTC (RS232)				
1	R/W	Reserved.						
0	R/W	Pin15-16 KBRST#/GA 1: Open Drain Type 0: Push-Pull Type	20M OD Selec	t				

CR 1Dh. Multi-Function Selection

Location: Address 1Dh Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 000s0000b

Size: 8 bits

BIT	READ / WRITE		DESCRIPTION							
7-5	Reserved									
		Pin109-116 function se	election							
		CR1D[4] (SOUTC_P80_SEL)	CR1C[3:2]	Pin109-116						
							1	xx	GP0x, SOUTC_P80	
4	R/W	0	00	GP0x						
		0	10	SOUTC/SINC/RTSC (RS485), GP0x						
		0	01	SOUTC/SINC (RS422), GP0x						
		0	11	UARTC (RS232)						

BIT	READ / WRITE		DESCRIPTION					
		Pin95 function	Pin95 function selection					
		LDE_CRFA[6]		CR1D[3:2]		Pin95		
2.0	D //W/	1		х		S0_IDLE#		
3-2	R/W	0		00		OVT#		
		0		01		SMI#		
		0		1x		GP87		
		Pin117-124 fu	Pin117-124 function selection					
		CR1C[7]	CR	1D[1:0]		Pin117-124		
		1		00		IRTX, GP1x		
		0		00		GP1x		
1-0	R/W	х		10		SOUTD/SIND/RTS (RS485), GP1x		
		х		01	S	SOUTD/SIND (RS4: GP1x	22),	
		Х		11		UARTD (RS232))	

CR 20h. Chip ID (High Byte)

Location: Address 20h Attribute: Read Only Power Well: VSB Reset by: None Default: D2h

Size: 8 bits

 BIT
 READ / WRITE
 DESCRIPTION

 7-0
 Read Only
 Chip ID number = D2h (high byte).

CR 21h. Chip ID (Low Byte)

Location: Address 21h Attribute: Read Only Power Well: VSB Reset by: None Default: 81h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only	Chip ID number = X3h (A version); X4h (B version) (low byte). X= 8 // NCT6126 X= A // NCT6122

CR 22h. Device Power Down

Location: Address 22h

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : F8h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION				
7	R/W	DSIRLGRQ => = 0				
6	R/W	IR Power Down. 0: Powered down. 1: Not powered down.				
5	R/W	UARTB Power Down. 0: Powered down. 1: Not powered down.				
4	R/W	UARTA Power Down. 0: Powered down. 1: Not powered down.				
3	R/W	PRT Power Down. 0: Powered down. 1: Not powered down.				
2	R/W	Select output type of AUXFANOUT2 =0 AUXFANOUT2 is Open-drain. (Default) =1 AUXFANOUT2 is Push-pull.				
1	R/W	Select output type of AUXFANOUT1 =0 AUXFANOUT1 is Open-drain. (Default) =1 AUXFANOUT1 is Push-pull.				
0	R/W	Reserved.				

CR 24h. Multi-Function Selection & Global Option

Location: Address 24h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE DESCRIPTION					
7	Reserved.					
6	Select output type of SYSFANOUT R / W =0 SYSFANOUT is Open-drain. (Default) =1 SYSFANOUT is Push-pull.					
5	Select output type of CPUFANOUT R / W =0 CPUFANOUT is Open-drain. (Default) =1 CPUFANOUT is Push-pull.					
4	R/W	Select output type of AUXFANOUT0 =0 AUXFANOUT0 is Open-drain. (Default) =1 AUXFANOUT0 is Push-pull.				

-317-

BIT	READ / WRITE	DESCRIPTION			
3	R/W	Pin14 AUXFANOUT0 Function Output Enable =0 Disable =1 Enable			
2	Reserved				
1	R/W	Pin18 BEEP Function Output Enable =0 Disable =1 Enable			
0	R/W	PNPCVS => = 0 The compatible PNP address-select registers have default values = 1 The compatible PNP address-select registers have no default values.			

CR 25h. Interface Tri-state Enable

Location: Address 25h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7	R/W	UARTFTRI 1: enable, 0: disable	
6	R/W	JARTETRI 1: enable, 0: disable	
5	R/W	UARTDTRI 1: enable, 0: disable	
4	R/W	UARTCTRI 1: enable, 0: disable	
3	R/W	UARTBTRI 1: enable, 0: disable	
2	R/W	UARTATRI 1: enable, 0: disable	
1	R/W	PRTTRI 1: enable, 0: disable	
0	Reserved.		

CR 26h. Global Option s: value by strapping

Location: Address 26h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 0s000000b

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	Reserved.	

BIT	READ / WRITE	DESCRIPTION			
6	R/W	HEFRAS => = 0 Write 87h to location 2E twice. = 1 Write 87h to location 4E twice. The corresponding power-on strapping pin is RTSA# (Pin51).			
5	R/W	LOCKREG => = 0 Enable R/W configuration registers. = 1 Disable R/W configuration registers.			
4	R/W	= 0 Disable the access to CR10h, CR11h (Device IRQ Type) and CR13h, CR14h (Device IRQ Polarity). = 1 Enable the access to CR10h, CR11h (Device IRQ Type) and CR13h, CR14h (Device IRQ Polarity).			
4-3	Reserved.				
2	R/W	DSPRLGRQ => = 0 Enable PRT legacy mode for IRQ and DRQ selection. Then DCR register (base address + 2) bit 4 is effective when selecting IRQ. = 1 Disable PRT legacy mode for IRQ and DRQ selection. Then DCR register (base address + 2) bit 4 is not effective when selecting IRQ.			
1	R/W	DSUALGRQ => = 0			
0	R/W	DSUBLGRQ => = 0			

CR 27h. Global Option

Location: Address 27h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION			
7-1	Reserved.				
0	R/W	Pin31 PLED Function Output Enable =0 Disable =1 Enable			

CR 28h. Global Option

Location: Address 28h Attribute: Read/Write

Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION			
7-6	Reserved.				
5-4	R/W	0 0 : LPC or I2C to 80PORT switch 0 1: CPU temperature to 80PORT switch 1 0: SYS temperature to 80PORT switch 1 1: AUX temperature to 80PORT switch			
3	Reserved.				
2-0	R/W	PRTMODS2 ~ 0 => Bits 2 1 0 = 0 x x Parallel Port Mode. = 1 x x Reserved.			

CR 29h. Global Option

Location: Address 29h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : F0h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	UARTF Power Down. 0: Powered down. 1: Not powered down.
6	R/W	UARTE Power Down. 0: Powered down. 1: Not powered down.
5	R/W	UARTD Power Down. 0: Powered down. 1: Not powered down.
4	R/W	UARTC Power Down. 0: Powered down. 1: Not powered down.
3	R/W	DSUFLGRQ => = 0
2	R/W	DSUELGRQ => = 0
1	R/W	DSUDLGRQ => = 0

BIT	READ / WRITE	DESCRIPTION			
0	R/W	DSUCLGRQ => = 0			

CR 2Ah. Global Option

Location: Address 2Ah Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION					
7-6	Reserved.						
		Enable Over Temperature shutdown Protection (OVT#) = 0 The thermal shutdown function is disabled. (Default)					
5	R/W	= 1 Enable thern	nal shutdown fu	nction.			
		If current temp triggered and PS		s high-limit setting, OVT# event will be re immediately.			
		IRTX output ena	ıble				
4	R/W	1: Enable					
		0: Disable (Defa	ult)				
	R/W	Pin77 Function S	Selection				
0		CR2A[3]	Pin77				
3		1	GP84				
		0	WDTO#				
		OVT# Power Do	wn Selection				
2	R/W	=0 Disable					
		=1 Enable					

BIT	READ / WRITE				DESC	RIPTIO	N	
		Pin94 functio	n select	ion				
		CR1B [Bit1-0]		(CR2A[1] F		Pin94	
		1x			Х	,	SDA	
		00			0 GP63		P63	
		01			x MSDA		ISDA	
1	R/W	00			1	AUX	FANIN2	
'	F/VV	Pin96 functio	n select	ion				
		CR1B [Bit	t1-0]	(CR2A[1]		Pin96	
		1x			Х		SCL	
		00			0		GP64	
		01			x		MSCL	
		00			1 AUXFANOUT		(FANOUT2	
		Pin62 function selection						
		CR2F[4] (KBC_EN)	CR1A	1A [3] CR2A		[0]	Pin62	
		0	1		х		GP50	
		1	х		x		KCLK	
		0	0		1		MSDA	
0	R/W	0	0		0		SDA	
	IX/VV	Pin63 functio	n select	ion				
		CR2F[4] (KBC_EN)	CR1A [3]		CR2A[0]		Pin63	
		0	1		х		GP51	
		1	Х		х		KDAT	
		0	0		1		MSCL	
		0	0		0		SCL	

CR 2Bh. Global Option

Location: Address 2Bh Attribute: Read/Write Power Well: VSB

Reset by: CR2B[7:2]: PWROK CR2B[1:0] : LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

BIT	READ / WRITE	DESCRIPTION						
		Pin125-4 function selection						
		CR2B[7]	CR2C [5:4]	Pin125-4				
7	R/W	1	xx	GP2x, AUXFANIN1, AUXFANIN2, AUXFANOUT1, AUXFANOUT2				
		0	00	GP2x				
		0	10	SOUTE/SINE/RTSE (RS485), GP2x				
		0	01	SOUTE/SINE (RS422), GP2x				
		0	11	UARTE (RS232)				
6-5	Reserved.							
3	R/W R/W	Pin6 AUXFANIN0 for CR2B [Bit4] 0 1 Pin14 AUXFANOUT CR2B [Bit4] 0 1 Pin18 BEEP function CR2B [Bit3] 1 0	Pin6 AUXFANI GP81 T0 function sel Pin14 AUXFANO GP80	N0 ection				
2	Reserved	<u> </u>						
1	R/W	HM IO space lock enable 0 : Disable (Unlock) 1 : Enable (Lock)						
0	R/W	CLKRUN_EN 0: Disable CLKRUN function. 1: Enable CLKRUN function.						

CR 2Ch. UART Option

Location: Address 2Ch Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 0Fh

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION						
		Pin5, Pin7-11, Pin13 and Pin17 function selection						
		CR2C [7:6]		Pin5, Pin7-11, Pin13 and Pin17				
7.0	DAM	00			GP7x			
7-6	R/W	10	10 SOUTF/SINF/RTSF (RS485), GP7x					
		01		SOUTF/S	SINF (RS422)	, GP7x		
		11		UA	RTF (RS232)		
		Pin125-4 function	on sele	ction				
		CR2B[7]	С	R2C [5:4]	Р	in125-4		
5-4	R/W	1		xx	AUX AUX	GP2x, XFANIN1 XFANIN2 FANOUT FANOUT	2, -1,	
		0		00		GP2x		
		0		10		E/SINE/R 185), GP2		≣
		0		01		SINE (RS GP2x	6422),	
		0		11	UAR ⁻	TE (RS23	32)	
		Pin78-85 function	on sele	ction				
		CR2C [3::	2]		Pin78-85			
	R/W	00			GP9x			
3-2		10			TB/SINB/RT S485), GP9x			
		01		SOUTB/S	SINB (RS422)	, GP9x		
		11		UA	RTB (RS232)		
		Pin49-57 function	on sele	ction				
		CR2C [1:0]		Pin49-5	7			
	R/W	00		GPAx				
1-0		10		OUTA/SINA (RS485), G				
		01	SOL	JTA/SINA (GPAx				
		11	l	JARTA (RS	S232)			

CR 2Fh. Strapping Function Result

Location: Address 2Fh Attribute: Read/Write

Power Well: VSB

Reset by: PWROK(Bit1), RSMRST#

Default: by ssss_0sss

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	PLAT_SEL Strapping result reading.
6	R/W	ATX mode / AT mode Power sequence select.
5	R/W	eSPI and LPC interface switch.
4	R/W	KBC_EN Strapping result reading. It can enable KB/MS pins function.
3	Reserved.	
2	R/W	ESPI_OWN_SEL Strapping result reading.
1	R/W	GPIO_PORT80_SEL Strapping result reading.
0	R/W	Entry Key Strapping result reading.

-325-

Note . All Strapping results can be programming by LPC Interface. There are two conditions below:

- 1) VSB Strapping result can be programming by LPC, and reset by RSMRST#
- 2) VCC Strapping result can be programming by LPC, and reset by PWROK

23.2 Logical Device 1 (PRT)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved.	
0	R/W	The logical device is inactive. The logical device is active.

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 03h, 78h
Size: 16 bits

BIT READ / WRITE DESCRIPTION

These two registers select PRT I/O base address.

<100h: FFCh> on 4 bytes boundary (EPP not supported) or

<100h: FF8h> on 8 bytes boundary (all modes supported, EPP is only available when the base address is on 8 byte boundary).

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 07h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	These bits select IRQ resource for PRT.

CR 74h.

Location: Address 74h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 04h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION		
7-3	Reserved.			
2-0	R/W	These bits select DRQ resource for PRT. 000: DMA0. 001: DMA1. 010: DMA2. 011: DMA3. 1xx: No DMA active.		

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 3Fh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	Reserved.	
6-3	R/W	ECP FIFO Threshold.
2-0	R/W	Parallel Port Mode selection (CR28 bit2 PRTMODS2 = 0). Bits 2 1 0 0 0 0: Standard and Bi-direction (SPP) mode. 0 0 1: EPP – 1.9 and SPP mode. 0 1 0: ECP mode. 0 1 1: ECP and EPP – 1.9 mode. 1 0 0: Printer Mode. 1 0 1: EPP – 1.7 and SPP mode. 1 1 0: Reserved. 1 1 1: ECP and EPP – 1.7 mode.

23.3 Logical Device 2 (UARTA)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 01h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved.	
0	R/W	O: The logical device is inactive. 1: The logical device is active.

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 03h, F8h
Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select Serial Port 1 I/O base address <100h: FF8h> on 8 bytes boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 04h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	These bits select IRQ resource for Serial Port 1.

-328-

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved.	
1-0	R/W	Bits 1 0 0 0: UART A clock source is 1.8462 MHz (24 MHz / 13). 0 1: Reserved. 1 0: UART A clock source is 24 MHz (24 MHz / 1). 1 1: UART A clock source is 14.769 MHz (24 MHz / 1.625).

CR F2h. UARTA 9bit-mode Config Register

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	 En_auto_RX_ctrl 0: 9bit-mode RX block function will pass all data or address byte and not compare any address byte. 1: 9bit-mode RX block function could only receive address byte and compare the address bytes. (The address matched or not will issue IRQ. Refer to CRF6 description)
6	R/W	En_auto_only_addr_comp 0: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will compare the address byte and update the RX_ctrl Bit automatically. 1: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will only compare the address byte. But the RX_ctrl Bit will not be updated automatically by 9bit-mode RX block function.
5	R/W	RTS_low_time_sel 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 2 bit time before inverting the driving signal.
4	R/W	RS485_RTS_inv_sel 0: Automatic drive RTS# high when receiving data. Automatic drive RTS# low when transmitting data. 1: Automatic drive RTS# low when receiving data. Automatic drive RTS# high when transmitting data.

-329-

BIT	READ / WRITE	DESCRIPTION
3	R/W	En_auto_TX_ctrl 0: En_address_byte bit will not be automatic updated to "logic 0" by hardware after TX block sent address byte. 1: En_address_byte bit will be automatic updated to "logic 0" by hardware after TX block sent address byte.
2	R/W	En_auto_RX_ctrl 0: the address byte will be ignored by the receiver. 1: the address byte will be received into RX FIFO by the receiver.
1	R/W	En_RS485_RTS 0: RS232 driver 1: RS485 driver The 9bit-mode TX block function will drive RTS_L to high when transmit data automatically
0	R/W	En_9bit_mode 0: normal UART function. 1: enable 9-bit mode function. (9bit-TX block use parity bit as address/Data bit when setting En_9bit_mode = 1'b1.)

CR F3h. UARTA 9bit-mode Slave Address Register

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Slave address

CR F4h. UARTA 9bit-mode Slave Mask Address Register

Location: Address F4h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Slave mask address

CR F5h. UARTA 9bit-mode Broadcast Address Register

Location: Address F5h Attribute: Read/Write Power Well: VSB

Publication Release Date: September 12, 2023

-330- Version: 2.4

Reset by: LRESET# Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Broadcast Address

CR F6h. UARTA 9bit-mode Interrupt Control Register

Location: Address F6h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	READ / WRITE DESCRIPTION		
7-2	Reserved.			
		IRQ_type_sel		
1	R/W	0: 9bit-mode RX block function will issue an IRQ when receive any address byte.		
'		(when IRQ_addr_Enable bit = 1)		
		1: 9bit-mode RX block function will issue an IRQ when only receive the matched address byte. (when IRQ_addr_Enable bit = 1)		
		IRQ_addr_Enable		
0	R/W	0: Disable UARTA 9bit-mode IRQ output.		
		1: Enable UARTA 9bit-mode IRQ output.		

CR F7h. UARTA 9bit-mode IRQ Status Register

Location: Address F7h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION		
7	R/W	En_address_byte. 0: Tx block will send data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Tx block will send address byte. (If enable 9bit mode function CRF2 Bit0=1)		
6	R/W	RX_ctrl. 0: Rx block could receive data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Rx block could receive address byte. (If enable 9bit mode function CRF2 Bit0=1)		

-331-

BIT	READ / WRITE	DESCRIPTION	
5	R/W	RTS485_no_delay 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 0 bit time before inverting the driving signal. (When RTS485_no_delay CRF7 Bit5=1 and RTS_low_time_sel CRF2 Bit5=1, TX block will keep 0 bit time before inverting the driving signal.)	
4-1	Reserved.		
0	R/W	UARTA 9bit-mode Status Bit 0: UARTA 9bit-mode IRQ have not been triggered. 1: UARTA 9bit-mode IRQ have been triggered.	

CR F8h. Extending UARTA Control Register

Location: Address F8h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 01h Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME		level ode	Reserved	uartAB_switch _enable		Reserve	ed set to 0)	Enable_128 bytes_fifo
DEFAULT	0	0	0	0	0	0	0	1

BIT				DESCRIPTI	ON			
7-6	fifo_lev							
	(Also check UFR register B7-6 definition)							
			RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)					
	BIT 7	BIT 6	FIFO_LEVEL_	FIFO_LEVEL_	FIFO_LEVEL_	FIFO_LEVEL_		
			MODE	MODE	MODE	MODE		
			(CRF8_B7:6 = 00)	(CRF8_B7:6 = 01)	(CRF8_B7:6 = 10)	(CRF8_B7:6 = 11)		
	0	0	01	16	80	112		
	0	1	04	32	88	116		
	1	0	08	48	96	120		
	1	1	14	64	104	124		
5	Reserv	ed.						
4	uartAB	_switch	_enable (Bypass	mode)				
	0: swite	ch disab	ole					
	1: swite	ch enab	ıble					
3-1	Reserv	Reserved. (All should be set to 0)						
0	Extend	ing fifo	enable bit:					
			bytes TX and RX					
	1: Enak	ole 128	bytes TX and RX	FIFO.				

23.4 Logical Device 3 (UARTB)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 01h Size: 8 bits

BIT	READ / WRITE DESCRIPTION		
7-1	Reserved.		
0	R / W 0: The logical device is inactive. 1: The logical device is active.		

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 02h, F8h

Size: 16 bits

BIT	READ / WRITE DESCRIPTION	
7-0	R/W	These two registers select Serial Port 2 I/O base address <100h: FF8h> on eight-byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 03h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION			
7-4	Reserved.	Reserved.			
3-0	R / W These bits select IRQ resource for Serial Port 2.				

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved	
1-0	R/W	Bits 1 0 0 0: UART B clock source is 1.8462 MHz (24 MHz / 13). 0 1: Reserved. 1 0: UART B clock source is 24 MHz (24 MHz / 1). 1 1: UART B clock source is 14.769 MHz (24 MHz / 1.625).

CR F2h. UARTB 9bit-mode Config Register

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	 En_auto_RX_ctrl 0: 9bit-mode RX block function will pass all data or address byte and not compare any address byte. 1: 9bit-mode RX block function could only receive address byte and compare the address bytes. (The address matched or not will issue IRQ. Refer to CRF6 description)
6	R/W	En_auto_only_addr_comp 0: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will compare the address byte and update the RX_ctrl Bit automatically. 1: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will only compare the address byte. But the RX_ctrl Bit will not be updated automatically by 9bit-mode RX block function.
5	R/W	RTS_low_time_sel 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 2 bit time before inverting the driving signal.
4	R/W	RS485_RTS_inv_sel 0: Automatic drive RTS# high when receiving data. Automatic drive RTS# low when transmitting data. 1: Automatic drive RTS# low when receiving data. Automatic drive RTS# high when transmitting data.
3	R/W	En_auto_TX_ctrl 0: En_address_byte bit will not be automatic updated to "logic 0" by hardware after TX block sent address byte. 1: En_address_byte bit will be automatic updated to "logic 0" by hardware after TX block sent address byte.
2	R/W	En_auto_RX_ctrl 0: the address byte will be ignored by the receiver. 1: the address byte will be received into RX FIFO by the receiver.

BIT	READ / WRITE	DESCRIPTION					
		En_RS485_RTS 0: RS232 driver					
1	R/W	1: RS485 driver					
		The 9bit-mode TX block function will drive RTS_L to high when transmit data automatically					
		En_9bit_mode					
	R/W	0: normal UART function.					
0		1: enable 9-bit mode function.					
		(9bit-TX block use parity bit as address/Data bit when setting En_9bit_mode = 1'b1.)					

CR F3h. UARTB 9bit-mode Slave Address Register

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Slave address

CR F4h. UARTB 9bit-mode Slave Mask Address Register

Location: Address F4h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7-0	R/W	Slave mask address	

CR F5h. UARTB 9bit-mode Broadcast Address Register

Location: Address F5h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 02h

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION		
7-0	R/W	Broadcast Address		

CR F6h. UARTB 9bit-mode Interrupt Control Register

Location: Address F6h

Publication Release Date: September 12, 2023 Version: 2.4

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION			
7-2	Reserved.				
1	R/W	IRQ_type_sel 0: 9bitemode RX block function will issue an IRQ when receive any address byte. (when IRQ_addr_Enable bit = 1) 1: 9bitemode RX block function will issue an IRQ when only receive the matched address byte. (when IRQ_addr_Enable bit = 1)			
0	R/W	IRQ_addr_Enable 0: Disable UARTB 9bit-mode IRQ output. 1: Enable UARTB 9bit-mode IRQ output.			

CR F7h. UARTB 9bit-mode IRQ Status Register

Location: Address F7h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION					
7	R/W	En_address_byte. 0: Tx block will send data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Tx block will send address byte. (If enable 9bit mode function CRF2 Bit0=1)					
6	R/W	RX_ctrl. 0: Rx block could receive data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Rx block could receive address byte. (If enable 9bit mode function					
5	R/W	CRF2 Bit0=1) RTS485_no_delay 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 0 bit time before inverting the driving signal. (When RTS485_no_delay CRF7 Bit5=1 and RTS_low_time_sel CRF2 Bit5=1, TX block will keep 0 bit time before inverting the driving signal.)					
4-1	Reserved						
0	R	UARTB 9bit-mode Status Bit 0: UARTB 9bit-mode IRQ have not been triggered. 1: UARTB9bit-mode IRQ have been triggered.					

Publication Release Date: September 12, 2023 Version: 2.4

Location: Address F8h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 01h Size: 8 bits

BIT	7	6	5	4	3	2	1	0
NAME	fifo_level _mode		Reserved		Reserved (All should be set to 0)			Enable_128 bytes_fifo
DEFAULT	0	0	0	0	0	0	0	1

BIT	DESCRIPTION									
7-6	fifo_level_mode: (Also check UFR register B7-6 definition)									
	UFR_	1	RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)							
	BIT 7		FIFO_LEVEL_ MODE (CRF8_B7:6 = 00)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 01)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 10)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 11)				
	0	0	01	16	80	112				
	0	1	04	32	88	116				
	1	0	08	48	96	120				
	1	1	14	64	104	124				
5-4	Reserved.									
3-1	Reserved. (All should be set to 0)									
0	Extending fifo enable bit: 0: Disable 128 bytes TX and RX FIFO. 1: Enable 128 bytes TX and RX FIFO.									

23.5 Logical Device 5 (KBC)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved.	
0	R/W	The logical device is inactive. The logical device is active.

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select the first KBC I/O base address <100h: FFFh> on 1-byte boundary.

CR 62h, 63h.

Location: Address 62h, 63h

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select the second KBC I/O base address <100h: FFFh> on 1 byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ/WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	These bits select IRQ resource for KINT. (Keyboard interrupt)

CR 72h.

Location: Address 72h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	These bits select IRQ resource for MINT. (PS/2 Mouse interrupt)

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 83h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
		KBC clock rate selection
		Bits
		7 6
7-6	R/W	0 0: Reserved
		0 1: Reserved
		1 0: 12MHz
		1 1: Reserved
5-3	Reserved.	
2	D ////	0: Port 92 disabled.
2	R/W	1: Port 92 enabled.
4	D ////	0: Gate A20 software control.
l	R/W	1: Gate A20 hardware speed up.
0	R/W	0: KBRST# software control.
U	K / VV	1: KBRST# hardware speed up.

23.6 Logical Device 6 (CIR)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved.	
0	R/W	0: CIR Interface is inactive. 1: CIR Interface is active.

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 00h, 00h

Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select CIR Interface I/O base address <100h: FF8h> on 1 byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	These bits select IRQ resource for CIR.

CR F0h.

Size: 8 bits

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 08h

BIT	READ / WRITE	DESCRIPTION
ВП	KEAD/ WKIIE	DESCRIPTION

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3	R/W	CIR wide band filter select 0: Low-pass filter 1: Band-pass filter
2-1	R/W	Timeout margin selection of CIR wide band band-pass filter 00: 200% recording carrier period 01: 100% recording carrier period 10: 50% recording carrier period 11: 25% recording carrier period
0	R/W	Carrier recording mode CIR wide band band-pass filter 0: Second carrier 1: Every carrier

CR F1h.

Location: Address F1h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 09h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-6	R/W	Reserved.
5-0	R/W	Highest input period of CIR wide band band-pass filter (unit : us)

CR F2h.

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 32h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-6	R/W	Reserved.
5-0	R/W	Lowest input period of CIR wide band band-pass filter (unit : us)

CR F3h.

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ/WRITE	DESCRIPTION
7-6	R/W	Reserved.
5-0	R/W	Recording carrier period of CIR wide band band-pass filter (unit : us)

Publication Release Date: September 12, 2023 Version: 2.4

23.7 Logical Device 7 (GPIO)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB

Reset by: RSMRST#, LRESET# (Bit7, 2)

Default : 00h Size: 8 bits

BIT	READ / WRITE		DESCRIPTION	
7	R/W	0: GPIO7 is inactive.	1: GPIO7 is active.	
6	R/W	0: GPIO6 is inactive.	1: GPIO6 is active.	
5	R/W	0: GPIO5 is inactive.	1: GPIO5 is active.	
4	R/W	0: GPIO4 is inactive.	1: GPIO4 is active.	
3	R/W	0: GPIO3 is inactive.	1: GPIO3 is active.	
2	R/W	0: GPIO2 is inactive.	1: GPIO2 is active.	
1	R/W	0: GPIO1 is inactive.	1: GPIO1 is active.	
0	R/W	0: GPIO0 is inactive.	1: GPIO0 is active.	

CR E0h. GPIO0 I/O Register

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: GP0X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO0 I/O register 0: The respective GPIO0 PIN is programmed as an output port 1: The respective GPIO0 PIN is programmed as an input port.

CR E1h. GPIO0 Data Register

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: GP0X_MRST

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO0 Data register For output ports, the respective bits can be read/written and produced to pins.

BIT	READ/WRITE	DESCRIPTION
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR E2h. GPIO0 Inversion Register

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: GP0X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO0 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR E3h. GPIO0 Status Register

Location: Address E3h Attribute: Read Only Power Well: VSB Reset by: GP0X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO0 Event Status Bit 7-0 corresponds to GP07-GP00, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit clears it to 0.

CR E4h. GPIO1 I/O Register

Location: Address E4h
Attribute: Read/Write
Power Well: VSB
Reset by: GP1X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO1 I/O register 0: The respective GPIO1 PIN is programmed as an output port 1: The respective GPIO1 PIN is programmed as an input port.

-344-

CR E5h. GPIO1 Data Register

Publication Release Date: September 12, 2023

Version: 2.4

Location: Address E5h Attribute: Read/Write Power Well: VSB Reset by: GP1X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO1 Data register For output ports, the respective bits can be read/written and produced to pins.
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR E6h. GPIO1 Inversion Register

Location: Address E6h Attribute: Read/Write Power Well: VSB Reset by: GP1X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO1 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR E7h. GPIO1 Status Register

Location: Address E7h Attribute: Read Only Power Well: VSB Reset by: GP1X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO1 Event Status Bit 7-0 corresponds to GP17-GP10, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit clears it to 0.

-345-

CR E8h. GPIO2 I/O Register

Location: Address E8h Attribute: Read/Write Power Well: VSB Reset by: GP2X_MRST

Publication Release Date: September 12, 2023

Version: 2.4

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO2 I/O register 0: The respective GPIO2 PIN is programmed as an output port 1: The respective GPIO2 PIN is programmed as an input port.

CR E9h. GPIO2 Data Register

Location: Address E9h Attribute: Read/Write Power Well: VSB Reset by: GP2X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO2 Data register For output ports, the respective bits can be read/written and produced to pins.
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR EAh. GPIO2 Inversion Register

Location: Address EAh Attribute: Read/Write Power Well: VSB Reset by: GP2X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO2 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR EBh. GPIO2 Status Register

Location: Address EBh Attribute: Read Only Power Well: VSB Reset by: GP2X_MRST

Γ	RIT	READ / WRITE	DESCRIPTION
Ш	ווט	INLAD / WINITE	DEGGINI TION

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO2 Event Status Bit 7-0 corresponds to GP27-GP20, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit clears it to 0.

CR ECh. GPIO3 I/O Register

Location: Address ECh Attribute: Read/Write Power Well: VSB Reset by: GP3X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO3 I/O register 0: The respective GPIO3 PIN is programmed as an output port 1: The respective GPIO3 PIN is programmed as an input port.

CR EDh. GPIO3 Data Register

Location: Address EDh Attribute: Read/Write Power Well: VSB Reset by: GP3X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO3 Data register For output ports, the respective bits can be read/written and produced to pins.
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR EEh. GPIO3 Inversion Register

Location: Address EEh Attribute: Read/Write Power Well: VSB Reset by: GP3X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

-347-

Publication Release Date: September 12, 2023

Version: 2.4

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO3 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR EFh. GPIO3 Status Register

Location: Address EFh Attribute: Read Only Power Well: VSB Reset by: GP3X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO3 Event Status Bit 7-0 corresponds to GP37-GP30, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit clears it to 0.

CR F0h. GPIO4 I/O Register

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: GP4X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO4 I/O register 0: The respective GPIO4 PIN is programmed as an output port 1: The respective GPIO4 PIN is programmed as an input port.

CR F1h. GPIO4 Data Register

Location: Address F1h Attribute: Read/Write Power Well: VSB Reset by: GP4X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO4 Data register For output ports, the respective bits can be read/written and produced to pins.

Publication Release Date: September 12, 2023 Version: 2.4

BIT	READ / WRITE	DESCRIPTION
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR F2h. GPIO4 Inversion Register

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: GP4X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO4 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR F3h. GPIO4 Status Register

Location: Address F3h Attribute: Read Only Power Well: VSB Reset by: GP4X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO4 Event Status Bit 7-0 corresponds to GP47-GP40, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit clears it to 0.

CR F4h. GPIO5 I/O Register

Location: Address F4h Attribute: Read/Write Power Well: VSB Reset by: GP5X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO5 I/O register 0: The respective GPIO5 PIN is programmed as an output port 1: The respective GPIO5 PIN is programmed as an input port.

Publication Release Date: September 12, 2023 Version: 2.4

CR F5h. GPIO5 Data Register

Location: Address F5h Attribute: Read/Write Power Well: VSB Reset by: GP5X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO5 Data register For output ports, the respective bits can be read/written and produced to pins.
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR F6h. GPIO5 Inversion Register

Location: Address F6h Attribute: Read/Write Power Well: VSB Reset by: GP5X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO5 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR F7h. GPIO5 Status Register

Location: Address F7h Attribute: Read Only Power Well: VSB Reset by: GP5X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO5 Event Status Bit 7-0 corresponds to GP57-GP50, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit clears it to 0.

CR F8h. GPIO6 I/O Register

Location: Address F8h Attribute: Read/Write Power Well: VSB

Publication Release Date: September 12, 2023

Version: 2.4

Reset by: GP6X_MRST

Default : FFh Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO6 I/O register 0: The respective GPIO6 PIN is programmed as an output port 1: The respective GPIO6 PIN is programmed as an input port.

CR F9h. GPIO6 Data Register

Location: Address F9h Attribute: Read/Write Power Well: VSB Reset by: GP6X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO6 Data register For output ports, the respective bits can be read/written and produced to pins.
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR FAh. GPIO6 Inversion Register

Location: Address FAh Attribute: Read/Write Power Well: VSB Reset by: GP6X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO6 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR FBh. GPIO6 Status Register

Location: Address FBh Attribute: Read Only Power Well: VSB Reset by: GP6X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
D11	ILAD / WINIL	DESCRIPTION

-351-

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO6 Event Status Bit 7-0 corresponds to GP67-GP60, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit clears it to 0.

CR FCh. GPIO7 I/O Register

Location: Address FCh Attribute: Read/Write Power Well: VSB Reset by: GP7X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO7 I/O register 0: The respective GPIO7 PIN is programmed as an output port 1: The respective GPIO7 PIN is programmed as an input port.

CR FDh. GPIO7 Data Register

Location: Address FDh Attribute: Read/Write Power Well: VSB Reset by: GP7X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO7 Data register For output ports, the respective bits can be read/written and produced to pins.
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR FEh. GPIO7 Inversion Register

Location: Address FEh Attribute: Read/Write Power Well: VSB Reset by: GP7X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

Publication Release Date: September 12, 2023

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO7 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR FFh. GPIO7 Status Register

Location: Address FFh Attribute: Read Only Power Well: VSB Reset by: GP7X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO7 Event Status Bit 7-0 corresponds to GP77-GP70, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit clears it to 0.

-353-

23.8 Logical Device 8 (GPIO, WDT1)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 01h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved.	
1	R/W	0: GPIO Base Address mode is inactive 1: GPIO Base Address mode is active
0	R/W	0: WDT1 is inactive. 1: WDT1 is active.

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 00h, 00h
Size: 16 bits

BIT READ / WRITE DESCRIPTION

7-0 R / W These two registers select GPIO Interface I/O base address <100h: FF8h> on 8 byte boundary.

CR E0h. GPIO0 Multi-function Select Register

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: GP0X_MRST

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIO07 1: GPIO07 → YLW
6	R/W	0: GPIO06 1: GPIO06 → GRN
5	R/W	0: GPIO05 1: GPIO05 → WDTO#
4	R/W	0: GPIO04 1: GPIO04 → SUSLED

BIT	READ/WRITE	DESCRIPTION
3	R/W	0: GPIO03 1: GPIO03 → YLW
2	R/W	0: GPIO02 1: GPIO02 → GRN
1	R/W	0: GPIO01 1: GPIO01 → WDTO#
0	R/W	0: GPIO00 1: GPIO00 → SUSLED

CR E1h. GPIO1 Multi-function Select Register

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: GP1X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIO17 1: GPIO17 → YLW
6	R/W	0: GPIO16 1: GPIO16 → GRN
5	R/W	0: GPIO15 1: GPIO15 → BEEP
4	R/W	0: GPIO14 1: GPIO14 → SMI
3	R/W	0: GPIO13 1: GPIO13 → YLW
2	R/W	0: GPIO12 1: GPIO12 → GRN
1	R/W	0: GPIO11 1: GPIO11 → BEEP
0	R/W	0: GPIO10 1: GPIO10 → SMI

CR E2h. GPIO2 Multi-function Select Register

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: GP2X_MRST

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIO27 1: GPIO27 → WDTO#
6	R/W	0: GPIO26 1: GPIO26 → BEEP
5	R/W	0: GPIO25 1: GPIO25 → SMI
4	R/W	0: GPIO24 1: GPIO24 → PLED
3	R/W	0: GPIO23 1: GPIO23 → WDTO#
2	R/W	0: GPIO22 1: GPIO22 → BEEP
1	R/W	0: GPIO21 1: GPIO21 → SMI
0	R/W	0: GPIO20 1: GPIO20 → PLED

CR E3h. GPIO3 Multi-function Select Register

Location: Address E3h Attribute: Read/Write Power Well: VSB Reset by: GP3X_MRST

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIO37 1: GPIO37 → BEEP
6	R/W	0: GPIO36 1: GPIO36 → SMI
5	R/W	0: GPIO35 1: GPIO35 → WDTO#
4	R/W	0: GPIO34 1: GPIO34 → SUSLED
3	R/W	0: GPIO33 1: GPIO33 → BEEP
2	R/W	0: GPIO32 1: GPIO32 → SMI
1	R/W	0: GPIO31 1: GPIO31 → WDTO#
0	R/W	0: GPIO30 1: GPIO30 → SUSLED

CR E4h. GPIO4 Multi-function Select Register

Location: Address E4h Attribute: Read/Write Power Well: VSB Reset by: GP4X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIO47 1: GPIO47 → YLW
6	R/W	0: GPIO46 1: GPIO46 → GRN
5	R/W	0: GPIO45 1: GPIO45 → PLED
4	R/W	0: GPIO44 1: GPIO44 → SMI
3	R/W	0: GPIO43 1: GPIO43 → YLW
2	R/W	0: GPIO42 1: GPIO42 → GRN
1	R/W	0: GPIO41 1: GPIO41 → PLED
0	R/W	0: GPIO40 1: GPIO40 → SMI

CR E5h. GPIO5 Multi-function Select Register

Location: Address E5h Attribute: Read/Write Power Well: VSB Reset by: GP5X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIO57 1: GPIO57 → YLW
6	R/W	0: GPIO56 1: GPIO56 → GRN
5	R/W	0: GPIO55 1: GPIO55 → BEEP
4	R/W	0: GPIO54 1: GPIO54 → WDTO#

-357-

BIT	READ / WRITE	DESCRIPTION
3	R/W	0: GPIO53 1: GPIO53 → YLW
2	R/W	0: GPIO52 1: GPIO52 → GRN
1	R/W	0: GPIO51 1: GPIO51 → BEEP
0	R/W	0: GPIO50 1: GPIO50 → WDTO#

CR E6h. GPIO6 Multi-function Select Register

Location: Address E6h Attribute: Read/Write Power Well: VSB Reset by: GP6X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	Reserved.	
6	R/W	0: GPIO66 1: GPIO66 → YLW
5	R/W	0: GPIO65 1: GPIO65 → GRN
4	R/W	0: GPIO64 1: GPIO64 → BEEP
3	R/W	0: GPIO63 1: GPIO63 → SMI
2	R/W	0: GPIO62 1: GPIO62 → WDTO#
1	R/W	0: GPIO61 1: GPIO61 → SUSLED
0	R/W	0: GPIO60 1: GPIO60 → PLED

CR E7h. GPIO67 Multi-function Select Register

Location: Address E7h Attribute: Read/Write Power Well: VSB

Reset by: GP6X_MRST (Bit7-5)

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

BIT	READ / WRITE	DESCRIPTION
7-5	R/W	000: GPIO67 001: GPIO67 → YLW 010: GPIO67 → GRN 011: GPIO67 → BEEP 100: GPIO67 → SMI 101: GPIO67 → WDTO# 110: GPIO67 → SUSLED 111: GPIO67 → PLED
4-0	Reserved.	

CR E8h. GPIO7 Multi-function Select Register

Location: Address E8h Attribute: Read/Write Power Well: VSB Reset by: GP7X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIO77 1: GPIO77 → PLED
6	R/W	0: GPIO76 1: GPIO76 → BEEP
5	R/W	0: GPIO75 1: GPIO75 → SMI
4	R/W	0: GPIO74 1: GPIO74 → WDTO#
3	R/W	0: GPIO73 1: GPIO73 → PLED
2	R/W	0: GPIO72 1: GPIO72 → BEEP
1	R/W	0: GPIO71 1: GPIO71 → SMI
0	R/W	0: GPIO70 1: GPIO70 → WDTO#

CR E9h. GPIO8 Multi-function Select Register

Location: Address E9h Attribute: Read/Write Power Well: VSB Reset by: GP8X_MRST

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIO87 1: GPIO87 → YLW
6	R/W	0: GPIO86 1: GPIO86 → SMI
5	R/W	0: GPIO85 1: GPIO85 → WDTO#
4	R/W	0: GPIO84 1: GPIO84 → BEEP
3	R/W	0: GPIO83 1: GPIO83 → YLW
2	R/W	0: GPIO82 1: GPIO82 → SMI
1	R/W	0: GPIO81 1: GPIO81 → WDTO#
0	R/W	0: GPIO80 1: GPIO80 → BEEP

CR EAh. GPIO9 Multi-function Select Register

Location: Address EAh Attribute: Read/Write Power Well: VSB Reset by: GP9X_MRST

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIO97 1: GPIO97 → SUSLED
6	R/W	0: GPIO96 1: GPIO96 → BEEP
5	R/W	0: GPIO95 1: GPIO95 → SMI
4	R/W	0: GPIO94 1: GPIO94 → WDT1
3	R/W	0: GPIO93 1: GPIO93 → YLW
2	R/W	0: GPIO92 1: GPIO92 → GRN
1	R/W	0: GPIO91 1: GPIO91 → SMI
0	R/W	0: GPIO90 1: GPIO90 → PLED

CR EBh. GPIOA Multi-function Select Register

Location: Address EBh Attribute: Read/Write Power Well: VSB Reset by: GPAX_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: GPIOA7 1: GPIOA7 → SUSLED
6	R/W	0: GPIOA6 1: GPIOA6 → BEEP
5	R/W	0: GPIOA5 1: GPIOA5 → SMI
4	R/W	0: GPIOA4 1: GPIOA4 → WDT1
3	R/W	0: GPIOA3 1: GPIOA3 → YLW
2	R/W	0: GPIOA2 1: GPIOA2 → GRN
1	R/W	0: GPIOA1 1: GPIOA1 → SMI
0	R/W	0: GPIOA0 1: GPIOA0 → PLED

CR ECh. GPIOB Multi-function Select Register

Location: Address ECh Attribute: Read/Write Power Well: VSB Reset by: GPBX_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
1-7	Reserved.	
0	R/W	0: GPIOB0 1: GPIOB0 → BEEP

CR F0h. Watchdog Timer I(WDT1) and KBC P20 Control Mode Register

Location: Address F0h Attribute: Read/Write Power Well: VSB

Reset by: LRESET# or PWROK

Default: 00h

Publication Release Date: September 12, 2023

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3	R/W	Select Watchdog Timer I count mode. 0: Second Mode. 1: Minute Mode.
2	R/W	Enable the rising edge of a KBC reset (P20) to issue a time-out event. 0: Disable. 1: Enable.
1	R/W	Disable / Enable the Watchdog Timer I output low pulse to the KBRST# pin (Pin15) 0: Disable. 1: Enable.
0	R/W	Watchdog Timer I Pulse or Level mode select 0: Pulse mode 1: Level mode

CR F1h. Watchdog Timer I(WDT1) Counter Register

Location: Address F1h Attribute: Read/Write Power Well: VSB

Reset by: LRESET# or PWROK

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	Watch Dog Timer I Time-out value. Writing a non-zero value to the register causes the counter to load the value into the Watch Dog Counter and start counting down. The accuracy of watchdog timer I about one cycle deviation. If CR F2h, bits 7 and 6 are set, any Interrupt event comes from Mouse or Keyboard both cause the previously-loaded. Non-zero value will be reloaded to the Watch Dog Counter and the countdown resumes. Reading the register returns the current value in the Watch Dog Counter but not the Watch Dog Timer Time-out value. O0h: Time-out Disable O1h: Time-out occurs after one cycle time, the cycle time is based on LD8 CRF0, bit[3], by analogy.

CR F2h. Watchdog Timer I (WDT1) Control & Status Register

Location: Address F2h Attribute: Read/Write Power Well: VSB

Reset by: LRESET# or PWROK

BIT READ / WRITE DESCRIPTION	
------------------------------	--

BIT	READ/WRITE	DESCRIPTION
7	R/W	Mouse interrupt reset enables watch-dog timer reload 0: Watchdog Timer I is not affected by mouse interrupt. 1: Watchdog Timer I is reset by mouse interrupt.
6	R/W	Keyboard interrupt reset enables watch-dog timer reload 0: Watchdog Timer I is not affected by keyboard interrupt. 1: Watchdog Timer I is reset by keyboard interrupt.
5	Write "1" Only	Trigger Watchdog Timer I event. This bit is self-clearing.
4	R / W Write "0" Clear	Watchdog Timer I status bit 0: Watchdog Timer I is running. 1: Watchdog Timer I issues time-out event.
3-0	R/W	These bits select the IRQ resource for the Watchdog Timer I

Publication Release Date: September 12, 2023 Version: 2.4

23.9 Logical Device 9 (GPIO)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE		DESCRIPTION
7	R/W	4 second PSIN# with the 0: Keep DeepS5 210ms a 1: Stay at DeepS5 state	•
6-5	R/W	4 second PSIN# with the 00: 210 ms (default) 01: 500 ms 10: 1000 ms 11: 1500 ms	rmtrip mode DEEPS5 timing select
4	Reserved		
3	R/W	0: GPIOB is inactive.	1: GPIOB is active.
2	R/W	0: GPIOA is inactive.	1: GPIOA is active.
1	R/W	0: GPIO9 is inactive.	1: GPIO9 is active.
0	R/W	0: GPIO8 is inactive.	1: GPIO8 is active.

CR E1h. GPIOs Reset Source Register

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 90h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	RSMRST# reset source select. 0: VSB and PSOUT# 1: VSB and PSOUT# and Deep_S5_Ctrl
6	R/W	PSOUT# 3.8 second block 0: Disable 1: Limit PSOUT# maximum pulse about 3.8 second
5	Reserved	

-364-

BIT	READ / WRITE		DES	SCRIPTION	
		Pin107 function se	election		
		LD9_CRE1[4]	CR1C[5]	Pin107	
4	R/W	1	X	THERMTRIP#	
		0	1	GP66	
		0	0	THERMTRIP#	
3	R/W	GPBX_MRST 0: GPBX reset by 1: GPBX reset by			
2	R/W	GPAX_MRST 0: GPAX reset by 1: GPAX reset by			
1	R/W	GP9X_MRST 0: GP9X reset by 1: GP9X reset by			
0	R/W	GP8X_MRST 0: GP8X reset by 1: GP8X reset by			

CR E2h. GPIOs Reset Source Register

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

BIT	READ / WRITE	DESCRIPTION
7	R/W	GP7X_MRST 0: GP7X reset by LRESET#. 1: GP7X reset by PWROK.
6	R/W	GP6X_MRST 0: GP6X reset by RSMRST#. 1: GP6X reset by SLP_S5#.
5	R/W	GP5X_MRST 0: GP5X reset by RSMRST#. 1: GP5X reset by SLP_S5#.
4	R/W	GP4X_MRST 0: GP4X reset by RSMRST#. 1: GP4X reset by SLP_S5#.
3	R/W	GP3X_MRST 0: GP3X reset by RSMRST#. 1: GP3X reset by SLP_S5#.

BIT	READ / WRITE	DESCRIPTION
2	R/W	GP2X_MRST 0: GP2X reset by LRESET#. 1: GP2X reset by PWROK.
1	R/W	GP1X_MRST 0: GP1X reset by RSMRST#. 1: GP1X reset by SLP_S5#.
0	R/W	GP0X_MRST 0: GP0X reset by RSMRST#. 1: GP0X reset by SLP_S5#.

CR E3h. GPIO63, 64, 44 & 45 Event Route Selection Register

Location: Address E3h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: Disable GP63 event route to PSOUT#. 1: Enable GP63 event route to PSOUT#.
6	R/W	0: Disable GP64 event route to PSOUT#. 1: Enable GP64 event route to PSOUT#.
5	R/W	0: Disable GP44 event route to PSOUT#. 1: Enable GP44 event route to PSOUT#.
4	R/W	0: Disable GP45 event route to PSOUT#. 1: Enable GP45 event route to PSOUT#.
3	R/W	0: Disable GP63 event route to PME#. 1: Enable GP63 event route to PME#.
2	R/W	0: Disable GP64 event route to PME#. 1: Enable GP64 event route to PME#.
1	R/W	0: Disable GP44 event route to PME#. 1: Enable GP44 event route to PME#.
0	R/W	O: Disable GP45 event route to PME#. 1: Enable GP45 event route to PME#.

CR E4h.

Location: Address E4h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

BIT	READ / WRITE	DESCRIPTION
7-3	Reserved	
2	R/W	WDT3_EN 0: disable WDT3 1: enable WDT3
1-0	R/W	ACLOSS_PSOUT_DLY (Default= 00) (This bit affect power loss and set always on function) 00: 0.5 ~ 0.75sec 01: 1 ~ 1.25sec 10: 1.5 ~ 1.75sec 11: 2 ~ 2.25sec

CR E6h. Port80 Programmable Address Low byte

Location: Address E6h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 80h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Low byte of programmable Port80 address

CR E7h. Port80 Programmable Address High byte

Location: Address E7h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	High byte of programmable Port80 address

CR F0h. GPIO8 I/O Register

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: GP8X_MRST

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO8 I/O register 0: The respective GPIO8 PIN is programmed as an output port 1: The respective GPIO8 PIN is programmed as an input port.

CR F1h. GPIO8 Data Register

Location: Address F1h Attribute: Read/Write Power Well: VSB Reset by: GP8X_MRST

Default: 00h (The default value is for output data. It can be read when the corresponding GPIO group is activated in

CR30h and set to output mode.)

Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO8 Data register For output ports, the respective bits can be read/ written and produced to pins.
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR F2h. GPIO8 Inversion Register

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: GP8X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO8 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR F3h. GPIO8 Status Register

Location: Address F3h Attribute: Read Only Power Well: VSB Reset by: GP8X_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO8 Event Status Bit 7-0 corresponds to GP87-GP80, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit will clear it to 0.

CR F4h. GPIO9 I/O Register

Location: Address F4h

Attribute: Read/Write Power Well: VSB Reset by: GP9X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO9 I/O register 0: The respective GPIO9 PIN is programmed as an output port 1: The respective GPIO9 PIN is programmed as an input port.

CR F5h. GPIO9 Data Register

Location: Address F5h Attribute: Read/Write Power Well: VSB Reset by: GP9X MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIO9 Data register For output ports, the respective bits can be read/ written and produced to pins.
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR F6h. GPIO9 Inversion Register

Location: Address F6h Attribute: Read/Write Power Well: VSB Reset by: GP9X_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIO9 Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

-369-

CR F7h. GPIO9 Status Register

Location: Address F7h Attribute: Read Only Power Well: VSB Reset by: GP9X_MRST

BIT	READ / WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIO9 Event Status Bit 7-0 corresponds to GP97-GP90, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit will clear it to 0.

CR F8h. GPIOA I/O Register

Location: Address F8h Attribute: Read/Write Power Well: VSB Reset by: GPAX_MRST

Default : FFh Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GPIOA I/O register 0: The respective GPIOA PIN is programmed as an output port 1: The respective GPIOA PIN is programmed as an input port.

CR F9h. GPIOA Data Register

Location: Address F9h Attribute: Read/Write Power Well: VSB Reset by: GPAX_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIOA Data register For output ports, the respective bits can be read/ written and produced to pins.
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.

CR FAh. GPIOA Inversion Register

Location: Address Fah Attribute: Read/Write Power Well: VSB Reset by: GPAX_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

Publication Release Date: September 12, 2023

Version: 2.4

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPIOA Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)

CR FBh. GPIOA Status Register

Location: Address FBh Attribute: Read Only Power Well: VSB Reset by: GPAX_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	Read Only Read-Clear	GPIOA Event Status Bit 7-0 corresponds to GPA7-GPA0, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit will clear it to 0.

CR FCh. GPIOB I/O Register

Location: Address FCh Attribute: Read/Write Power Well: VSB Reset by: GPBX_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7-0	R/W	GPIOB I/O register 0: The respective GPIOB PIN is programmed as an output port 1: The respective GPIOB PIN is programmed as an input port.	

CR FDh. GPIOB Data Register

Location: Address FDh Attribute: Read/Write Power Well: VSB Reset by: GPBX_MRST

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

Publication Release Date: September 12, 2023 Version: 2.4

BIT	READ / WRITE	DESCRIPTION			
7-0	R/W	GPIOB Data register For output ports, the respective bits can be read/ written and produced to pins.			
	Read Only	For input ports, the respective bits can be read only from pins. Write accesses will be ignored.			

CR FEh. GPIOB Inversion Register

Location: Address Feh Attribute: Read/Write Power Well: VSB Reset by: GPBX_MRST

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION	
7-0	R/W	GPIOB Inversion register 0: The respective bit and the port value are the same. 1: The respective bit and the port value are inverted. (Both Input & Output ports)	

CR FFh. GPIOB Status Register

Location: Address FFh Attribute: Read Only Power Well: VSB Reset by: GPBX_MRST

BIT	READ / WRITE	DESCRIPTION	
7-0	Read Only Read-Clear	GPIOB Event Status Bit 7-0 corresponds to GPB7-GPB0, respectively. 0: No active edge (rising/falling) has been detected 1: An active edge (rising/falling) has been detected Read the status bit will clear it to 0.	

23.10 Logical Device A (ACPI)

CR E0h.

Location: Address E0h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Size: 8 bits						
BIT	READ / WRITE	DESCRIPTION				
7	R/W	DIS_PSIN => Disable the panel switch input to turn on the system power supply. 0: PSIN# is wire-AND and connected to PSOUT#. 1: PSIN# is blocked and cannot affect PSOUT#.				
6	R/W	Enable KBC wake-up 0: Disable keyboard wake-up function via PSOUT#. 1: Enable keyboard wake-up function via PSOUT#.				
5	R/W	Enable Mouse wake-up 0: Disable mouse wake-up function via PSOUT#. 1: Enable mouse wake-up function via PSOUT#.				
4	R/W		ne the com	binations o	MSRKEY, CRE0[4]; MSXKEY, f the mouse wake-up events. Please s. Wake-up event Any button clicked or any movement. One click of left or right button. One click of the left button. One click of the right button. Two clicks of the left button. Two clicks of the right button.	
3	R/W	Enable CIR wake-up 0: Disable CIR wake-up function via PSOUT#. 1: Enable CIR wake-up function via PSOUT#.				
2	R/W	Keyboard / Mouse swap enable 0: Normal mode. 1: Keyboard / Mouse ports are swapped.				
1	R/W	MSXKEY => Three keys (ENMDAT_UP, CRE6[7]; MSRKEY, CRE0[4]; MSXKEY, CRE0[1]) define the combinations of the mouse wake-up events. Please check out the table in CRE0[4] for the detailed.				

BIT	READ / WRITE	DESCRIPTION
0	R/W	KBXKEY => 0: Only the pre-determined key combination in sequence can wake up the system. 1: Any character received from the keyboard can wake up the system.

CR E1h. KBC Wake-Up Index Register

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Keyboard wake-up index register. This is the index register of CRE2, which is the access window for the keyboard's pre-determined key key-combination characters. The first set of wake-up keys is in of $0x00-0x0E$, the second set $0x30-0x3E$, and the third set $0x40-0x4E$. Incoming key combinations can be read through $0x10-0x1E$.

CR E2h. KBC Wake-Up Data Register

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Keyboard wake-up data register. This is the data register for the keyboard's pre-determined keycombination characters, which is indexed by CRE1.

CR E3h. Event Status Register

Location: Address E3h Attribute: Read Only Power Well: VRTC Reset by: Battery reset

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-5	Reserved.	
4	Read Only Read-Clear	This status flag indicates VSB power off/on.

Publication Release Date: September 12, 2023 Version: 2.4

BIT	READ / WRITE	DESCRIPTION
3	Read Only Read-Clear	Thermal shutdown status. 0: No thermal shutdown event issued. 1: Thermal shutdown event issued.
2	Read Only Read-Clear	PSIN#_STS 0: No PSIN# event issued. 1: PSIN# event issued.
1	Read Only Read-Clear	MSWAKEUP_STS => The bit is latched by the mouse wake-up event. 0: No mouse wake-up event issued. 1: Mouse wake-up event issued.
0	Read Only Read-Clear	KBWAKEUP_STS => The bit is latched by the keyboard wake-up event. 0: No keyboard wake-up event issued. 1: Keyboard wake-up event issued.

CR E4h.

Location: Address E4h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

BIT	READ / WRITE	DESCRIPTION
7	Reserved	
6-5	R/W	Power-loss control bits => (VBAT) Bits 6 5 0 0: System always turns off when it returns from power-loss state. 0 1: System always turns on when it returns from power-loss state. 1 0: System turns off / on when it returns from power-loss state depending on the state before the power loss. 1 1: User defines the resuming state before power loss.(refer to Logical Device A, CRE6[4])
4	R/W	3VSBSW Enable bit => (Reset by 3VCC) 0: Disable. 1: Enable.
3	R/W	Keyboard wake-up options. 0: Password or sequence hot keys programmed in the registers. 1: Any key.
2	R/W	Enable the hunting mode for all wake-up events set in CRE0. This bit is cleared when any wake-up events is captured. (this bit is reset by LRESET#) (Note. This bit is to generate PSOUT# via KB or MS under S1.) 0: Disable. 1: Enable.
1-0	Reserved.	

CR E5h. PWROK Option Register

Location: Address E5h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved.	
1	R/W	PWROK source selection. 0: PSON#. 1: SLP_S3#.
0	R/W	ATXPGD signal to control PWROK 0: Enable. 1: Disable.

CR E6h.

Location: Address E6h Attribute: Read/Write Power Well: VRTC

Reset by: RSMRST#(Bit5, Bit3-1), Battery reset(Bit7, Bit4), VCC reset(Bit0)

Default : 0Ch Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	ENMDAT => Three keys (ENMDAT_UP, CRE6[7]; MSRKEY, CRE0[4]; MSXKEY, CRE0[1]) define the combinations of the mouse wake-up events. Please see the table in CRE0, bit 4 for the details.
6	Reserved.	
5	R/W	CASEOPEN Clear Control. Write 1 to this bit to clear CASEOPEN status. This bit will clear the status itself.
4	R/W	Power-loss Last State Flag. 0: ON 1: OFF.

-376-

BIT	READ / WRITE	DESCRIPTION
3-1	R/W	PWROK_DEL Set the delay time when rising from 3VCC to PWROK Bits 3 2 1 0 0 0: 300 ~ 600mS 0 0 1: 330 ~ 670mS 0 1 0: 390 ~ 730mS 0 1 1: 520 ~ 860mS 1 0 0: 200 ~ 300mS 1 0 1: 230 ~ 370mS 1 1 1: 420 ~ 560mS
0	R / W-Clear	PWROK_TRIG => Write 1 to re-trigger the PWROK signal from low to high.

CR E7h.

Location: Address E7h Attribute: Read/Write Power Well: VRTC

Reset by: RSMRST#, Battery reset (Bit0, 1, 4)

BIT	READ / WRITE	DESCRIPTION
7	R/W	ENKD3 => Enable the third set of keyboard wake-up key combination. Its values are accessed through keyboard wake-up index register (CRE1) and keyboard wake-up data register (CRE2) at the index from 40h to 4eh. 0: Disable the third set of the key combinations. 1: Enable the third set of the key combinations.
6	R/W	ENKD2 => Enable the second set of keyboard wake-up key combination. Its values are accessed through keyboard wake-up index register (CRE1) and keyboard wake-up data register (CRE2) at the index from 30h to 3eh. 0: Disable the second set of the key combinations. 1: Enable the second set of the key combinations.
5	R/W	ENWIN98KEY => Enable Win98 keyboard dedicated key to wake-up system via PSOUT# when keyboard wake-up function is enabled. 0: Disable Win98 keyboard wake-up. 1: Enable Win98 keyboard wake-up.

BIT	READ / WRITE	DESCRIPTION
4	R/W	EN_ONPSOUT Disable/Enable to issue a 0.5s(Default) delay PSOUT# level when system returns from power loss state. The PSOUT# delay time refer to Logical Device 9, CR E4[1:0] 0: Disable. 1: Enable.
3	R/W	Select WDT1 reset source 0: Watchdog timer is reset by LRESET#. 1: Watchdog timer is reset by PWROK.
2-1	Reserved.	
0	R/W	Hardware Monitor RESET source select 0: PWROK. 1: LRESET#.

CR EDh.

Location: Address EDh Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-5	Reserved.	
4	Reserved.	Reserved.
3-2	Reserved.	
1	R/W	Keyboard souce select for PME# wake-up 0: KDAT falling edge event 1: Any key or Password event (reference LDA CRE0 [Bit0])
0	R/W	Mouse souce select for PME# wake-up 0: MDAT falling edge event 1: Mouse button event (reference LDA CRE0 [Bit4])

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

BIT	READ / WRITE		DESCRIPTION	
		Pin64 function selection		
		LDA_CRF0[7:6]	Pin64	
7-6	R/W	1x	DEEP_S5_2	
		00	3VSBSW	
		01	LATCH_BKFD_CUT	
5-0	Reserved.			

CR F1h.

Location: Address F1h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R / W-Clear	PME# status of the RIA event. Write 1 to clear this status.
6	R / W-Clear	PME# status of the RIB event. Write 1 to clear this status.
5	R / W-Clear	PME# status of the RIC event. Write 1 to clear this status.
4	R / W-Clear	PME# status of the RID event. Write 1 to clear this status.
3	R / W-Clear	PME# status of the RIE event. Write 1 to clear this status.
2	R / W-Clear	PME# status of the RIF event. Write 1 to clear this status.
1-0	Reserved.	

CR F2h.

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

BIT	READ/WRITE	DESCRIPTION
7-6	Reserved.	
5	R/W	Block SLP_S3# to PSON# 0: Disable 1: Enable

BIT	READ / WRITE	DESCRIPTION
4-3	Reserved.	
2	R/W	VHIF Debounce Enable bit 0 : Disable 1 : Enable
1	Reserved.	
0	R/W	EN_PME# => 0 : Disable PME#. 1 : Enable PME#.

CR F3h.

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-6	Reserved.	
5	R / W-Clear	PME# status of the Mouse event. Write 1 to clear this status.
4	R / W-Clear	PME# status of the KBC event. Write 1 to clear this status.
3	R / W-Clear	PME# status of the PRT IRQ event. Write 1 to clear this status.
2	Reserved	
1	R / W-Clear	PME# status of the URA IRQ event. Write 1 to clear this status.
0	R / W-Clear	PME# status of the URB IRQ event. Write 1 to clear this status.

CR F4h.

Location: Address F4h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

BIT	READ / WRITE	DESCRIPTION
7	D /W Class	PME# status of the URC IRQ event.
	R / W-Clear	Write 1 to clear this status.

BIT	READ / WRITE	DESCRIPTION
6	R / W-Clear	PME# status of the URD IRQ event.
U	107 W-Olean	Write 1 to clear this status.
5	R / W-Clear	PME# status of the URE IRQ event.
3	N / W-Cleal	Write 1 to clear this status.
4	R / W-Clear	PME# status of the URF IRQ event.
4	N/W-Clear	Write 1 to clear this status.
3	R / W-Clear	PME# status of the HM IRQ event.
3		Write 1 to clear this status.
2	R / W-Clear	PME# status of the WDT1 event.
	N / W-Cleal	Write 1 to clear this status.
1	R / W-Clear	PME# status of the RIA event.
	N / VV-Cleal	Write 1 to clear this status.
0	R / W-Clear	PME# status of the RIB event.
J	ix / vv-Cleal	Write 1 to clear this status.

CR F5h.

Location: Address F5h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: Disable PME# interrupt of the URC IRQ event. 1: Enable PME# interrupt of the URC IRQ event.
6	R/W	0: Disable PME# interrupt of the URD IRQ event. 1: Enable PME# interrupt of the URD IRQ event.
5	R/W	0: Disable PME# interrupt of the URE IRQ event. 1: Enable PME# interrupt of the URE IRQ event.
4	R/W	0: Disable PME# interrupt of the URF IRQ event. 1: Enable PME# interrupt of the URF IRQ event.
3-2	Reserved.	
1	R/W	0: Disable PME# interrupt of the RIA event. 1: Enable PME# interrupt of the RIA event.
0	R/W	O: Disable PME# interrupt of the RIB event. 1: Enable PME# interrupt of the RIB event.

CR F6h.

Location: Address F6h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	O: Disable KB, MS interrupt of the KBC event. 1: Enable KB, MS interrupt of the KBC event.
6	R/W	Disable PME# interrupt of the RIA event. Enable PME# interrupt of the RIA event.
5	R/W	Disable PME# interrupt of the Mouse event. Enable PME# interrupt of the Mouse event.
4	R/W	Disable PME# interrupt of the KBC event. Enable PME# interrupt of the KBC event.
3	R/W	Disable PME# interrupt of the PRT IRQ event. Enable PME# interrupt of the PRT IRQ event.
2	Reserved	
1	R/W	O: Disable PME# interrupt of the URA IRQ event. 1: Enable PME# interrupt of the URA IRQ event.
0	R/W	O: Disable PME# interrupt of the URB IRQ event. Enable PME# interrupt of the URB IRQ event.

CR F7h.

Location: Address F7h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

BIT	READ / WRITE	DESCRIPTION
7	R/W	0: Disable PME# interrupt of the RIC event.
,	IX / VV	1: Enable PME# interrupt of the RIC event.
6	R/W	0: Disable PME# interrupt of the RID event.
0	IX / VV	1: Enable PME# interrupt of the RID event.
5	R/W	0: Disable PME# interrupt of the RIE event.
J	17, 77	1: Enable PME# interrupt of the RIE event.
4	R/W	0: Disable PME# interrupt of the CIRWAKEUP event.
		1: Enable PME# interrupt of the CIRWAKEUP event.
3	R/W	0: Disable PME# interrupt of the HM IRQ event.
	17, 77	1: Enable PME# interrupt of the HM IRQ event.
2	R/W	0: Disable PME# interrupt of the WDT1 event.
	17, 44	1: Enable PME# interrupt of the WDT1 event.
1	R/W	0: Disable PME# interrupt of the RIF event.
'	1 (/ V V	1: Enable PME# interrupt of the RIF event.

BIT	READ / WRITE	DESCRIPTION
0	R/W	0: Disable PME# interrupt of the RIB event. 1: Enable PME# interrupt of the RIB event.

CR F8h.

Location: Address F8h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default : 02h Size: 8 bits

BIT	READ / WRITE		DESCRIPTION
7-3	Reserved		
	R/W	Pin108 function sele	ection
		LDA_CRF8 [2:1]	Pin108
2-1		00	14.7456MHZ_CLKIN
		01	GP67
		1x	ATXPGD
0	R/W	0: Disable RSMRST	# always monitor PSOL
0		1: Enable RSMRST	# always monitor PSOU

CR FAh. GPIO Wakeup Status

Location: Address FAh Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R / W-Clear	PME# status of the GP63 event. Write 1 to clear this status.
6	R / W-Clear	PME# status of the GP64 event. Write 1 to clear this status.
5	R / W-Clear	PME# status of the GP44 event. Write 1 to clear this status.
4	R / W-Clear	PME# status of the GP45 event. Write 1 to clear this status.
3-0	Reserved.	

CR FFh. ACPI Pin Type Location: Address FFh

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

BIT	READ / WRITE	DESCRIPTION
7-5	Reserved.	
4	R/W	PWROK Push-Pull / OD select 0: Push-Pull 1: Open Drain (Default)
3-0	Reserved.	

23.11 Logical Device B (HM, LED)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7-1	Reserved.		
0	R/W	R / W 0: Hardware Monitor & SB-TSI device is inactive. 1: Hardware Monitor & SB-TSI device is active.	

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 00h, 00h

Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select the HM base address <100h : FFEh> along a two-byte boundary.

CR 62h, 63h.

Location: Address 62h, 63h

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select the SB-TSI base address <100h : FFEh> along a two-byte boundary.

CR 64h, 65h.

Location: Address 64h, 65h

Attribute: Read/Write
Power Well: VSB
Reset by: RSMRST#
Default: 00h, 00h
Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select the read-only HM base address <100h : FFEh> along a two-byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	These bits select the IRQ resource for HM.

CR E0h. SYSFAN Duty Cycle Register

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 7Fh Size: 8 bits

BIT	READ/WRITE	DESCRIPTION	
7-0	R/W	SYSFAN Duty Cycle Register	

CR E1h. CPUFAN Duty Cycle Register

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 7Fh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7-0	R/W	CPUFAN Duty Cycle Register	

CR E2h. AUXFAN0 Duty Cycle Register

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	AUXFAN0 Duty Cycle Register

CR E3h. AUXFAN1 Duty Cycle Register

Location: Address E3h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	AUXFAN1 Duty Cycle Register

CR E4h. AUXFAN2 Duty Cycle Register

Location: Address E4h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : FFh Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	AUXFAN2 Duty Cycle Register

CR F0h. FANIN de-bouncer Register

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	Enable AUXFANIN0 input de-bouncer. Disable AUXFANIN0 input de-bouncer.
6	R/W	Enable CPUFANIN input de-bouncer. Disable CPUFANIN input de-bouncer.
5	R/W	Enable SYSFANIN input de-bouncer. Disable SYSFANIN input de-bouncer.
4	R/W	Enable AUXFANIN1 input de-bouncer. Disable AUXFANIN1 input de-bouncer.
3	R/W	Enable AUXFANIN2 input de-bouncer. Disable AUXFANIN2 input de-bouncer.
2-0	Reserved.	

Publication Release Date: September 12, 2023 Version: 2.4

CR F1h. SMI IRQ Register

Location: Address F1h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	SMI IRQ Enable
6	Reserved.	
5-4	R/W	HM_TEM_SEL 00: PORT80 data from LPC or I2C 01: CPU temperature 10: SYS temperature 11: AUX temperature
3	Reserved.	
2-0	R/W	Bank Selection

CR F2h. SMBus de-bouncer Register

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved.	
1	R/W	0: Enable SCL input de-bouncer 80 ~ 120ns. 1: Disable SCL input de-bouncer.
0	R/W	0: Enable SDA input de-bouncer 80 ~ 120ns. 1: Disable SDA input de-bouncer.

CR F3h. Deep S5 Front Panel Green & Yellow LED control register

Location: Address F3h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

BIT	READ / WRITE	DESCRIPTION

BIT	READ / WRITE	DESCRIPTION
7-4	R/W	DEEPS5_YLW_BLK_FREQ bits (This function affects by LDB CRF7 Bit 5) 1xxx : Fading LED. 0111 : YLW_LED will drive low. 0110 : YLW_LED will output 2Hz , 50% duty-cycle signal. 0101 : YLW_LED will output 1Hz , 50% duty-cycle signal. 0100 : YLW_LED will output 0.5Hz , 50% duty-cycle signal. 0011 : YLW_LED will output 0.25Hz , 50% duty-cycle signal. 0010 : YLW_LED will output 0.125Hz , 50% duty-cycle signal. 0001 : YLW_LED will output 0.0625Hz , 50% duty-cycle signal. 0000 : YLW_LED will output High-Z. (since YLW_LED pin is open-drain).
3-0	R/W	DEEPS5_GRN_BLK_FREQ bits (This function affects by LDB CRF7 Bit 4) 1xxx : Fading LED. 0110 : GRN_LED will output 2Hz , 50% duty-cycle signal. 0101 : GRN_LED will output 1Hz , 50% duty-cycle signal. 0100 : GRN_LED will output 0.5Hz , 50% duty-cycle signal. 0011 : GRN_LED will output 0.25Hz , 50% duty-cycle signal. 0010 : GRN_LED will output 0.125Hz , 50% duty-cycle signal. 0010 : GRN_LED will output 0.0625Hz , 50% duty-cycle signal. 0001 : GRN_LED will output High-Z. (since GRN_LED pin is open-drain).

CR F4h.

Location: Address F4h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	Reserved.	

CR F5h. Front panel green LED control register

Location: Address F5h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 87h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

Publication Release Date: September 12, 2023

BIT	READ / WRITE	DESCRIPTION
7	R/W	AUTO_EN bit Set to 0, the GRN_LED and YLW_LED are controlled by GRN_ LED_ RST, GRN_BLK_FREQ and YLW_LED_RST, YLW_BLK_FREQ bits. Set to 1, the GRN_LED and YLW_LED are controlled by SLP_S5#, SLP_S3# pins and GRN_BLK_FREQ, YLW_BLK_FREQ bits.
6	R/W	GRN_LED_RST# Set to 0, GRN_BLK_FREQ will be reset to 000 when (SLP_S3# & internal PWROK) = 0, which means when in S3~S5 states, GRN_LED will output High-Z. Set to 1, GRN_BLK_FREQ will be kept when (SLP_S3# & internal PWROK) = 0.
5	R/W	GRN_LED_POL Set to 0 , GRN_LED output is active low. Set to 1 , GRN_LED output is active high.
4	Reserved.	
3-0	R/W	GRN_BLK_FREQ bits 1xxx : Fading LED. 0111 : GRN_LED will drive low. 0110 : GRN_LED will output 2Hz , 50% duty-cycle signal. 0101 : GRN_LED will output 1Hz , 50% duty-cycle signal. 0100 : GRN_LED will output 0.5Hz , 50% duty-cycle signal. 0011 : GRN_LED will output 0.25Hz , 50% duty-cycle signal. 0010 : GRN_LED will output 0.125Hz , 50% duty-cycle signal. 0010 : GRN_LED will output 0.125Hz , 50% duty-cycle signal. 0001 : GRN_LED will output 0.0625Hz , 50% duty-cycle signal. 0000 : GRN_LED will output High-Z. (since GRN_LED pin is open-drain).

CR F6h.Front panel yellow LED control register

Location: Address F6h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default : 47h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	Reserved.	
6	R/W	YLW_LED_RST# Set to 0, YLW_BLK_FREQ will be reset to 000 when (SLP_S3# & internal PWROK) = 0, which means when in S3~S5 states, YLW_LED will output High-Z. Set to 1, YLW_BLK_FREQ will be kept when (SLP_S3# & internal PWROK) = 0.

Publication Release Date: September 12, 2023 Version: 2.4

BIT	READ / WRITE	DESCRIPTION
5	R/W	YLW_LED_POL Set to 0, YLW_LED output is active low. Set to 1, YLW_LED output is active high.
4	R/W	P80_Binary_Sel Set to 0 : Port80 Binary output disable. (Default) Set to 1 : Port80 Binary output enable.
3-0	R/W	YLW_BLK_FREQ bits 1xxx : Fading LED. 0111 : YLW_LED will drive low. 0110 : YLW_LED will output 2Hz , 50% duty-cycle signal. 0101 : YLW_LED will output 1Hz , 50% duty-cycle signal. 0100 : YLW_LED will output 0.5Hz , 50% duty-cycle signal. 0011 : YLW_LED will output 0.25Hz , 50% duty-cycle signal. 0010 : YLW_LED will output 0.125Hz , 50% duty-cycle signal. 0010 : YLW_LED will output 0.0625Hz , 50% duty-cycle signal. 0001 : YLW_LED will output High-Z. (since YLW_LED pin is open-drain).

CR F7h.YLW & GRN Enable register

Location: Address F7h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved.	
5	R/W	YLW_DEEPS5_SET 1: YLW_LED always output high-Z. (YLW_LED pin is open-drain) 0: YLW_LED output by DEEPS5_YLW_BLK_FREQ.(CRF4, bit[7:4])
4	R/W	GRN_DEEPS5_SET 1: GRN_LED always output high-Z. (GRN_LED pin is open-drain) 0: GRN_LED output by DEEPS5_GRN_BLK_FREQ.(CRF4, bit [3:0])
3-0	Reserved.	

23.12 Logical Device D (WDT2)

CR E0h. Watchdog Timer II (WDT2) Control Register

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-2	R/W	Clock select of 5 second Watchdog Timer II Bits 3 2 = 0 0, clock rate 4Hz = 0 1, clock rate 1Hz = 1 0, cloak rate 1/2Hz = 1 1, clock rate 1MHz
1-0	R/W	Clock select of 100ms Watchdog Timer II Bits 10 = 0 0, clock rate 512Hz, WDT will generate 100mS low pulse after 5S = 0 1, clock rate 256Hz, WDT will generate 200mS low pulse after 5S = 1 0, clock rate 1KHz, WDT will generate 50mS low pulse after 5S = 1 1, clock rate 1MHz, WDT will generate 50uS low pulse after 5S

CR E1h. Watchdog Timer II 100ms counter Register

Location: Address E1h Attribute: Read only Power Well: VSB Reset by: RSMRST#

Default : 32h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R	Setting of 100mS watch dog time out counter. Default is 8'h32. Note. If CRE0[1:0] is 2'b00, then Watchdog Timer II 100ms counter will be 1.95ms(512Hz) * 50(8'h32) = 100m sec

CR E2h. Watchdog Timer II 5s counter Register

Location: Address E2h Attribute: Read only Power Well: VSB Reset by: RSMRST#

Default: 14h

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R	Setting of 5 second watch dog time out counter. Default is 8'h14. Note. If CRE0[3:2] is 2'b00, then Watchdog Timer II counter will be 0.25s(4Hz) * 20(8'h14) = 5 sec

CR E3h. Watchdog Timer II Software Reset Register

Location: Address E3h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-1	Reserved.	
0	R/W	This bit is used to start Watchdog Timer II counter 0: Disable 1: Start the counter. When the time is up, it will clear itself to 0.

CR E4h. Watchdog Timer II Status Register

Location: Address E4h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	Watchdog Timer II status. When this bit is set to 1, it means timeout event occurs.
6-0	Reversed.	

CR E5h. KBC Control Register

Location: Address E5h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	DESCRIPTION
7-1	Reversed.	

BIT	READ / WRITE	DESCRIPTION
0	R/W	Keyboard-Mouse short enable. 0: Disable (Default) 1: Enable

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Size. 6 i			
BIT	READ / WRITE	DESCRIPTION	
7	R/W	Mask Watchdog Timer 1 to affect PWROK, then enter Deep_S5 Watchdog Timer chapter has description in detail. 0: Mask enable. (WDT1 not affect PWROK) 1: Mask disable. (WDT1 default affect PWROK)	
6	R/W	Mask Watchdog Timer 1 to affect RSMRST# Watchdog Timer chapter has description in detail. 0: Mask enable. (WDT1 not affect RSMRST#) 1: Mask disable. (WDT1 default affect RSMRST#)	
5-3	Reversed.		
2	R/W	DIS WAKEUP ESPI ESPI virtual wire WAKE# is controlled by SIO glue logic. 0: Disable. 1: Enable.	
1	R/W	Enable Watchdog Timer II.	
0	Reversed.		

23.13 Logical Device E (CIR WAKE-UP)

CR 30h.

Location: Address 00h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved.	
0	R/W	0: CIR Wake-up is inactive. 1: CIR Wake-up is active.

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 00h, 00h
Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select CIR Wake-up Interface I/O base address <100h: FF8h> on 1 byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	These bits select IRQ resource for CIR Wake-up.

-395-

CR E0h.

Location: Address E0h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

BIT	READ/WRITE	DESCRIPTION
7-6	Reserved.	
5-0	R/W	Clock 1M to 40K divider register

CR E1h.

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ/WRITE	READ / WRITE DESCRIPTION	
7-6	Reserved.		
2	R/W Clock 1M to 40K divider number flush. Write 1 then auto-clear.		
1	R/W1C CIR Wake-up clock calibration done status bit		
0	R/W CIR Wake-up clock calibration enable. Cleaned once calibration is done.		

CR E3h. GPIO, RI PSOUT Wake-Up Status Register

Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION
7	R / W-Clear	PSOUT# status of the GP63 event. Write 1 to clear this status.
6	R / W-Clear	PSOUT# status of the GP64 event. Write 1 to clear this status.
5	R / W-Clear	PSOUT# status of the GP44 event. Write 1 to clear this status.
4	R / W-Clear	PSOUT# status of the GP45 event. Write 1 to clear this status.
3	R / W-Clear	PSOUT# status of the RIA# event. Write 1 to clear this status.
2	R / W-Clear	PSOUT# status of the RIB# event. Write 1 to clear this status.
1-0	Reserved.	

CR E4h. GPIO, RI# PSOUT# Wake-Up Control Register

Attribute: Read/Write Power Well: VRTC

Reset by: Battery reset

Default: 00h

BIT	READ / WRITE	DESCRIPTION		
7-2	Reserved			
1	R/W	GPIO and RI# PSOUT# Wake-Up Group Select. 0: GPIO 1: GPIO+RI#		
0	GPIO and RI# PSOUT# Wake-Up Mode Select 0: Sleep 1: Sleep+Deep			

CR E6h.

Location: Address E6h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION		
		Pin86 function selecti		1
7	R/W	LDE_CRE6 [7]	Pin86	
		0	PME#	
		1	GP85	
	R/W	ESPI OUT SEL		
6		0: Pin70 and Pin73 w	ill be input pins	
		1: Pin70 and Pin73 SLP_S5# and SLP		s that drive by eSPI internal signal of
		ESPI SUSWARN# SI	EL	
5	R/W	0: Pin87 will be GP86	or other functions.	
		1: Pin87 will be outpu	it pin that drive by e	eSPI internal signal of SUSWARN#

-397-

BIT	READ / WRITE	DESCRIPTION
4	ESPI S5 / S4 SEL For Version A: If LDE_CRE6[6]=1 0: Pin70 will drive SLP_S5# by eSPI internal signal 1: Pin70 will drive SLP_S4# by eSPI internal signal If LDE_CRE6[6]=0 0: SLP_S5# as internal SLP_S5# logic 1: SLP_S4# as internal SLP_S5# logic For Version B: (The internal SLP_S5# logic is decided by LD16_CR30[6]) 0: Pin70 will drive SLP_S5# by eSPI internal signal 1: Pin70 will drive SLP_S4# by eSPI internal signal	
3	R/W	Enable RIA# for wake up event. 0: Disable RIA# wake up function via PSOUT# (Default) 1: Enable RIA# wake up function via PSOUT#
2	Enable RIB# for wake up event. 0: Disable RIB# wake up function via PSOUT# (Default) 1: Enable RIB# wake up function via PSOUT#	
1	RESETIC Enable bit 1 R/W1C 1: Enable RESETIC 0: Disable (Default) .	
0	R/W 1: Enable bit 1: Enable ATX5VSB 0: Disable (Default)	

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 02h

BIT	READ / WRITE	DESCRIPTION	
7-1	R/W	OOB Destination Slave Address. (Default: 01h for PCH Temperature)	
0	Reserved (always 0)		

CR F1h.

Location: Address F1h Attribute: Read/Write Power Well: VSB Reset by: RSMRST# Default: 0Fh

BIT	READ / WRITE	DESCRIPTION
-----	--------------	-------------

BIT	READ / WRITE	EAD / WRITE DESCRIPTION	
7-1	R/W	OOB Source Slave Address. (Default: 07h)	
0	Reserved (always 1)		

CR F2h.

Location: Address F2h Attribute: Read/Write Power Well: VSB

Reset by: LRESET#(Bit5-4,1-0), RSMRST#(Bit3-2)

Default: 10h

BIT	READ / WRITE	DESCRIPTION		
7-6	R	ESPI OOB polling status: 00: No request 01: Polling CPU Temperature 10: Polling PCH Temperature 11: Reserved		
5-4	R/W	ESPI OOB polling time: 00: 0.5 second 01: 1 second (Default) 10: 2 second 11: 4 second		
3	R/W	Switch to ESPI PCH reading 0: Read SMBus PCH Temperature (Default) 1: Read ESPI PCH Temperature		
2	R/W	Switch to ESPI CPU reading (only for Agent0, Domain0) 0: Read PECI CPU Temperature (Default) 1: Read ESPI CPU Temperature		
1	R/W	ESPI polling PCH Temperature Enable.		
0	R/W	ESPI polling CPU Temperature Enable. (only for Agent 0, Domain0)		

CR F3h.

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 10h

BIT	READ / WRITE	DESCRIPTION
7-5	Reserved.	
4	R/W	Mask eSPI OOB polling under S0ix state (Monitor S0_IDLE#) 0: Disable 1: Enable
3-0	Reserved.	

Publication Release Date: September 12, 2023 Version: 2.4

CR F4h.

Location: Address F4h Attribute: Read/Write Power Well: VSB Reset by: RSMRST Default: 49h

BIT	READ / WRITE	DESCRIPTION			
7-6	Reserved.				
5	R/W	Port81 function enab 0: Disable 1: Enable	ole bit.		
4	Reserved.				
	R/W	Pin19 function selection CR 2F[5] (LPC_ESPI_SEL)	tion LDE_CRF4[3]	Pin 19 w/ PU / PD	Pin19
3		0 (LPC)	0	Х	CLKRUN#
		0 (LPC)	1	Х	GPB0
		1 (eSPI)	х	Pull-Up	ESPI_ALERT_HNSK
		1 (eSPI)	х	Pull-Down	GPB0
2-0	Reserved.				

CR F7h.

Location: Address F7h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 0Bh

BIT	READ / WRITE	DESCRIPTION	
7-5	Reserved.		
4-2	R / W MAXFREQ (Maximum Frequency Supported) 000: 20MHz 001: 25MHz 010: 33MHz (Default) 011: 50MHz Others: Reserved		
1-0	Reserved.		

CR FAh. S0ix Control Register

Location: Address FAh Attribute: Read/Write Power Well: VSB

Reset by: RSMRST Default : 20h

BIT	READ / WRITE			DE	SCRIPTIO	N	
7	Reserved	-					
		Pin87 function selection					
		LDE_CRFA [Bit6]	CR1C[Bit7]	CI	R1A[Bit7]	CR1B[Bit2]	Pin 87
		1	Х		Х	Х	PCH_PSON#
		0	1		X	х	IRRX
		0	0		1	х	CIRRX
_		0	0		0	1	TSIC
6	R/W	0	0		0	0	GP86
		Pin95 function	selection				
		LDE_CRFA[6] CR1D[3:	2]	Pin 95	;	
		1	XX		S0_IDLE	Ξ#	
		0	01		SMI#		
		0	00		OVT#		
		0	1x		GP87		
		Pin16 function selection					
_	D ////	LDE_CRFA [I	Bit5]	Pin′	16		
5	R/W	0	(6A2	OM		
		1	S	LPS	S0#		
4	R/W	PCH_PSON# i 0: Disable 1: Enable (inve		PSO	N# from p	in)	
3	Reserved.						
2	R/W	S0ix channel m 0: Disable 1: Enable	nenchanism e	enak	ole bit.		
1	R/W	S0ix input debo 0: SLPS0# and 1: SLPS0# and	PCH_PSON	l# w			
0	R/W	S0ix Enable bit 0: Disable (Def 1: Enable mode	ault)	unc	tion		

CR FBh.

Location: Address FBh Attribute: Read/Write Power Well: VSB Reset by: RSMRST

Default: 48h

BIT	READ / WRITE	DESCRIPTION
7	Reserved.	
6	R/W	Mask PME# wakeup event under S0ix state (Monitor PSON#) 0: Disable 1: Enable
5	R/W	Mask SMIOVT event under S0ix state (Monitor S0_IDLE) 0: Disable 1: Enable
4	R/W	Isolation UARTA~F and SOUT_P80 pin type (tri-state) under S0ix state (Monitor PSON#) 0: Disbale 1: Enable
3	R/W	Mask PSOUT# wakeup event under S0ix state (Monitor PSON#) 0: Disable 1: Enable
2	R/W	Isolation PRT pin type (tri-state) under S0ix state (Monitor PSON#) 0: Disbale 1: Enable
1	Reserved.	
0	R/W	Mask PECI detection under S0ix state (Monitor SLP_S0#) 0: Disable 1: Enable

23.14 Logical Device F (GPIO)

CR E0h.

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: GP0X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GP0 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR E1h.

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: GP1X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GP1 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR E2h.

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: GP2X_MRST

Default : FFh Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	GP2 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR E3h.

Location: Address E3h Attribute: Read/Write Power Well: VSB Reset by: GP3X MRST

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GP3 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR E4h.

Location: Address E4h Attribute: Read/Write Power Well: VSB Reset by: GP4X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GP4 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR E5h.

Location: Address E5h Attribute: Read/Write Power Well: VSB Reset by: GP5X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GP5 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR E6h.

Location: Address E6h Attribute: Read/Write Power Well: VSB Reset by: GP6X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GP6 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR E7h.

Location: Address E7h Attribute: Read/Write

Power Well: VSB Reset by: GP7X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GP7 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR E8h.

Location: Address E8h Attribute: Read/Write Power Well: VSB Reset by: GP8X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GP8 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR E9h.

Location: Address E9h Attribute: Read/Write Power Well: VSB Reset by: GP9X_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GP9 Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR EAh.

Location: Address EAh Attribute: Read/Write Power Well: VSB Reset by: GPAX_MRST

ВІТ	READ / WRITE	DESCRIPTION
-----	--------------	-------------

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPA Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR EBh.

Location: Address EBh Attribute: Read/Write Power Well: VSB Reset by: GPBX_MRST

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	GPB Push-Pull/OD select 0: Push-Pull 1: Open Drain

CR F0h. I2C Control & Address Register

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 9Dh Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7	R/W	Enable I2C_Slave
6-0	R/W	I2C Address

CR F1h. I2C to 80PORT Control Register

Location: Address F1h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved.	
0	R/W	LPC or I2C to 80PORT switch 0: LPC 1: I2C

CR F2h. I2C to 80PORT Data Register

Location: Address F2h

Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	I2C to 80PORT Data

CR F3h. I2C to 81PORT Data Register

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	I2C to 81PORT Data

CR F4h. GPIO Transition Register

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 40h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-6	R/W	GPO pulse width control bits, default value is 100ms (2'b01) 00: 200ms 01: 100ms 10: 50ms 11: 10ms
5-1	Reserved	
0	R/W	GPIO Transition Enable 0: Disable 1: Enable

-407-

23.15 Logical Device 10 (UARTC)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-1	Reserved.	
0	R/W	The logical device is inactive. The logical device is active.

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 03h, E0h

Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select Serial Port 3 I/O base address <100h: FF8h> on eight-byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 04h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	These bits select IRQ resource for Serial Port 3.

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved.	
1-0	R/W	Bits 1 0 0 0: UART C clock source is 1.8462 MHz (24 MHz / 13). 0 1: Reserved. 1 0: UART C clock source is 24 MHz (24 MHz / 1). 1 1: UART C clock source is 14.769 MHz (24 MHz / 1.625).

CR F2h. UARTC 9bit-mode Config Register

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Size: 8 bits BIT READ / WRITE DESCRIPTION		
ВП	READ / WRITE	DESCRIPTION
7	R/W	 En_auto_RX_ctrl 0: 9bit-mode RX block function will pass all data or address byte and not compare any address byte. 1: 9bit-mode RX block function could only receive address byte and compare the address bytes. (The address matched or not will issue IRQ. Refer to CRF6 description)
6	R/W	En_auto_only_addr_comp 0: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will compare the address byte and update the RX_ctrl Bit automatically. 1: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will only compare the address byte. But the RX_ctrl Bit will not be updated automatically by 9bit-mode RX block function.
5	R/W	RTS_low_time_sel 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 2 bit time before inverting the driving signal.
4	R/W	RS485_RTS_inv_sel 0: Automatic drive RTS# high when receiving data. Automatic drive RTS# low when transmitting data. 1: Automatic drive RTS# low when receiving data. Automatic drive RTS# high when transmitting data.
3	R/W	En_auto_TX_ctrl 0: En_address_byte bit will not be automatic updated to "logic 0" by hardware after TX block sent address byte. 1: En_address_byte bit will be automatic updated to "logic 0" by hardware after TX block sent address byte.
2	R/W	En_auto_RX_ctrl 0: the address byte will be ignored by the receiver. 1: the address byte will be received into RX FIFO by the receiver.

BIT	READ / WRITE	DESCRIPTION		
1	R/W	En_RS485_RTS 0: RS232 driver 1: RS485 driver The 9bit-mode TX block function will drive RTS_L to high when transmit data automatically		
0	R/W	En_9bit_mode 0: normal UART function. 1: enable 9-bit mode function. (9bit-TX block use parity bit as address/Data bit when setting En_9bit_mode = 1'b1.)		

CR F3h. UARTC 9bit-mode Slave Address Register

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: FFh Size: 8 bits

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	Slave address

CR F4h. UARTC 9bit-mode Slave Mask Address Register

Location: Address F4h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7-0	R/W	Slave mask address	

CR F5h. UARTC 9bit-mode Broadcast Address Register

Location: Address F5h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 02h

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Broadcast Address

CR F6h. UARTC 9bit-mode Interrupt Control Register

Location: Address F6h

Publication Release Date: September 12, 2023 Version: 2.4

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION		
7-2	Reserved.			
1	R/W	IRQ_type_sel 0: 9bitemode RX block function will issue an IRQ when receive any address byte. (when IRQ_addr_Enable bit = 1) 1: 9bitemode RX block function will issue an IRQ when only receive the matched address byte. (when IRQ_addr_Enable bit = 1)		
0	R/W	IRQ_addr_Enable 0: Disable UARTC 9bit-mode IRQ output. 1: Enable UARTC 9bit-mode IRQ output.		

CR F7h. UARTC 9bit-mode IRQ Status Register

Location: Address F7h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	En_address_byte. 0: Tx block will send data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Tx block will send address byte. (If enable 9bit mode function CRF2 Bit0=1)
6	R/W	RX_ctrl. 0: Rx block could receive data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Rx block could receive address byte. (If enable 9bit mode function
		CRF2 Bit0=1)
5	R/W	RTS485_no_delay 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 0 bit time before inverting the driving signal. (When RTS485_no_delay CRF7 Bit5=1 and RTS_low_time_sel CRF2 Bit5=1, TX block will keep 0 bit time before inverting the driving signal.)
4-1	Reserved	
0	R	UARTC 9bit-mode Status Bit 0: UARTC 9bit-mode IRQ have not been triggered. 1: UARTC 9bit-mode IRQ have been triggered.

-411-

CR F8h. Extending UARTC Control Register

Location: Address F8h

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	7	6	5	4	3	2	1	0
NAME	fifo_level _mode		Reserved	uartCD_switch _enable	(All s	Reserve	ed set to 0)	Enable_128 bytes_fifo
DEFAULT	0	0	0	0	0	0	0	1

BIT	DESCRIPTION						
7-6	fifo_level_mode:						
	(Also check UFR register B7-6 definition)						
	UFR_		RX FIFO INTERF	RUPT ACTIVE LEV	EL (BYTES)		
	BIT 7	BIT 6	FIFO_LEVEL_ MODE (CRF8_B7:6 = 00)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 01)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 10)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 11)	
	0	0	01	16	80	112	
	0	1	04	32	88	116	
	1	0	08	48	96	120	
	1	1	14	64	104	124	
5	Reserv	ed.					
4	uartCD_switch_enable (Bypass mode) 0: switch disable 1: switch enable						
3-1	Reserved. (All should be set to 0)						
0	0: Disa	ble 128	enable bit: bytes TX and RX bytes TX and RX				

23.16 Logical Device 11 (UARTD)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE DESCRIPTION		
7-1	Reserved.		
0	R/W	The logical device is inactive. The logical device is active.	

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 02h, E0h

Size: 16 bits

BIT	READ / WRITE DESCRIPTION	
7-0	R/W	These two registers select Serial Port 4 I/O base address <100h: FF8h> on eight-byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 03h Size: 8 bits

BIT	READ / WRITE DESCRIPTION		
7-4	Reserved.		
3-0	R / W These bits select IRQ resource for Serial Port 4.		

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	DESCRIPTION		
7-2	Reserved.			
1-0	R/W	Bits 1 0 0 0: UART D clock source is 1.8462 MHz (24 MHz / 13). 0 1: Reserved. 1 0: UART D clock source is 24 MHz (24 MHz / 1). 1 1: UART D clock source is 14.769 MHz (24 MHz / 1.625).		

CR F2h. UARTD 9bit-mode Config Register

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	DESCRIPTION
7	R/W	 En_auto_RX_ctrl 0: 9bit-mode RX block function will pass all data or address byte and not compare any address byte. 1: 9bit-mode RX block function could only receive address byte and compare the address bytes. (The address matched or not will issue IRQ. Refer to CRF6 description)
6	R/W	En_auto_only_addr_comp 0: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will compare the address byte and update the RX_ctrl Bit automatically. 1: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will only compare the address byte. But the RX_ctrl Bit will not be updated automatically by 9bit-mode RX block function.
5	R/W	RTS_low_time_sel 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 2 bit time before inverting the driving signal.
4	R/W	RS485_RTS_inv_sel 0: Automatic drive RTS# high when receiving data. Automatic drive RTS# low when transmitting data. 1: Automatic drive RTS# low when receiving data. Automatic drive RTS# high when transmitting data.
3	R/W	En_auto_TX_ctrl 0: En_address_byte bit will not be automatic updated to "logic 0" by hardware after TX block sent address byte. 1: En_address_byte bit will be automatic updated to "logic 0" by hardware after TX block sent address byte.
2	R/W	En_auto_RX_ctrl 0: the address byte will be ignored by the receiver. 1: the address byte will be received into RX FIFO by the receiver.

BIT	READ / WRITE	DESCRIPTION				
1	R/W	En_RS485_RTS 0: RS232 driver 1: RS485 driver The 9bit-mode TX block function will drive RTS_L to high when transmit data automatically				
0	R/W	En_9bit_mode 0: normal UART function. 1: enable 9-bit mode function. (9bit-TX block use parity bit as address/Data bit when setting En_9bit_mode = 1'b1.)				

CR F3h. UARTD 9bit-mode Slave Address Register

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Slave address

CR F4h. UARTD 9bit-mode Slave Mask Address Register

Location: Address F4h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: FFh

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Slave mask address

CR F5h. UARTD 9bit-mode Broadcast Address Register

Location: Address F5h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 02 Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Broadcast Address

CR F6h. UARTD 9bit-mode Interrupt Control Register

Publication Release Date: September 12, 2023

Version: 2.4

Location: Address F6h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION			
7-2	Reserved.				
1	R / W IRQ_type_sel 0: 9bitemode RX block function will issue an IRQ when receive any address byte. (when IRQ_addr_Enable bit = 1) 1: 9bitemode RX block function will issue an IRQ when only receive the matched address byte. (when IRQ_addr_Enable bit = 1)				
0	R/W	IRQ_addr_Enable 0: Disable UARTD 9bit-mode IRQ output. 1: Enable UARTD 9bit-mode IRQ output.			

CR F7h. UARTD 9bit-mode IRQ Status Register

Location: Address F7h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	DESCRIPTION			
7	R/W	En_address_byte. 0: Tx block will send data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Tx block will send address byte. (If enable 9bit mode function CRF2 Bit0=1)			
6	R/W	RX_ctrl. 0: Rx block could receive data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Rx block could receive address byte. (If enable 9bit mode function CRF2 Bit0=1)			
5	R/W	RTS485_no_delay 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 0 bit time before inverting the driving signal. (When RTS485_no_delay CRF7 Bit5=1 and RTS_low_time_sel CRF2 Bit5=1, TX block will keep 0 bit time before inverting the driving signal.)			
4-1	Reserved				
0	R	UARTD 9bit-mode Status Bit 0: UARTD 9bit-mode IRQ have not been triggered. 1: UARTD 9bit-mode IRQ have been triggered.			

CR F8h. Extending UARTD Control Register

Location: Address F8h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	7	6	5	4	3	2	1	0
NAME	fifo_level _mode		Reser	ved	(All	Reserved should be		Enable_128 bytes_fifo
DEFAULT	0	0	0	0	0	0	0	1

BIT				DESCRIPTI	ON				
7-6	fifo_level_mode: (Also check UFR register Bit7-6 definition)								
			RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)						
	BIT 7	BIT 6	FIFO_LEVEL_ MODE (CRF8_B7:6 = 00)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 01)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 10)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 11)			
	0	0	01	16	80	112			
	0	1	04	32	88	116			
	1	0	08	48	96	120			
	1 1 14 64 104 124								
5-4	Reserved.								
3-1	Reserved. (All should be set to 0)								
0	Extending fifo enable bit: 0: Disable 128 bytes TX and RX FIFO. 1: Enable 128 bytes TX and RX FIFO.								

23.17 Logical Device 12 (UARTE)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE DESCRIPTION			
7-1	Reserved.			
0	R / W 0: The logical device is inactive. 1: The logical device is active.			

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 03h, E8h

Size: 16 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	These two registers select Serial Port 5 I/O base address <100h: FF8h> on eight-byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 04h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	Reserved.	
3-0	R/W	These bits select IRQ resource for Serial Port 5.

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	AD / WRITE DESCRIPTION		
7-2	Reserved.			
1-0	R/W	Bits 1 0 0 0: UART E clock source is 1.8462 MHz (24 MHz / 13). 0 1: Reserved. 1 0: UART E clock source is 24 MHz (24 MHz / 1). 1 1: UART E clock source is 14.769 MHz (24 MHz / 1.625).		

CR F2h. UARTE 9bit-mode Config Register

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Size: 8	DILS	
BIT	READ / WRITE	DESCRIPTION
7	R/W	 En_auto_RX_ctrl 0: 9bit-mode RX block function will pass all data or address byte and not compare any address byte. 1: 9bit-mode RX block function could only receive address byte and compare the address bytes. (The address matched or not will issue IRQ. Refer to CRF6 description)
6	R/W	En_auto_only_addr_comp 0: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will compare the address byte and update the RX_ctrl Bit automatically. 1: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will only compare the address byte. But the RX_ctrl Bit will not be updated automatically by 9bit-mode RX block function.
5	R/W	RTS_low_time_sel 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 2 bit time before inverting the driving signal.
4	R/W	RS485_RTS_inv_sel 0: Automatic drive RTS# high when receiving data. Automatic drive RTS# low when transmitting data. 1: Automatic drive RTS# low when receiving data. Automatic drive RTS# high when transmitting data.
3	R/W	En_auto_TX_ctrl 0: En_address_byte bit will not be automatic updated to "logic 0" by hardware after TX block sent address byte. 1: En_address_byte bit will be automatic updated to "logic 0" by hardware after TX block sent address byte.
2	R/W	En_auto_RX_ctrl 0: the address byte will be ignored by the receiver. 1: the address byte will be received into RX FIFO by the receiver.

BIT	READ / WRITE	DESCRIPTION				
1	R/W	En_RS485_RTS 0: RS232 driver 1: RS485 driver The 9bit-mode TX block function will drive RTS_L to high when transmit data automatically				
0	R/W	En_9bit_mode 0: normal UART function. 1: enable 9-bit mode function. (9bit-TX block use parity bit as address/Data bit when setting En_9bit_mode = 1'b1.)				

CR F3h. UARTE 9bit-mode Slave Address Register

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Slave address

CR F4h. UARTE 9bit-mode Slave Mask Address Register

Location: Address F4h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Slave mask address

CR F5h. UARTE 9bit-mode Broadcast Address Register

Location: Address F5h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default: 02h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Broadcast Address

-420-

CR F6h. UARTE 9bit-mode Interrupt Control Register

Publication Release Date: September 12, 2023

Version: 2.4

Location: Address F6h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7-2	Reserved.		
1	R/W	R / W IRQ_type_sel 0: 9bitemode RX block function will issue an IRQ when receive any address byte. (when IRQ_addr_Enable bit = 1) 1: 9bitemode RX block function will issue an IRQ when only receive the matched address byte. (when IRQ_addr_Enable bit = 1)	
0	R/W	IRQ_addr_Enable 0: Disable UARTE 9bit-mode IRQ output. 1: Enable UARTE 9bit-mode IRQ output.	

CR F7h. UARTE 9bit-mode IRQ Status Register

Location: Address F7h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	DESCRIPTION
7	R/W	En_address_byte. 0: Tx block will send data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Tx block will send address byte. (If enable 9bit mode function CRF2 Bit0=1)
6	RX_ctrl. 0: Rx block could receive data byte. (If enable 9bit mode function 0 Bit0=1) 1: Rx block could receive address byte. (If enable 9bit mode fun CRF2 Bit0=1)	
5	R/W	RTS485_no_delay 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 0 bit time before inverting the driving signal. (When RTS485_no_delay CRF7 Bit5=1 and RTS_low_time_sel CRF2 Bit5=1, TX block will keep 0 bit time before inverting the driving signal.)
4-1	Reserved.	
0	R	UARTE 9bit-mode Status Bit 0: UARTE 9bit-mode IRQ have not been triggered. 1: UARTE 9bit-mode IRQ have been triggered.

Location: Address F8h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	7	6	5	4	3	2	1	0
NAME	_	level ode	Reserved	uartEF_switch _enable	(All s	Reserve	ed set to 0)	Enable_128 bytes_fifo
DEFAULT	0	0	0	0	0	0	0	1

BIT				DESCRIPT	ION			
7-6	fifo_level_mode: (Also check UFR register B7-6 definition)							
			RX FIFO INTER	RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)				
	BIT 7	BIT 6	FIFO_LEVEL_ MODE (CRF8_B7:6 = 00)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 01)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 10)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 11)		
	0	0	01	16	80	112		
	0	1	04	32	88	116		
	1	0	08	48	96	120		
	1	1	14	64	104	124		
5	Reserv	ed.					-	
4	uartEF_switch_enable (Bypass mode) 0: switch disable 1: switch enable							
3-1	Reserved. (All should be set to 0)							
0	0: Disa	ble 128	enable bit: bytes TX and RX bytes TX and RX					

23.18 Logical Device 13 (UARTF)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE DESCRIPTION		
7~1	Reserved.		
0	R / W 0: The logical device is inactive. 1: The logical device is active.		

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write
Power Well: VSB
Reset by: LRESET#
Default: 02h, E8h
Size: 16 bits

BIT	READ / WRITE DESCRIPTION	
7-0	R/W	These two registers select Serial Port 6 I/O base address <100h: FF8h> on eight-byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 03h Size: 8 bits

BIT	READ / WRITE DESCRIPTION			
7-4	Reserved.			
3-0	R / W These bits select IRQ resource for Serial Port 6.			

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	DESCRIPTION				
7-2	Reserved.	eserved.				
1-0	R/W	Bits 1 0 0 0: UART F clock source is 1.8462 MHz (24 MHz / 13). 0 1: Reserved. 1 0: UART F clock source is 24 MHz (24 MHz / 1). 1 1: UART F clock source is 14.769 MHz (24 MHz / 1.625).				

CR F2h. UARTF 9bit-mode Config Register

Location: Address F2h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	DESCRIPTION
7	R/W	 En_auto_RX_ctrl 0: 9bit-mode RX block function will pass all data or address byte and not compare any address byte. 1: 9bit-mode RX block function could only receive address byte and compare the address bytes. (The address matched or not will issue IRQ. Refer to CRF6 description)
6	R/W	En_auto_only_addr_comp 0: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will compare the address byte and update the RX_ctrl Bit automatically. 1: When setting en_auto_RX_ctrl =1'b1, 9bit-mode RX block function will only compare the address byte. But the RX_ctrl Bit will not be updated automatically by 9bit-mode RX block function.
5	R/W	RTS_low_time_sel 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 2 bit time before inverting the driving signal.
4	R/W	RS485_RTS_inv_sel 0: Automatic drive RTS# high when receiving data. Automatic drive RTS# low when transmitting data. 1: Automatic drive RTS# low when receiving data. Automatic drive RTS# high when transmitting data.
3	R/W	En_auto_TX_ctrl 0: En_address_byte bit will not be automatic updated to "logic 0" by hardware after TX block sent address byte. 1: En_address_byte bit will be automatic updated to "logic 0" by hardware after TX block sent address byte.
2	R/W	En_auto_RX_ctrl 0: the address byte will be ignored by the receiver. 1: the address byte will be received into RX FIFO by the receiver.

BIT	READ / WRITE	DESCRIPTION				
1	R/W	En_RS485_RTS 0: RS232 driver 1: RS485 driver The 9bit-mode TX block function will drive RTS_L to high when transmit data automatically				
0	R/W	En_9bit_mode 0: normal UART function. 1: enable 9-bit mode function. (9bit-TX block use parity bit as address/Data bit when setting En_9bit_mode = 1'b1.)				

CR F3h. UARTF 9bit-mode Slave Address Register

Location: Address F3h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Slave address

CR F4h. UARTF 9bit-mode Slave Mask Address Register

Location: Address F4h Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: FFh Size: 8 bits

BIT	READ/WRITE	DESCRIPTION	
7-0	R/W	Slave mask address	

CR F5h. UARTF 9bit-mode Broadcast Address Register

Location: Address F5h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 02h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION	
7-0	R/W	Broadcast Address	

CR F6h. UARTF 9bit-mode Interrupt Control Register

Location: Address F6h

Publication Release Date: September 12, 2023

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-2	Reserved.	
1	R / W IRQ_type_sel 0: 9bitemode RX block function will issue an IRQ when receive any address byte. (when IRQ_addr_Enable bit = 1) 1: 9bitemode RX block function will issue an IRQ when only receive to matched address byte. (when IRQ_addr_Enable bit = 1)	
0	R/W	IRQ_addr_Enable 0: Disable UARTF 9bit-mode IRQ output. 1: Enable UARTF 9bit-mode IRQ output.

CR F7h. UARTF 9bit-mode IRQ Status Register

Location: Address F7h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION			
7	R/W	En_address_byte. 0: Tx block will send data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Tx block will send address byte. (If enable 9bit mode function CRF2 Bit0=1)			
6	R/W	RX_ctrl. 0: Rx block could receive data byte. (If enable 9bit mode function CRF2 Bit0=1) 1: Rx block could receive address byte. (If enable 9bit mode function CRF2 Bit0=1)			
5	R/W	RTS485_no_delay 0: TX block will keep 1 bit time before inverting the driving signal. 1: TX block will keep 0 bit time before inverting the driving signal. (When RTS485_no_delay CRF7 Bit5=1 and RTS_low_time_sel CRF2 Bit5=1, TX block will keep 0 bit time before inverting the driving signal.)			
4-1	Reserved				
0	R	UARTF 9bit-mode Status Bit 0: UARTF 9bit-mode IRQ have not been triggered. 1: UARTF 9bit-mode IRQ have been triggered.			

CR F8h. Extending UARTF Control Register

Location: Address F8h

Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	7	6	5	4	3	2	1	0
NAME	fifo_level _mode		Reser	ved	(All	Reserved should be		Enable_128 bytes_fifo
DEFAULT	0	0	0	0	0	0	0	1

BIT				DESCRIPT	ION				
7-6	fifo_level_mode: (Also check UFR register B7-6 definition)								
			RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)						
	BIT 7	BIT 6	FIFO_LEVEL_ MODE (CRF8_B7:6 = 00)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 01)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 10)	FIFO_LEVEL_ MODE (CRF8_B7:6 = 11)			
	0	0	01	16	80	112			
	0	1	04	32	88	116			
	1	0	08	48	96	120			
	1 1 14 64 104 124					124			
5-4	Reserv	/ed.							
3-1	Reserv	Reserved. (All should be set to 0)							
0	Extending fifo enable bit: 0: Disable 128 bytes TX and RX FIFO. 1: Enable 128 bytes TX and RX FIFO.								

23.19 Logical Device 14 (PORT80, IR)

CR 30h.

Location: Address 30h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION		
7-1	Reserved.	Reserved.		
0	R/W	0: IR is inactive. 1: IR is active.		

CR 60h, 61h.

Location: Address 60h, 61h

Attribute: Read/Write Power Well: VSB Reset by: LRESET# Default: 00h, 00h Size: 16 bits

BIT READ / WRITE DESCRIPTION

7-0 R / W These two registers select IR I/O base address <100h: FF8h> on eight-byte boundary.

CR 70h.

Location: Address 70h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	TE DESCRIPTION				
7-4	Reserved.					
3-0	R / W These bits select IRQ resource for IR.					

CR E0h. PORT80 UART Control Register

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

BIT	READ / WRITE	DESCRIPTION				
7	R/W	EN (Transmit enable)				
6-5	Reserved.					
4	R/W	PARE (Parity enable)				
3	R/W	PARS (Parity Selection) 0: odd parity 1: even parity				
2	R/W	STPS (Stop bit length selection) 1: 1 stop bit 2: 2 stop bits				
1	R/W	CHAS (Character length selection) 0: 8 bits 1: 7bits				
0	Reserved.					

CR E1h. PORT80 UART Status Register

Location: Address E1h Attribute: Read Only Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION				
7-2	Reserved.					
1	R	R TD (Transmit done status) When UART finish transmit, it would be 1 and auto clear by hardware				
0	R	TBF (Transmit buffer full flag) 0: UART is idle 1: UART is transmitting				

CR E2h. PORT80 UART Baud Rate Generator High Byte

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION			
7-0	R/W	BRGL (Baud rate generator high byte)			

CR E3h. PORT80 UART Baud Rate Generator Low Byte

Location: Address E3h Attribute: Read/Write

Publication Release Date: September 12, 2023

Power Well: VSB Reset by: LRESET#

Default : 10h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION			
7-0	R/W	BRGL (Baud rate generator low byte) Baud Rate = 2MHz / ({BRGH, BRGL} + 1)			

CR E4h. PORT80 UART Transmit Buffer

Location: Address E4h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION			
7-0	R/W	UARTBUF (UART Transmit buffer)			

CR F0h.

Location: Address F0h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ/WRITE	DESCRIPTION				
7-2	Reserved.					
1-0	R/W	Bits 1 0 0 0: IR clock source is 1.8462 MHz (24 MHz / 13). 0 1: Reserved. 1 0: IR clock source is 24 MHz (24 MHz / 1). 1 1: IR clock source is 14.769 MHz (24 MHz / 1.625).				

CR F1h.

Location: Address F1h Attribute: Read/Write Power Well: VSB Reset by: LRESET#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved.	

-430-

BIT	READ/WRITE	DESCRIPTION			
5-3	R/W	IRMODE => IR function mode selection. See the table below.			
2	R/W	IR half / full duplex function selection. 0: IR function is Full Duplex. 1: IR function is Half Duplex.			
1	R/W	0: IRTX pin of IR function in normal condition. 1: Inverse IRTX pin of IR function.			
0	R/W	IRRX pin of IR function in normal condition. Inverse IRRX pin of IR function.			

IR MODE	IR FUNCTION	IRTX	IRRX
00X	Disable	Tri-state	High
010*	IrDA	Active pulse 1.6 μS	Demodulation into IRRX
011*	IrDA	Active pulse 3/16 bit time	Demodulation into IRRX
100	ASK-IR	Inverting IRTX pin	Routed to IRRX
101	ASK-IR	Inverting IRTX & 500 KHZ clock	Routed to IRRX
110	ASK-IR	Inverting IRTX	Demodulation into IRRX
111*	ASK-IR	Inverting IRTX & 500 KHZ clock	Demodulation into IRRX

Note: The notation is normal mode in the IR function.

23.20 Logical Device 15 (FADING LED)

CR E0h. Fading Maximum Duty Cycle Value Register

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : FFh Size: 8 bits

BIT	READ / WRITE	DESCRIPTION						
7-0	R/W	enable, C combination below. Whe frequency Led frequency LED	reference RE5 bit[0] on of LED nen solid L control by ency before num duty c	, LI fre ED CR e div	ED frequency quency select mode, this by E8. vider select = 2	select, CRE5 bit[1] and fading LED select bit has higher priority, the t and fading LED enable describe te is duty cycle control register, and 1 and fading led enable = 1 is fading to 0 or fading led enable = 0 is solid		
		0x01	1/255	=	0.3%			
		0x02	2/255	=	0.7%			
		0x40 64/255 = 25.1%						
		0xFF	0xFF 255/255 = 100%					

CR E1h. Fading Middle Duty Cycle Value Register

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 3Fh Size: 8 bits

BIT	READ / WRITE	READ / WRITE DESCRIPTION			
7-0	R/W	Fading_led_midval This byte is the turning point duty cycle value between minimum and maximum duty cycle value.			

CR E2h. Fading Minimum Duty Cycle Value Register

Location: Address E2h Attribute: Read/Write Power Well: VSB

Publication Release Date: September 12, 2023

Version: 2.4

Reset by: RSMRST#

Default : 01h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	Fading_led_minval This byte is the minimum duty cycle value.

CR E3h. Fading Increase Duty Cycle Value Register

Location: Address E3h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 11h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	R/W	Fading_led_duty_inc_h The increased duty cycle value between the turning point and the maximum duty cycle value.
3-0	R/W	Fading_led_duty_inc_l The increased duty cycle value between the minimum duty cycle value and turning point.

CR E4h. Fading Decrease Duty Cycle Value Register

Location: Address E4h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 11h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-4	R/W	Fading_led_duty_dec_h The decreased duty cycle value between the maximum duty cycle value and the turning point.
3-0	R/W	Fading_led_duty_dec_l The decreased duty cycle value between the turning point and the minimum duty cycle value.

CR E5h. Fading Configure Register

Location: Address E5h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

BIT	READ / WRITE	DESCRIPTION
7-4	R/W	Fading_led_prgval Repeat each duty cycle value for a few times.

BIT	READ / WRITE		DESCRIPTION
3-2	R/W	Fading LED extend enable to 00: No extend. 01: Only extend the minimur	
		10: Only extend the maximu	
1	R/W		d when this bit select 1 (1kHz). When this bit to solid LED mode regardless Fading LED
0	R/W	Fading LED enable 0: Solid LED 1: Fading LED LD15 CRE5 bit[1:0] 00 01 10	Led mode Solid LED and 4Hz before divider Solid LED and 4Hz before divider Solid LED and 1kHz before divider
		11	Fading LED and 1kHz before divider

CR E6h. Fading Light extend Register

Location: Address E6h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-0	R/W	This byte is the time for extend the maximum duty cycle value. The extend time reference to fading LED frequency: Extend time = (extend value * 4) / fading LED frequency

CR E7h. Fading Dark extend Register

Location: Address E7h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

BIT	READ/WRITE	DESCRIPTION
7-0	R/W	This byte is the time for extend the minimum duty cycle value. The extend time reference to fading LED frequency: Extend time = (extend value * 4) / fading LED frequency

CR E8h. Fading Frequency Divide Register

Location: Address E8h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 01h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7- 0	READ / WRITE	Fading LED frequency divide factor when fading frequency before divider select = 1 (It can select fading or solid mode depend on LD15 CRE5 bit0) LED frequency
		0x07: Output low others High-z

CR E9h. Suspend LED S5 Enable Register

Location: Address E9h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default : 00h Size: 8 bits

BIT	READ / WRITE DESCRIPTION	
7-1	Reserved.	
0	R/W	SUSLED only follows fading LED in S5 state 0: SUSLED works in S5, S3 and S0 state. 1: SUSLED only works in S5 state.

-435-

23.21 Logical Device 16 (DEEP SLEEP)

CR 30h. Deep Sleep configuration register

Location: Address 30h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default : A0h Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7	R/W	Reserved
6	R/W	Interal SLP_S5# logic seclection (For ESPI mode / Version B only) 0: Interal SLP_S5# logic is driven by eSPI internal signal of SLP_S5#. 1: Interal SLP_S5# logic is driven by eSPI internal signal of SLP_S4#.
5-1	R/W	Reserved
0	R/W	Deep S5 Enable Set to 0, If SLP_S5# state, will not enter Deep S5 state. Set to 1, If SLP_S5# state, will enter Deep S5 state.

CR E0h. Deep Sleep wake up PSOUT# delay time

Location: Address E0h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 20h (Default: 512ms)

Size: 8 bits

BIT	READ / WRITE	DESCRIPTION
7-6	Reserved.	
5-0	R/W	Deep Sleep wake up PSOUT# delay time. When system wake up from deep sleep state, IO will issue a low pulse via PSOUT# after SYS_3VSB and wait a delay time. DELAY TIME = (Setting Value) * 16ms Example : maximum delay time = (3F)hex * 16ms = 1008ms

CR E1h. Deep Sleep wake up PSOUT# pulse width

Location: Address E1h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 04h (Default: 128 ms)

Size: 8 bits

ı			
	BIT	READ / WRITE	DESCRIPTION

BIT	READ / WRITE	DESCRIPTION
7	R/W	Deep_S5_2 signal status. 0: Deep_S5_2 signal always keep low. 1: Deep_S5_2 signal follow Deep_S5_1 signal.
6	Reserved.	
5	R/W	SUSLED Enable 0: Disable (default and output low) 1: Enable
4	Reserved.	
3-0	R/W	Deep Sleep wake up PSOUT# pulse width. When system wake up from deep sleep state, IO will issue a low pulse via PSOUT# Pulse Width = (Setting Value) * 32ms Example : maximum pulse width = (F) _{hex} * 32ms = 480ms

CR E2h. Deep Sleep Delay Time Control

Location: Address E2h Attribute: Read/Write Power Well: VSB Reset by: RSMRST#

Default: 05h (Default: 5 sec)

Size: 8 bits

BIT	READ/WRITE	DESCRIPTION				
7 R/W		C: The unit of deep sleep delay time is second. I: The unit of deep sleep delay time is Minute.				
		Deep Sleep Delay Time Control.				
6-0	R/W	When system leaves S0 State, IO will wait a delay time before entering into Deep Sleep State. Example: maximum delay time = 127 second/minute				

CR E3h. WDT1 to Deep Sleep Delay Time Control

Location: Address E3h Attribute: Read/Write Power Well: VRTC Reset by: Battery reset

Default: 01h

BIT	READ / WRITE	DESCRIPTION				
7-3	Reserved					
2	R/W	Watchdog Timer 1 wake up auto mode. 0: SIO will not wake up system after RSMRST# release 1: SIO will wake up system after RSMRST# release.				

Publication Release Date: September 12, 2023 Version: 2.4

BIT	READ / WRITE	DESCRIPTION
1-0	R/W	Deep Sleep Watchdog Timer 1 Delay Time Control. When system will enter Deeps5 by watchdog timer 1, SIO will set a delay time to control. Delay time: 2, 4, 6, 8 sec = register: 0, 1, 2, 3

-438-

Publication Release Date: September 12, 2023 Version: 2.4

24. SPECIFATIONS

24.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	RATING	UNIT
3VCC	Power Supply Voltage (3.3V)	-0.3 to 3.6	V
VI	Input Voltage	-0.3 to 3Vcc+0.3	V
VI	Input Voltage (5V tolerance)	-0.3 to 5.5	V
TA	Operating Temperature	-40 to +85	°C
TSTG	Storage Temperature	-55 to +150	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

24.2 DC CHARACTERISTICS

(T_A = 0°C to +70°C, V_{DD} = 3.3V ± 5%, V_{SS} = 0V)

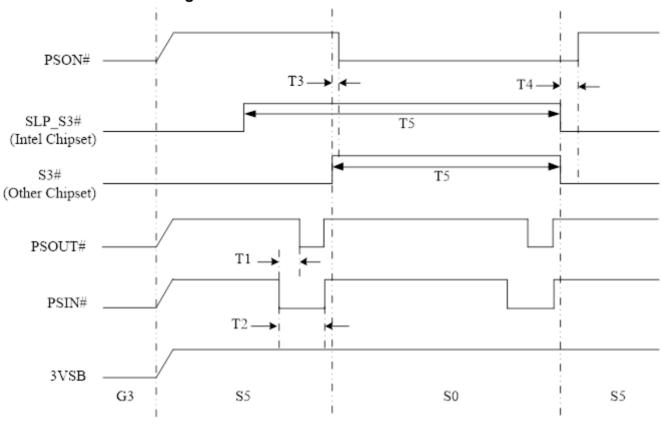
PARAMETER	SYM	MIN	TYP	MAX.	UNIT	CONDITIONS		
Battery Quiescent Current	IBAT			2.4	μΑ	VBAT = 2.5 V		
ACPI Stand-by Power Supply Quiescent Current	IVSB			8.0	mA	VSB = 3.3 V, All ACPI pins are not connected.		
VSB Quiescent Current	IVSB			25	mA	VCC = 3.3 V VSB (AVSB)= 3.3 V		
VCC Quiescent Current	Ivcc			1	mA	LRESET = High CASEOPEN Pull-Up to VBAT		
Vtt Quiescent Current	IVTT			1	mA	VCC = 3.3 V VSB (AVSB)= 3.3 V VTT = 1.2V LRESET = High CASEOPEN Pull-Up to VBAT		
AIN – Analog input								
AOUT – Analog output								
In _{tp3} – 3.3V TTL-level input pin								
Input Low Voltage	VIL			0.8	V			
Input High Voltage	VIH	2.0			V			

PARAMETER	SYM	MIN	TYP	MAX.	UNIT	CONDITIONS
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3V
Input Low Leakage	ILIL			-10	μА	VIN = 0 V
In _{tsp3} – 3.3V TTL-level, Schmitt-trigger in	nput pin		<u> </u>			
Input Low Threshold Voltage	Vt-			0.8	V	Vcc = 3.3 V
Input High Threshold Voltage	Vt+	2.0			V	Vcc = 3.3 V
Input High Leakage	ILIH			+10	μА	VIN = 3.3 V
Input Low Leakage	ILIL			-10	μА	VIN = 0 V
In _{sp318} – 3.3V/1.8V Schmitt-trigger input	pin					
Input Low Threshold Voltage	Vt-			0.8	V	
Input High Threshold Voltage	Vt+	1.1			V	
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3V
Input Low Leakage	ILIL			-10	μΑ	VIN = 0 V
In _{tp318} – 3.3V/1.8V input pin						
Input Low Voltage	VIL			0.8	V	
Input High Voltage	ViH	1.5			V	
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3V
Input Low Leakage	ILIL			-10	μΑ	VIN = 0 V
In _{gp5} – 5V GTL-level input pin	'		1			•
Input Low Voltage	VIL		0.72		V	
Input High Voltage	VIH		0.72		V	
Input High Leakage	ILIH			+10	μА	VIN = 3.3V
Input Low Leakage	ILIL			-10	μΑ	VIN = 0 V
In _{tp5} – 5V TTL-level input pin						
Input Low Voltage	VIL			0.8	V	
Input High Voltage	VIH	2.0			V	
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3V
Input Low Leakage	ILIL			-10	μА	VIN = 0 V
Intscup5 - 5V TTL-level, Schmitt-trigger i	nput buffe	er with cor	ntrollable	pull-up		I
Input Low Threshold Voltage	Vt-	0.5	0.8	1.1	V	Vcc = 3.3 V
Input High Threshold Voltage	Vt+	1.6	2.0	2.4	V	Vcc = 3.3 V
Hysteresis	VTH	0.5	1.2		V	VCC = 3.3 V
Input High Leakage	ILIH			+10	μΑ	VIN = 3.3 V
Input Low Leakage	ILIL			-10	μΑ	VIN = 0 V
In _{tsp5} – 5V TTL-level, Schmitt-trigger inp	ut pin		<u>'</u>		•	•
Input Low Threshold Voltage	Vt-	0.5	0.8	1.1	V	Vcc = 3.3 V

PARAMETER	SYM	MIN	TYP	MAX.	UNIT	CONDITIONS
Input High Threshold Voltage	Vt+	1.6	2.0	2.4	V	Vcc = 3.3 V
Hysteresis	VTH	0.5	1.2		V	Vcc = 3.3 V
Input High Leakage	ILIH			+10	μА	VIN = 3.3 V
Input Low Leakage	ILIL			-10	μА	VIN = 0 V
In _{tdp5} – 5V TTL-level input pin with intern	nal pull-c	lown resisto	or			
Input Low Voltage	VIL			0.8	V	
Input High Voltage	VIH	2.0			V	
Input High Leakage	ILIH			+10	μА	VIN = 3.3V
Input Low Leakage	ILIL			-10	μА	VIN = 0 V
O8 - Output pin with 8mA source-sink ca	apability					
Output Low Voltage	Vol			0.4	V	IOL = 8 mA
Output High Voltage	Vон	2.4			V	Iон = -8 mA
OD8 - Open-drain output pin with 8mA s	ink capa	bility				
Output Low Voltage	VOL			0.4	V	IOL = 8 mA
O12 - Output pin with 12mA source-sink	capabili	ty				
Output Low Voltage	Vol			0.4	V	IOL = 12 mA
Output High Voltage	Vон	2.4			V	Iон = -12 mA
OD12 - Open-drain output pin with 12mA	sink ca	pability				
Output Low Voltage	Vol			0.4	V	IOL = 12 mA
O24 - Output pin with 24mA source-sink	capabili	ty				
Output Low Voltage	Vol			0.4	V	IOL = 24 mA
Output High Voltage	Voн	2.4			V	Iон = -24 mA
OD24 - Open-drain output pin with 24mA	sink ca	pability				
Output Low Voltage	Vol			0.4	V	IOL = 24 mA
O48 - Output pin with 48mA source-sink	capabili	ty				
Output Low Voltage	Vol			0.4	V	IOL = 48 mA
Output High Voltage	Vон	2.4			V	IOH = -48 mA
OD48 - Open-drain output pin with 48mA	sink ca	pability				
Output Low Voltage	Vol			0.4	V	IOL = 48 mA
I/O_{V3} – Bi-direction pin with source capa	bility of	6 mA and si	nk capa	bility of 1 n	nA for II	NTEL® PECI
Input Low Voltage	VIL	0.275*V _{tt}		0.5*V _{tt}	V	
Input High Voltage	ViH	0.55*V _{tt}		0.725*V _{tt}	V	
Output Low Voltage	VoL			0.25*V _{tt}	V	
Output High Voltage	Voн	0.75*V _{tt}			V	
		1	1	1	1	1

PARAMETER	SYM	MIN	TYP	MAX.	UNIT	CONDITIONS		
O12cu – Output pin 12mA source-sink capability with controllable pull-up								
Output Low Voltage	Vol			0.4	V	IOL = 12 mA		
Output High Voltage	Vон	2.4			V	IOH = -12 mA		
OD12cu – Open-drain 12mA sink capability output pin with controllable pull-up								
Output Low Voltage	Vol			0.4	V	IOL = 12 mA		
O8 - Output pin with 8mA source-sink ca	pability							
Output Low Voltage	Vol			0.4	V	IOL = 8 mA		
Output High Voltage	Vон	2.4			V	Iон = -8 mA		
OX8 - Output pin with 8mA source-sink c	apability	/						
Output Low Voltage	Vol			0.4	V	IOL = 8 mA		
Output High Voltage	Vон	2.4			V	IOH = -8 mA, LPC_ESPI_V DD=3.3V		
Output High Voltage	Vон	1.31			V	IOH = -8 mA, LPC_ESPI_V DD=1.8V		
OD8 - Open-drain output pin with 8mA si	nk capa	bility						
Output Low Voltage	Vol			0.4	V	IOL = 8 mA		
ODX8 - Output pin with 8mA source-sink	capabil	ity	•	•	•			
Output Low Voltage	VOL			0.4	V	IOL = 8 mA		

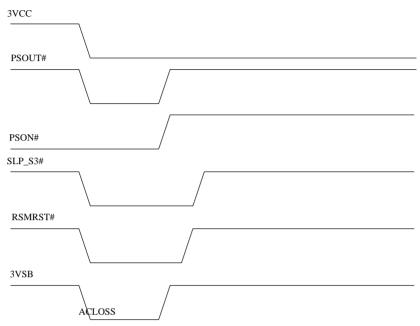
-442-


Publication Release Date: September 12, 2023

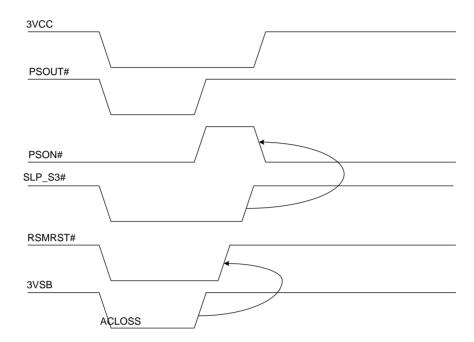
Version: 2.4

25. AC CHARACTERISTICS

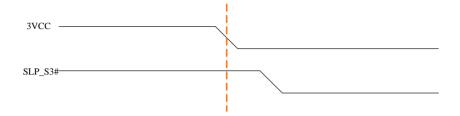
25.1 Power On / Off Timing

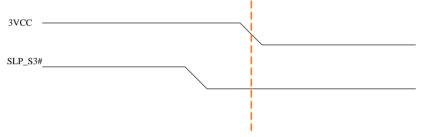


	T1	T2	Т3	T4	T5
IDEAL TIMING	64ms	Over 64ms at least	< 10ns	32ms	Over 32ms at least


25.2 AC Power Failure Resume Timing

i. Logical Device A, CR [E4h] bits [6:5] =00 means "OFF" state ("OFF" means the system is always turned off after the AC power loss recovered.)


ii. Logical Device A, CR [E4h] bits [6:5]=01 means "ON" state. ("ON" means the system is always turned on after AC power loss recovered.)



** What's the definition of former state at AC power failure?

1) The previous state is "ON" VCC falls to 2.6V and SLP S3# keeps at VIH 2.0V

2) The previous state is "OFF" VCC fall to 2.6V and SLP S3# keeps at VIL 0.8V

SLP_S3# was implemented 30mS de-bounce internally, so the interval between VCC and SLP_S3# must be over 30mS.

To ensure that VCC does not fall faster than VSB in various ATX Power Supplies, the NCT6122D / NCT6126D adds the option of "user define mode" for the pre-defined state before AC power failure. BIOS can set the predefined state for the system to be "On" or "Off". According to this setting, the system chooses the state after the AC power recovery.

Please refer to the descriptions of bit 6-5 of CR E4h and bit 4 of CR E6h in Logical Device A.

CR E4h

BIT	READ/WRITE	DESCRIPTION
6-5	R/W	Power-loss control bits => (VBAT) 00: System always turns off when it returns from power-loss state. 01: System always turns on when it returns from power-loss state. 10: System turns off / on when it returns from power-loss state depending on the state before the power loss. 11: User defines the resuming state before power loss.(refer to Logical Device A, CRE6[4])

CR E6h

BIT	READ/WRITE	DESCRIPTION
4	R/W	Power loss Last State Flag. (VBAT) 0: ON 1: OFF

-446-

25.3 LPC Timing

PCI_CLK AC Specification								
Symbol	Parameter	MIN	Typical	MAX	Units			
Tcyc	PCI_CLK cycle	30		42	ns			
T _{per}	PCI_CLK period	35	50	65	%			

LPC AC Specification (24MHz / 3.3V)								
Symbol	Parameter	MIN	Typical	MAX	Units			
T _C O	Tx Rising Clock to Data Output Delay	3.3		7.8	ns			
Tsu	Rx Data Setup Time to CLK Rising Edge	10.4			ns			
T _{HD}	Rx Data Hold Time to CLK Rising Edge	0			ns			
T _R	Input Rise Time (0.8V to 2.0V)			8.4	ns			
T _F	Input Fall Time (2.0V to 0.8V)			8.4	ns			

LPC AC Specification (33MHz / 3.3V)								
Symbol	Parameter	MIN	Typical	MAX	Units			
Tco	Tx Rising Clock to Data Output Delay	3.3		7.8	ns			
Tsu	Rx Data Setup Time to CLK Rising Edge	8			ns			
T _{HD}	Rx Data Hold Time to CLK Rising Edge	0			ns			
T _R	Input Rise Time(0.8V to 2.0V)			6	ns			
T _F	Input Fall Time(2.0V to 0.8V)			6	ns			

25.4 eSPI Interface Timing

The eSPI interface meets the eSPI specification for 33 MHz.

Symbol	Figure	Description	Conditions	S	Min	Тур	Max	Units
		(Clock (Input) Requireme	ents				
t _{CK}	<u>25-4-1</u>	ESPI_CLK Cycle Time	From RE to RE		30¹			ns
tскн	<u>25-4-1</u>	ESPI_CLK High Time	From V _{IH} to V _{IH} , at t _{CK} =	= 30 ns	0.4 * tcк ²			_
tckl	<u>25-4-1</u>	ESPI_CLK Low Time	From V _{IL} to V _{IL} , at t _{CK} =	30 ns	0.4 * tcк ²			_
			Signal Timing					
t _{DVCH}	25-4-2	ESPI_IO[3:0] Input Setup Time	Before RE of ESPI_CL	K	7 ²			ns
tchdx	25-4-2	ESPI_IO[3:0] Input Hold Time	After RE of ESPI_CLK		7 ²			ns
t _{CLQV}	<u>25-4-2,</u> <u>25-4-3</u>	ESPI_IO[3:0] Output Valid Time	After FE of ESPI_CLK	C _L = 20 pF			9	ns
tclqx	25-4-2	ESPI_IO[3:0] Output Hold Time	After FE of ESPI_CLK	C _L = 20 pF	03			ns
t _{SHQZ}	25-4-3	ESPI_IO[3:0] Output Disable Time after ESPI_CS#	After RE of ESPI_CS#	C _L = 20 pF			94	ns
t _{CLQZ}	25-4-2	ESPI_IO[3:0] Output Disable Time after ESPI_CLK	After FE of ESPI_CLK	C _L = 20 pF			94	ns
tslch	<u>25-4-3</u>	ESPI_CS# Input Setup Time	Before RE of ESPI_CL	K	1.5 * tcк ⁵			_
tclsh	25-4-3	ESPI_CS# Input Hold Time	After FE of ESPI_CLK		1 * tcк ⁶			_
t _{SHSL}	25-4-3	ESPI_CS# Deassertion Time	From RE to FE of ESP	I_CS#	1 * t _{CK} 6			_
tslaz	25-4-3	eSPI_IO[1] / ESPI_ALERT# Output Disable Time	After FE of ESPI_CS#				9	ns
t shaa	25-4-3	eSPI_IO[1] / ESPI_ALERT# Output Enable Time	After RE of ESPI_CS#		9			ns
t _{INIT}		ESPI_RST# Deassertion Time	Before FE of ESPI_CS	#	17			μs

^{1.} The maximum eSPI clock frequency is 66 MHz. Because the limitation for internal clock frequence, the NCT6126D's eSPI only support the eSPI_CLK 20~33MHz.

Publication Release Date: September 12, 2023 Version: 2.4

^{2.} Not tested; guaranteed by characterization guardband.

- 3. Not fully tested; characterized only.
- 4. This parameter is 9 ns in eSPI Spec for 33 MHz eSPI_CLK frequency.
- 5. This parameter is 45 in eSPI Spec for 33 MHz eSPI_CLK frequency.
- 6. This parameter is 30 in eSPI Spec for 33 MHz eSPI_CLK frequency.
- 7. Not tested; based on design simulation.

[Device Specifications]

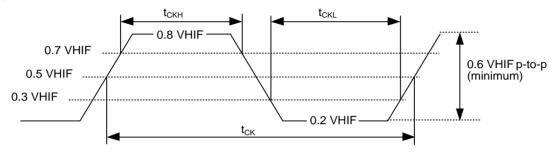


Figure 25-4-1 eSPI Clock Timing

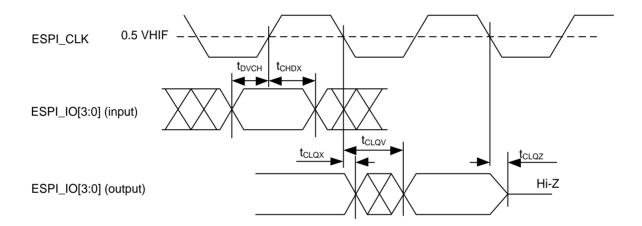


Figure 25-4-2 eSPI Data Signals Timing

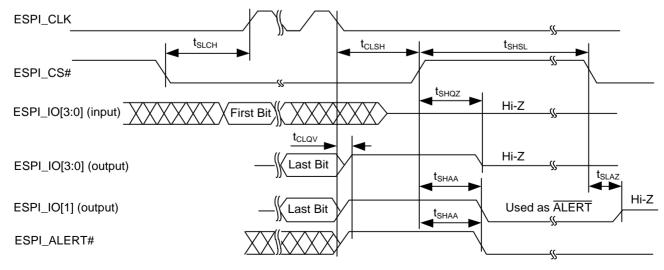
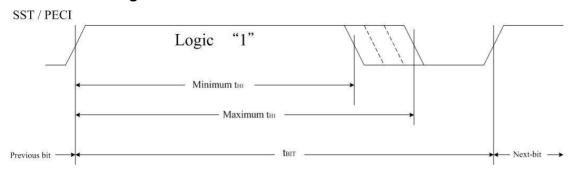
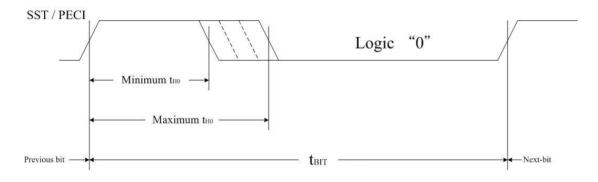
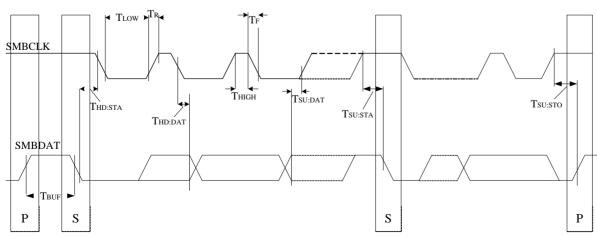




Figure 25-4-3 eSPI ESPI_CS# and ESPI_ALERT# Signals Timing


25.5 PECI Timing

SYMBOL		MIN	ТҮР	MAX	UNITS
4	Client	0.495		500	44.0
t _{BIT}	Originator	0.495		250	μ s
	t _{H1}	0.6	3/4	0.8	х t вıт
tно		0.2	1/4	0.4	X t віт

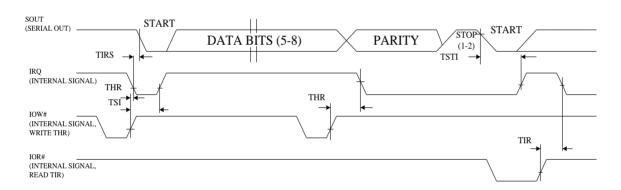
25.6 SMBus Timing

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT
Bus Free time between stop and start command	TBUF	4.7	-	-	μS
Hold time after start command	THD.STA	4	-	-	μS
Data hold time	THD.DAT	0	-	-	nS
Data setup time	TSU.DAT	250	-	•	nS
Stop condition setup time	Tsu.sto	4			μS
Repeat start condition setup time	Tsu.sta	4			μS

Note: TCLK = 100KHz

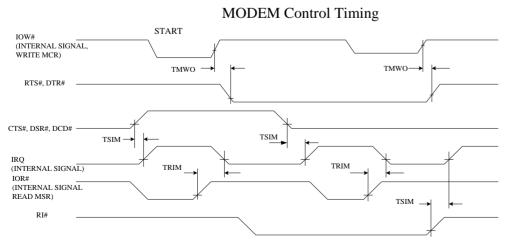
25.7 UART Parameters

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
Delay from Stop to Set Interrupt	TSINT		9/16		Baud Rate
Delay from IOR Reset Interrupt	TRINT		9	1000	nS
Delay from Initial IRQ Reset to Transmit Start	Tirs		1/16	8/16	Baud Rate
Delay from to Reset interrupt	THR			175	nS
Delay from Initial IOW to interrupt	Tsı		9/16	16/16	Baud Rate
Delay from Stop to Set Interrupt	Тѕті			8/16	Baud Rate
Delay from IOR to Reset Interrupt	TIR		8	250	nS
Delay from IOR to Output	Tmwo		6	200	nS
Set Interrupt Delay from Modem Input	Тѕім		18	250	nS
Reset Interrupt Delay from IOR	TRIM		9	250	nS
Baud Divisor	N	100 pF Loading		2 ¹⁶ -1	


25.7.1 UART Receiver Timing

UART Receiver Timing

Receiver Timing SIN (RECEIVER INPUT DATA) DATA BITS (5-8) PARITY TSINT IRQ (INTERNAL SIGNAL) IRQ# (INTERNAL SIGNAL. READ RECEIVER BUFFER REGISTER)

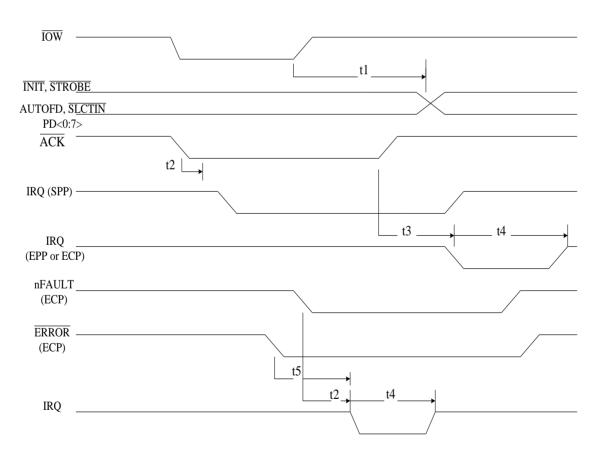

25.7.2 UART Transmitter Timing

UART Transmitter Timing

25.7.3 Modem Control Timing

Modem Control Timing

Publication Release Date: September 12, 2023 Version: 2.4



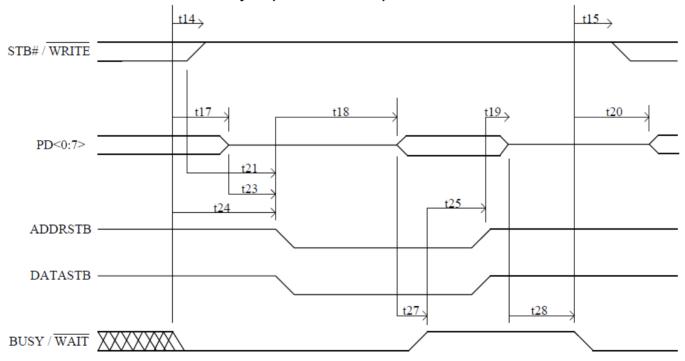
25.8 Parallel Port Mode Parameters

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT
PD0-7, INDEX, STROBE, AUTOFD Delay from IOW	t1			100	nS
IRQ Delay from ACK, nFAULT	t2			60	nS
IRQ Delay from IOW	t3			105	nS
IRQ Active Low in ECP and EPP Modes	t4	200		300	nS
ERROR Active to IRQ Active	t5			105	nS

25.8.1 Parallel Port Timing

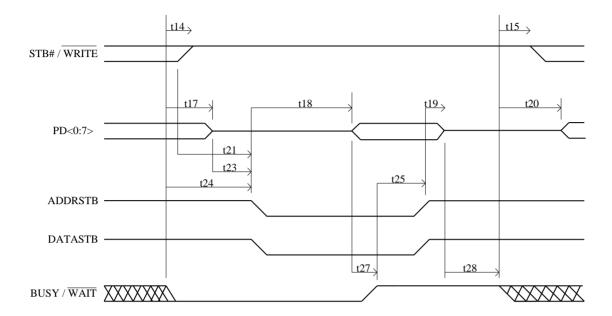
Parallel Port Timing

25.8.2 EPP Data or Address Read Cycle Timing Parameters


PARAMETER	SYM.	MIN.	MAX.	UNIT
WAIT Asserted to WRITE Deasserted	t14	0	185	nS
Deasserted to WRITE Modified	t15	60	190	nS
WAIT Asserted to PD Hi-Z	t17	60	180	nS
Command Asserted to PD Valid	t18	0		nS
Command Deasserted to PD Hi-Z	t19	0		nS
WAIT Deasserted to PD Drive	t20	60	190	nS
WRITE Deasserted to Command	t21	1		nS
PBDIR Set to Command	t22	0	20	nS
PD Hi-Z to Command Asserted	t23	0	30	nS
Asserted to Command Asserted	t24	0	195	nS
WAIT Deasserted to Command Deasserted	t25	60	180	nS
Time out	t26	10	12	nS
PD Valid to WAIT Deasserted	t27	0		nS
PD Hi-Z to WAIT Deasserted	t28	0		μS
PARAMETER	SYM.	MIN.	MAX.	UNIT
Ax Valid to IOR Asserted	t1	40		nS
IOCHRDY Deasserted to IOR Deasserted	t2	0		nS
IOR Deasserted to Ax Valid	t3	10	10	nS
IOR Deasserted to IOW or IOR Asserted	t4	40		
IOR Asserted to IOCHRDY Asserted	t5	0	24	nS
PD Valid to SD Valid	t6	0	75	nS
IOR Deasserted to SD Hi-Z (Hold Time)	t7	0	40	μS
SD Valid to IOCHRDY Deasserted	t8	0	85	nS
WAIT Deasserted to IOCHRDY Deasserted	t9	60	160	nS
PD Hi-Z to PDBIR Set	t10	0		nS
WRITE Deasserted to IOR Asserted	t13	0		nS
WAIT Asserted to WRITE Deasserted	t14	0	185	nS
Deasserted to WRITE Modified	t15	60	190	nS
IOR Asserted to PD Hi-Z	t16	0	50	nS
WAIT Asserted to PD Hi-Z	t17	60	180	nS
Command Asserted to PD Valid	t18	0		nS
Command Deasserted to PD Hi-Z	t19	0		nS
WAIT Deasserted to PD Drive	t20	60	190	nS

Publication Release Date: September 12, 2023 Version: 2.4

PARAMETER	SYM.	MIN.	MAX.	UNIT
WRITE Deasserted to Command	t21	1		nS
PBDIR Set to Command	t22	0	20	nS
PD Hi-Z to Command Asserted	t23	0	30	nS
Asserted to Command Asserted	t24	0	195	nS
WAIT Deasserted to Command Deasserted	t25	60	180	nS
Time out	t26	10	12	nS
PD Valid to WAIT Deasserted	t27	0		nS
PD Hi-Z to WAIT Deasserted	t28	0		μS

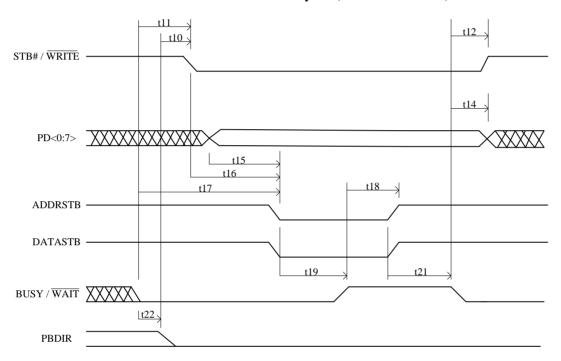

25.8.3 EPP Data or Address Read Cycle (EPP Version 1.9)

25.8.4 EPP Data or Address Read Cycle (EPP Version 1.7)

EPP Data or Address Read Cycle (EPP Version 1.7)

25.8.5 EPP Data or Address Write Cycle Timing Parameters

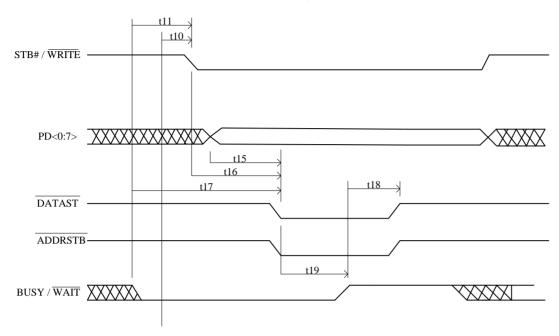
PARAMETER	SYM.	MIN.	MAX.	UNIT
PBDIR Low to WRITE Asserted	t10	0		nS
WAIT Asserted to WRITE Asserted	t11	60	185	nS
WAIT Asserted to WRITE Change	t12	60	185	nS
WAIT Asserted to PD Invalid	t14	0		nS
PD Invalid to Command Asserted	t15	10		nS
WAIT Asserted to Command Asserted	t17	60	210	nS
WAIT Deasserted to Command Deasserted	t18	60	190	nS
Command Asserted to WAIT Deasserted	t19	0	10	μS
Time out	t20	10	12	μS
Command Deasserted to WAIT Asserted	t21	0		nS
PARAMETER	SYM.	MIN.	MAX.	UNIT
Ax Valid to IOW Asserted	t1	40		nS
SD Valid to Asserted	t2	10		nS
IOW Deasserted to Ax Invalid	t3	10		nS
WAIT Deasserted to IOCHRDY Deasserted	t4	0		nS
Command Asserted to WAIT Deasserted	t5	10		nS
IOW Deasserted to IOW or IOR Asserted	t6	40		nS
IOCHRDY Deasserted to IOW Deasserted	t7	0	24	nS
WAIT Asserted to Command Asserted	t8	60	160	nS
IOW Asserted to WAIT Asserted	t9	0	70	nS
PBDIR Low to WRITE Asserted	t10	0		nS
WAIT Asserted to WRITE Asserted	t11	60	185	nS
WAIT Asserted to WRITE Change	t12	60	185	nS
IOW Asserted to PD Valid	t13	0	50	nS
WAIT Asserted to PD Invalid	t14	0		nS
PD Invalid to Command Asserted	t15	10		nS
IOW to Command Asserted	t16	5	35	nS
WAIT Asserted to Command Asserted	t17	60	210	nS
WAIT Deasserted to Command Deasserted	t18	60	190	nS
Command Asserted to WAIT Deasserted	t19	0	10	μS
Time out	t20	10	12	μS
Command Deasserted to WAIT Asserted	t21	0		nS


Publication Release Date: September 12, 2023 Version: 2.4

PARAMETER	SYM.	MIN.	MAX.	UNIT
IOW Deasserted to WRITE Deasserted and PD invalid	t22	0		nS
WRITE to Command Asserted	t16	5	35	nS

25.8.6 EPP Data or Address Write Cycle (EPP Version 1.9)

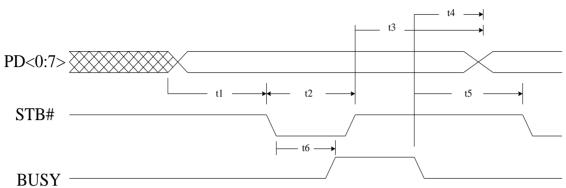
EPP Data or Address Write Cycle (EPP Version 1.9)


-458-

25.8.7 EPP Data or Address Write Cycle (EPP Version 1.7)

Version: 2.4

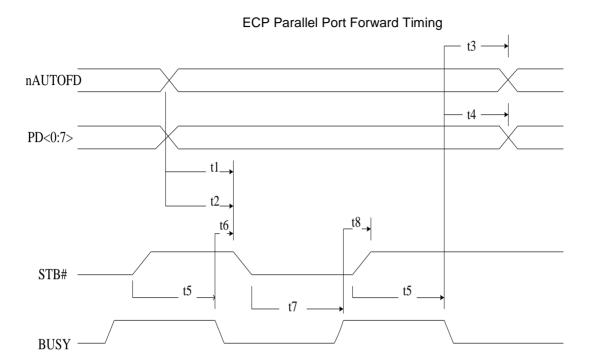
EPP Data or Address Write Cycle (EPP Version 1.7)


25.8.8 Parallel Port FIFO Timing Parameters

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
DATA Valid to nSTROBE Active	t1	600		nS
nSTROBE Active Pulse Width	t2	600		nS
DATA Hold from nSTROBE Inactive	t3	450		nS
BUSY Inactive to PD Inactive	t4	80		nS
BUSY Inactive to nSTROBE Active	t5	680		nS
nSTROBE Active to BUSY Active	t6		500	nS

25.8.9 Parallel FIFO Timing

Parallel FIFO Timing



25.8.10 ECP Parallel Port Forward Timing Parameters

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
nAUTOFD Valid to nSTROBE Asserted	t1	0	60	nS
PD Valid to nSTROBE Asserted	t2	0	60	nS
BUSY Deasserted to nAUTOFD Changed	t3	80	180	nS
BUSY Deasserted to PD Changed	t4	80	180	nS
nSTROBE Deasserted to BUSY Deasserted	t5	0		nS
BUSY Deasserted to nSTROBE Asserted	t6	80	200	nS
nSTROBE Asserted to BUSY Asserted	t7	0		nS
BUSY Asserted to nSTROBE Deasserted	t8	80	180	nS

25.8.11 ECP Parallel Port Forward Timing

25.8.12 ECP Parallel Port Reverse Timing Parameters

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
PD Valid to nACK Asserted	t1	0		nS
nAUTOFD Deasserted to PD Changed	t2	0		nS
nAUTOFD Asserted to nACK Asserted	t3	0		nS
nAUTOFD Deasserted to nACK Deasserted	t4	0		nS
nACK Deasserted to nAUTOFD Asserted	t5	80	200	nS
PD Changed to nAUTOFD Deasserted	t6	80	200	nS

Publication Release Date: September 12, 2023

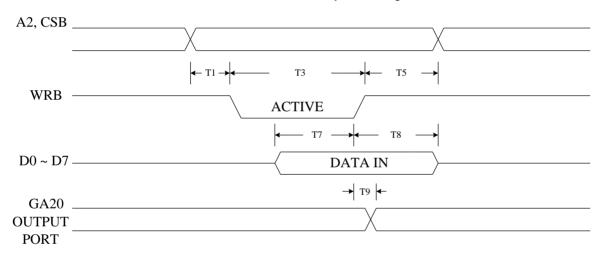
25.8.13 ECP Parallel Port Reverse Timing

ECP Parallel Port Reverse Timing PD<0:7> t1_ t3nACK -.t5_ – t6 t5_ nAUTOFD

25.8.14 KBC Timing Parameters

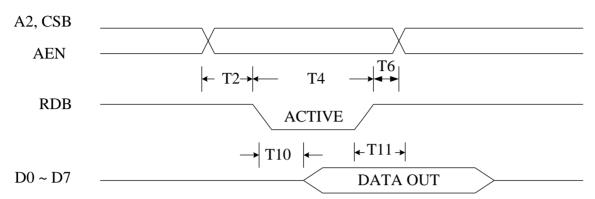
NO.	DESCRIPTION	MIN.	MAX.	UNIT
T1	Address Setup Time from WRB	0		nS
T2	Address Setup Time from RDB	0		nS
Т3	WRB Strobe Width	20		nS
T4	RDB Strobe Width	20		nS
T5	Address Hold Time from WRB	0		nS
T6	Address Hold Time from RDB	0		nS
T7	Data Setup Time	50		nS
T8	Data Hold Time	0		nS
Т9	Gate Delay Time from WRB	10	30	nS
T10	RDB to Drive Data Delay		40	nS
T11	RDB to Floating Data Delay	0	20	nS
T12	Data Valid After Clock Falling (SEND)		4	μS
T13	K/B Clock Period	20		μS
T14	K/B Clock Pulse Width	10		μS
T15	Data Valid Before Clock Falling (RECEIVE)	4		μS
T16	K/B ACK After Finish Receiving	20		μS
T19	Transmit Timeout		2	mS
T20	Data Valid Hold Time	0		μS
T21	Input Clock Period (6–16 MHz)	63	167	nS
T22	Duration of CLK inactive	30	50	μS

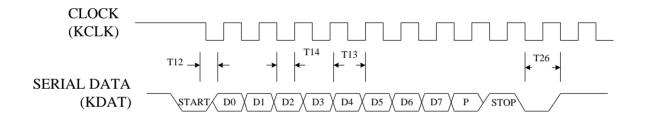

-462-


Publication Release Date: September 12, 2023

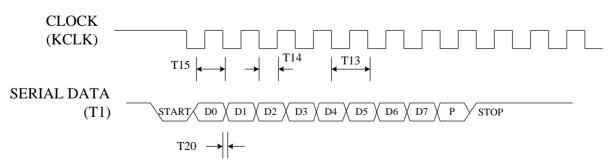
NO.	DESCRIPTION	MIN.	MAX.	UNIT
T23	Duration of CLK active	30	50	μS
T24	Time from inactive CLK transition, used to time when the AUXiliary device sample DATA	5	25	μS
T25	Time of inhibit mode	100	300	μS
T26	Time from rising edge of CLK to DATA transition	5	T28-5	μS
T27	Duration of CLK inactive	30	50	μS
T28	Duration of CLK active	30	50	μS
T29	Time from DATA transition to falling edge of CLK	5	25	μS

25.8.15 Writing Cycle Timing



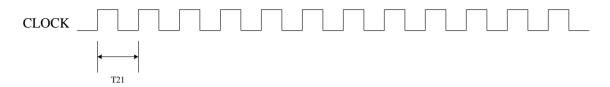

25.8.16 Read Cycle Timing

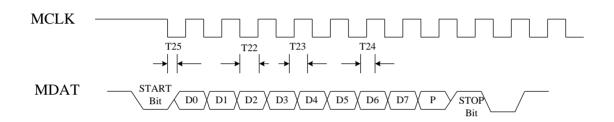
Read Cycle Timing


25.8.17 Send Data to K/B

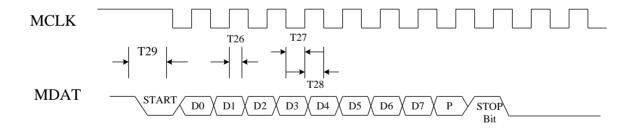
Send Data to K/B

25.8.18 Receive Data from K/B


Receive Data from K/B


25.8.19 Input Clock

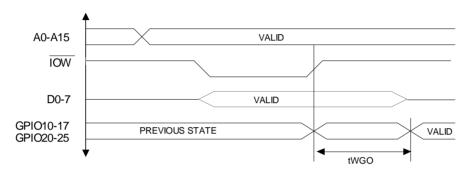
Input Clock


25.8.20 Send Data to Mouse

Send Data to Mouse

25.8.21 Receive Data from Mouse

Receive Data from Mouse


25.9 GPIO Timing Parameters

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
twgo	Write data to GPIO update		300 (Note)	ns

Note: Refer to Microprocessor Interface Timing for Read Timing.

25.9.1 GPIO Write Timing

GPIO Write Timing diagram

26. TOP MARKING SPECIFICATIONS

nuvoTon

NCT6122D

28201234-XX

213G7AFB

1st line: Nuvoton logo

2nd line: part number NCT6122D

3rd line: wafer production series lot number. It could be 8 characters, such as 28201234, or 11 characters, such as 28201234-XX.

4th line: tracking code 213G7AFB

213: packages made in 2022, week 13

G: assembly house ID; G means GR, A means ASE, etc

7: code version; 7 means code 007

A: IC revision; A means version A; B means version B, and C means version C

FB: Nuvoton internal use

nuvoTon

NCT6126D

28201234-XX

213G7AFB

1st line: Nuvoton logo

2nd line: part number NCT6126D

3rd line: wafer production series lot number. It could be 8 characters, such as 28201234, or 11 characters, such as 28201234-XX.

4th line: tracking code 213G7AFB

213: packages made in 2022, week 13

G: assembly house ID; G means GR, A means ASE, etc

7: code version; 7 means code 007

A: IC revision; A means version A; B means version B, and C means version C

FB: Nuvoton internal use

Publication Release Date: September 12, 2023

-467- Version: 2.4

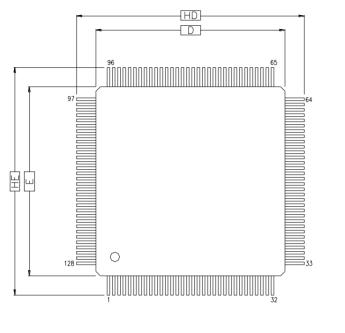
27. ORDERING INFORMATION

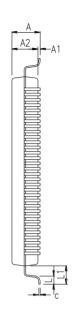
PART NUMBER	PACKAGE TYPE	PRODUCTION FLOW
NCT6122D	128Pin LQFP (Green package)	-40°C~+85°C
NCT6126D	128Pin LQFP (Green package)	-40℃~+85℃

NCT6122D/NCT6126D Version Change Notice 1

		Descri	ption
	Function	A version	B version
1	Chip ID	D2A3/D283	D2A4/D284
2	S0_IDLE# pin type.	Push pull type output.	Open drain type output.
3	ASSC function in eSPI mode	SLP_S5# event is selected by Logical device E Index E6 Bit 4 (ESPI S5/S4 SEL).	SLP_S5# event is selected by Logical device 16 Index 30 Bit 6. (Source of internal SLP_S5# logic)
4	PSON#	When PLAT_SEL =1 (ATOM platform), PSON# sometimes gets a low pulse glitch in the first time of battery power up.	Fixed.
5	UART	When LPC clock > 24MHz or eSPI clock > 33MHz, the UART error status may not be read clear.	Fixed.
6	Extended Function Data Register	When the interface is eSPI, user must read the EFDR at the end programming of SIO.	Fixed.

NCT6122D / NCT6126D Version Change Notices List


	Date	Version	Revision	Remark
1	11/30/2021	VCN1	0.1	Version Change Notice for A version to B version.
2	4/20/2022	VCN1	0.2	Updated the typo and item.4 description.


Publication Release Date: September 12, 2023

Version: 2.4

28. PACKAGE SPECIFICATION

COTROL DIMENSIONS ARE IN MILLIMETERS.

CYMDOL	М	ILLIMET	ER		INCH	
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
А	_		1.60	_	_	0.063
A1	0.05		0.15	0.002	_	0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
HD	10	16.00 BSC.			630 BS	SC.
D	1.	14.00 BSC.			0.551 BSC.	
HE	10	6.00 B	SC.	0.630 BSC.		
Е	1-	4.00 B	SC.	0.551 BSC.		
b	0.13	0.16	0.23	0.005	0.006	0.009
е		0.40 BSC.			6 BSC	
θ	0.	3.5*	7*	0,	3.5*	7*
С	0.09	_	0.20	0.004	_	0.008
L	0.45	0.60	0.75	0.018	0.024	0.030
L ₁	1.00 REF		1.00 REF 0.039 REF		EF	
у	-	-	0.1	-	-	0.004

128-pin LQFP (14x14x1.4mm)

Publication Release Date: September 12, 2023 Version: 2.4

29. REVISION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
0.5	11/14/2018	N.A.	Draft datasheet
0.6	05/13/2019	N.A.	Add part number NCT6122D
0.7	07/10/2019	33 35 152.153.208.209 450 51 25, 28, 29 300~439 18 46	 Add RSMRST# monitor 3VSB/VHIF timing Modify LATCH_BKFD_CUT description. Modify Ch. 9 hardware monitor register Add LPC timing Added the description for exit the Extended Function Mode with 0xBB when entry key is 0x88. Modify GPIO description. Modify register description Modify the description for PAD_CAP. (External Filter Capacitor 1uF) Modify 6.9 Thermtrip# function description.
0.8	08/12/2019	207, 208	 Corret the information in bank 0 Index 46. Modify the entry key strapping descrition. Update Chapter 9.353 BEEP Control Register1 – Index C0h (Bank 3) Modify the thermtrip imformation. Modify the 3VSBSW in the GLUE LOGIC.
0.9	02/21/2020	262,31,39,47,438	 Correct the PME# imformation. Delete the SMART FANTM IV has stepping information. Modify PLAT_SEL condition. Correct the LPC_ESPI_SEL pin from 16 to 54. Add Chapter 6.6 AT / ATX mode Modify the thermtrip function diagram Modify the description of LD15, CR[E9] bit 0 (SUSLED in S5 stste)

lr.			
1.0	04/10/2020	15 312 219 225	 Add pin 107 THERMTRIP# description Motify the pin 19 function. Modify CR 1Dh default value Modify the registors of the FAN Enable Critical Duty. Correct the description of the Set Silence Enable register in UART function. Add BAUD RATE colum from pre-divider = 1.625 Add pin 23 ESPI_ALERT# description Modify chip ID. Correct the GPIO_PORT80 strapping power well. Remove the LDX CR F0 bit 6 description.
1.1	07/21/2020	31 312	Modify pin 107 PLAT_SEL strapping condition and description Modify the SOUTC_P80_SEL to CR1D[4]
1.2	09/16/2020	2 381 319-320	Add feature about Oscillator free and remove Clock input timing, Revise the default vaule of LDA CRE5 bit 1. Revise CR2B and CR2C UART pins function selection.
1.3	11/16/2020	19 32 48 61 16	 Modify Pin31 PLED buffer type Add SIO needs one more read EFDR step at the end programming when the interface is eSPI Modify Thermtrip# function diagram (PLAT_SEL=1 case). Modify 8.6.2 Voltage Data Format Add AUXFAN2 pin description
1.4	12/18/2020	398 6,7	 Add the descrption at LDE, CRF7 bit[4:2] for eSPI frequency selection. Correct NCT6122D / NCT6126D pin layout on pin 27
1.5	06/02/2021	435 9 397 350 312	 Modify DC CHARACTERISTICS. Added ESPI_ALERT_HNSK into pin description. Corrected the pin 19 function selection. Removed clock source is 2 MHz of UART / IR. Corrected the typo.
1.6	07/12/2021	60,82,87	 Update Figure 8-6 in Chapter 8.6 Modify SMI# / OVT# description. Remove the LD2, LD3, LD10-14 CR F0 bit 5 description.

	T	1	
1.7	11/12/2021	53 61 81	 Modify 7.15 Software Programming Example. Modify the VTT reading formula Add 8.10.5 Max Duty Compare Source
1.8	02/11/2022	394 381 395, 434	 Modify Logical Device E, CR E6h, bit4 description Add PWROK Push-Pull / OD type selection bit at Logical Device A, CR FFh, bit4 Add LD16, CR30h bit6 for the internal SLP_S5# selection
1.9	03/22/2022	463	Add VCN in Chapter 27.ORDERING INFORMATION
2.0	04/29/2022	13~17, 21, 22, 25, 26, 30, 31, 275~279, 462	Modify power well to VSB at pin 1-11, 13- 18, 69 and 125-128 in Chapter 5. Pin Description and Table 18-2 GPIO Group Programming Table Update Chapter 26. TOP MARKING SPECIFICATIONS
2.1	08/12/2022	58 281 433 463 303	 Modify Logical Device 15, CR E9h, bit0 description Modify VCN in Chapter 27. ORDERING INFORMATION Fixed the typo of Table 18-4. Update Exit Deeper Sleeping State figure in Chapter 6.8.3. Add Logical Device B, CR 64h and CR65h description Modify Figure 22-1. Add Index 47h-49h Bank 0 registers. Update description of Chapter 8.4 ESPI interface
2.2	04/14/2023	9, 30 438 73, 144, 149, 155, 175, 181	 Remove the description of multiple eSPI slave system Modify pin19 ESPI_ALERT_HNSK, pin 80 ESPI_OWN_SEL description Update 24.2 DC CHARACTERISTICS Modify Speed CruiseTM Mode tolerance registers.
2.3	06/12/2023	447,448	Add 25.4 eSPI interface timing
2.4	09/12/2023	45, 46, 47 49 113, 117 451	 Modify the figures and update description of section 6.8.2 and 6.8.3 Modify the description of section 6.10 Modify the description of Bank 0, index 76h and index 7Dh. Update 25.6 SMBUS timing

Important Notice

Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners

Publication Release Date: September 12, 2023

-473-