

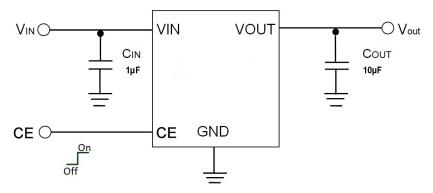
Features

- High input voltage (up to 50V)
- Low Power Consumption: 2µA (Typ)
- Maximum Output Current: 400mA
- Voltage drop:350mV@100mA(3.3V)
- Good Transient Response
- Output voltage accuracy: tolerance $\pm 2\%$
- SOT89-3, SOT23-3,SOT23-5 and SOT89-5 package
- PSRR:85dB@1KHz

Applications

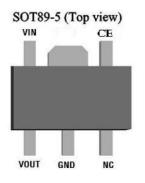
- Portable, Battery Powered Equipmpm
- Microcontroller Applications
- Smoke detector and sensor
- Audio/Video equipment
- Weighting Scales
- Home Automation

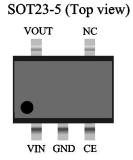
General Description

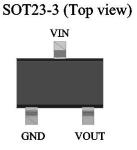

The HE2210 series is a high voltage, ultralow-power, low dropout voltage regulator. The device can deliver 400mA output current with a dropout voltage of 350mV and allows an input voltage as high as 50V. The typical quiescent current is only $2\mu A$. The device is available in fixed output voltages of 2.5, 2.8, 3.0, 3.3, 3.6, 5.0, 6.0, 9.0, and 12V. The device features integrated short-circuit and thermal shutdown protection. Although designed primarily as fixed voltage regulators, the device can be used with external components to obtain variable voltages.

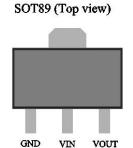
Order Information

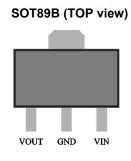
HE2210(1)(2)(3)(4)

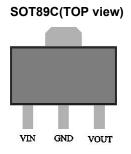

Designator	Symbol	Description
	Р	Package:SOT89-3
(1)	PB	Package:SOT89B-3
	PC	Package:SOT89C-3
	P5	Package:SOT89-5
	M3	Package:SOT23-3
	M5	Package:SOT23-5
23	Integer	Output Voltage(2.5~12V)
	R	RoHS / Pb Free
(4)	G	Halogen Free


Application Circuits






Pin Assignment



Selection Table

Part No.	Output Voltage	Package	Marking
HE2210M530R	3.0V	SOT23-5	
HE2210M533R	3.3V	SOT23-5	
HE2210M550R	5.0V	SOT23-5	
HE2210P533R	3.3V	SOT89-5	
HE2210P550R	5.0V	SOT89-5	
HE2210P30R	3.0V	SOT89-3	
HE2210P33R	3.3V	SOT89-3	
HE2210P50R	5.0V	SOT89-3	
HE2210PB33R	3.3V	SOT89B-3	
HE2210PB50R	5.0V	SOT89B-3	
HE2210PC33R	3.3V	SOT89C-3	
HE2210PC50R	5.0V	SOT89C-3	
HE2210M333R	3.3V	SOT23-3	
HE2210M350R	5.0V	SOT23-3	

Part No.	Output Voltage	Package	Marking
HE2210P60R	6.0V	SOT89-3	
HE2210PB60R	6.0V	SOT89B-3	
HE2210P90R	9.0V	SOT89-3	
HE2210PB90R	9.0V	SOT89B-3	
HE2210PC0R	12V	SOT89-3	
HE2210PBC0R	12V	SOT89B-3	

Ver2.1 3 May 6,2022

Absolute Maximum Ratings (1)(2)

Parameter		Symbol	Maximum Rating	Unit	
Input Volte	20	Vin	V _{SS} -0.3~V _{SS} +50.0	V	
Input Volta	ige	Vouт	~	V	
Output Cur	rent	Іоит	400	mA	
Power Dissipation	SOT23-5,SOT23-3	Pd	400	mW	
Power Dissipation	SOT89-3,SOT89-5	Pu	500		
Thermal Resistance	SOT23-5,SOT23-3	D (3)	250	°C/W	
Thermal Resistance	SOT89-3,SOT89-5	R _{θJA} ⁽³⁾	200	°C/W	
Operating Temperature		Topr	-40~85	${\mathbb C}$	
Storage Temperature		Tstg	-40~125	$^{\circ}$	
Soldering Tempera	ture & Time	Tsolder	260℃, 10s		

Note (1): Exceeding these ratings may damage the device.

ESD Ratings

Item	Description	Value	Unit
	Human Body Model (HBM)		
V(ESD-HBM)	ANSI/ESDA/JEDEC JS-001-2014	±4000	V
	Classification, Class: 2		
	Charged Device Mode (CDM)		
V(ESD-CDM)	ANSI/ESDA/JEDEC JS-002-2014	±200	V
	Classification, Class: C0b		
l zov. v p	JEDEC STANDARD NO.78E APRIL 2016	1150	т Л
ILATCH-UP	Temperature Classification, Class: I	±150	mA

ESD testing is performed according to the respective JESD22 JEDEC standard. The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

Recommended Operating Conditions

Parameter	MIN.	MAX.	Units
Supply voltage at V _{IN}		30	V
Operating junction temperature range, Tj	-40	125	°C
Operating free air temperature range, TA	-40	85	°C

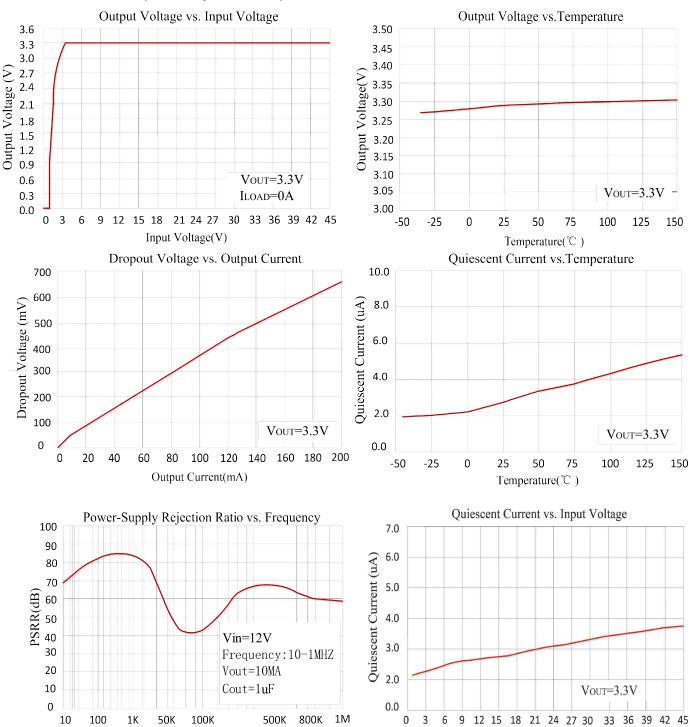
Note: All limits specified at room temperature (TA = 25°C) unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note (2): The device is not guaranteed to function outside of its operating conditions

Note (3): The package thermal impedance is calculated in accordance to JESD 51-7.

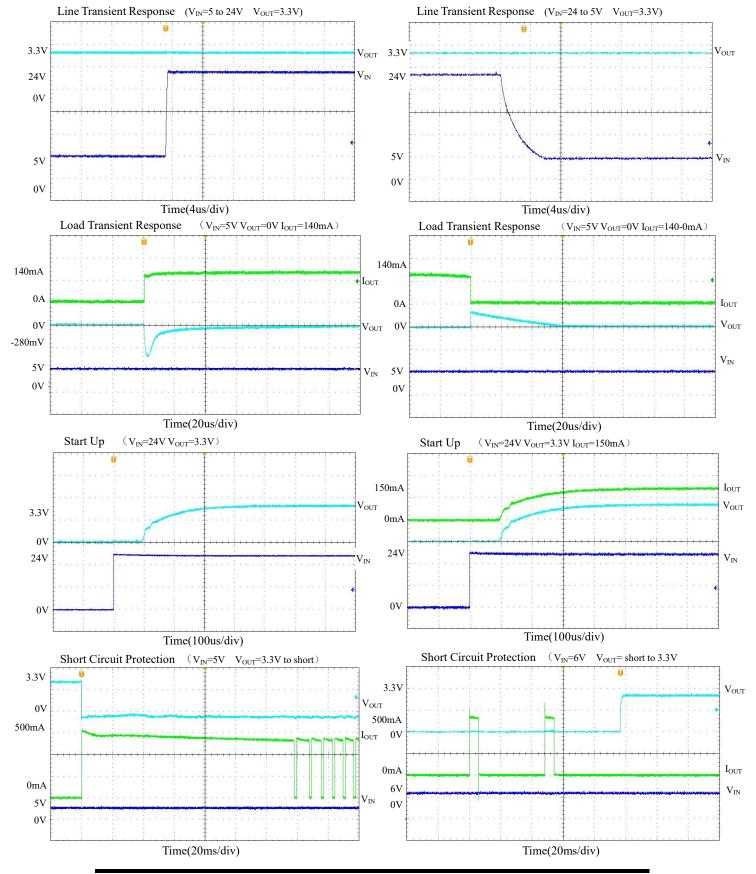
Electrical characteristics

 $(At~T_A=25^{\circ}C,~C_{IN}=1uF,~V_{IN}=V_{OUTNOM}+1.0V,~C_{OUT}=10\mu F,~unless~otherwise~noted)$


Symbol	Parameter	Test Conditions	Min	Тур.	Max	Units
V _{IN}	Input Voltage		3.0		50	V
I_Q	Quiescent Current	V _{IN} =12V No load	_	2.0	2.3	μΑ
V _{OUT}	Output Voltage	$V_{IN}=12V$ $I_{OUT}=10$ mA	-2.0		+2.0	%
I_{SD}	Shutdown Ground Current	$V_{IN}=0V$			0.1	μΑ
I _{LEAK}	V _{OUT} Shutdown Leakage Current	$V_{OUT} = 0V$	_	_	0.1	μΑ
I _{OUT_MAX}	Output Current		_	400		mA
17	D (V) (1)	$I_{OUT} = 10\text{mA}$ $V_{IN} = V_{OUTNOM} - 0.1V$	_	35	_	mV
V_{DROP}	Dropout Voltage(1)	$I_{OUT} = 100 \text{mA}$ $V_{IN} = V_{OUTNOM} - 0.1 V$	_	350		mV
ΔLOAD	Load Regulation	$V_{IN} = V_{OUT} + 1V$ $1 \text{mA} \leq I_{OUT} \leq 100 \text{mA}$	_	40		mV
ΔLINE	Line Regulation	$I_{OUT}=1 \text{mA},$ $V_{OUTNOM}+0.5 \text{V} \leq V_{IN} \leq 50 \text{V}$	_	0.01		%/V
PSRR	Power Supply Rejection Ratio	V_{IN} =12V, I_{OUT} =10mA f=1KHz, V_{OUT} =3.3V	_	85		dB
V _{IH}	EN Threshold Voltage,Logic-High	V_{IN} =5.0V, I_{OUT} =1mA	1.0	_	_	V
$V_{\rm IL}$	EN Threshold Voltage,Logic-Low	$V_{IN}=5.0V$		_	0.4	V
I _{LIMIT}	Current Limit	$V_{IN} = V_{OUT} + 1V$		450	_	mA
I _{SHORT}	Short /Start Load Current	RL=1Ω		100		mA
e _{NO}	Output Noise Voltage	10Hz to 100kHz C _{OUT} =1μF	_	100	_	μVRMS
T_{SD}	Thermal Shutdown Temperature		_	150		°C
ΔT_{SD}	Thermal Shutdown Hysteresis		_	20	_	°C

Note: *1 Dropout Voltage is the voltage difference between the input and the output at which the output voltage drops 2% below its nominal value.

Typical Performance Characteristics:


Test Condition: TA=25°C, Iout=1mA, COUT=10uF, unless otherwise noted

Input Voltage(V)

Frequency(Hz)

Application Guideline

Input Capacitor

A $10\mu F$ ceramic capacitor is recommended to connect between V_{DD} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is 10µF, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at specific output current. The dropout voltage VDROP also can be expressed as the voltage drop on the pass-FET at specific output current (IRATED) while the pass-FET is fully operating at ohmic region and the pass-FET can be characterized as an resistance RDS(ON). Thus the dropout voltage can be defined as (VDROP = VIN - VOUT = RDS(ON) x IRATED). Fornormal operation, the suggested LDO operating range is (VIN > VOUT + VDROP) for good transient response and PSRR ability. Vice versa, while operating at the ohmic region will degrade the performance severely.

Thermal Application

For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below: TA=25°C, PCB,

The max PD= (125°C - 25°C) / (Thermal Resistance °C/W)

Power dissipation (PD) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:

 $PD = (VIN - VOUT) \times IOUT$

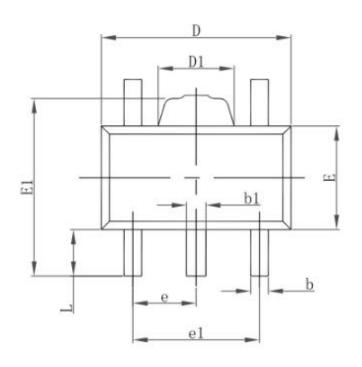


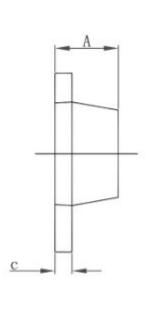
Layout Consideration

By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the HE2210 ground pin using as wide and as short of a copper trace as is practical. Connections using long trace lengths, narrow trace widths, and/or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

IN - RUSH CURRENT AND VOLTAGE

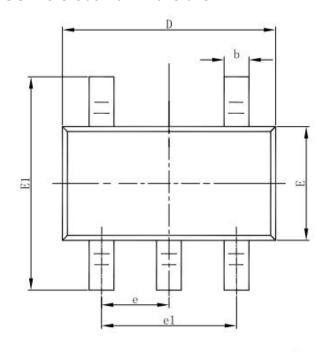
The following figure shows a typical application circuit for the HE2210 devices. Please keep in mind that in-rush current can push up the Vin overshoot by as much as 50%. For example, when Vin=30V, the in-rush caused spike voltage can be as high as 45V. Therefore the voltage rating of Cin needs to be higher than 50% of the application.

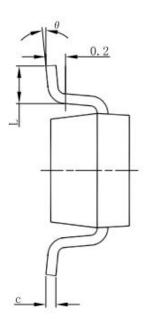

In live insertion application, it is suggested that R, C1 are selected as following:

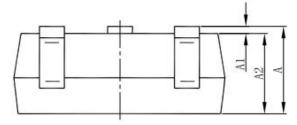

 $1.C1=10\mu F\sim 100\mu F$ ceramic or electrolytic capacitor with maximum voltage greater than 50V, R=0 2.If the average current is known, for example a t 10mA, then for an input voltage of 20V, the C1 = $1\mu F\sim 10\mu F$ ceramic or electrolytic with maxim um voltage greater than 40V and R= $1K\Omega$ in the type of 1206 at 1/4W rating can be selected.

Ver2.1 9 May 6,2022

Package Information

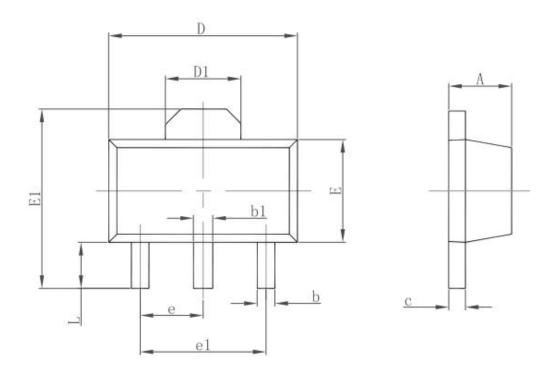

SOT89-5 Outline Dimensions





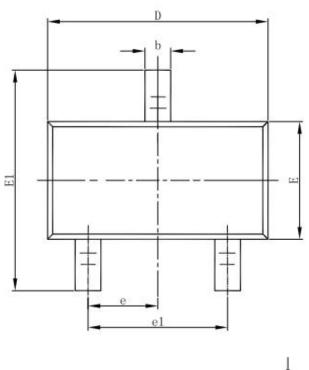
Symbol	Dimensions	In Millimeters	Dimension	s In Inches
	Min.	Max.	Min.	Max.
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.360	0.560	0.014	0.022
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.400	1.800	0.055	0.071
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500TYP.		0.060	TYP.
e1	2.900	3.100	0.114	0.122
L	0.900	1.100	0.035	0.043

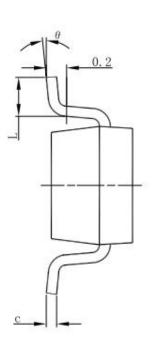
SOT23-5 Outline Dimensions

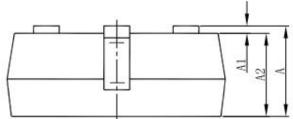


۰L . I	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(E	BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

3-pin SOT89 Outline Dimensions




Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF.		0.061	REF.
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP.		0.060 TYP.	
e1	3.000	3.000 TYP. 0.118 TY		TYP.
L	0.900	1.200	0.035	0.047


Ver2.1 12 May 6,2022

Package Information 3-pin SOT23-3 Outline Dimensions

Cb.a.l	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)	0.037((BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°