

Dual 2:1 USB2.0 Mux/De-Mux

DESCRIPTION

The FSW7227A is a bidirectional low-power dual port, high-speed, USB 2.0 analog switch with integrated protection for USB Type- C^{TM} systems. The device is configured as a dual 2:1 or 1:2 switch. It is optimized for use with the USB 2.0 DP/DM lines in a USB Type- C^{TM} system. GPIO controls of SEL and \overline{EN} are 1.8V logic compatible.

The FSW7227A is available in UQFN 1.4x.18-10L and MSOP10 with Pb-free and Halogen-free making it a perfect candidate for mobile and space constrained applications.

FEATURES

- Supply Range 1.8V to 5.5 V
- Differential 2:1 or 1:2 Switch/Multiplexer
- Low R_{ON} of 11 Ω Typical
- Low Crosstalk: -63dB @100MHz
- -3dB Bandwidth: 1.4GHz
- Off Isolation: -33dB @100MHz
- Break-Before-Make Switching
- Temperature Range of -40°C to 85°C

APPLICATIONS

- Anywhere a USB Type-C[™] or Micro-B
 Connector is Used
- USB 2.0 Signal Routing
- Digital Cameras and Camcorders
- Portable Instrumentation
- Set-Top Box

1

- PADS the withstand USB devices
- Mobile Phones, Tablets and Notebooks

ORDER INFORMATION

Model	Package	Specified Temperature Range	Ordering Number	Packing Option
ECW/7227 A	UQFN 1.4x1.8-10L	-40°C to +85°C	FSW7227AYUWQ10G/TR	Tape and Reel, 3000
FSW7227A	MSOP10	-40°C to +85°C	FSW7227AYMS10G 不/TR	Tape and Reel,

PIN CONFIGURATION

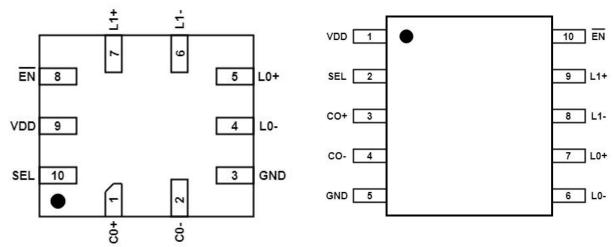


Figure 1. UQFN 1.4x1.8-10L

Figure 2. MSOP10

PIN DESCRIPTION

UQFN1.4x1.8-10L	MSOP10	Pin Name	Signal Type	Description
1	3	C0+	I/O	Signal I/O, Common Port
2	4	С0-	I/O	Signal I/O, Common Port
7	9	L1+	I/O	Signal I/O, Channle 1
6	8	L1-	I/O	Signal I/O, Channle 1
5	7	L0+	I/O	Signal I/O, Channle 0
4	6	L0-	I/O	Signal I/O, Channle 0
10	2	SEL	I	Operation Model Select (when SEL=0: C0→L0, when SEL=1: C0→L1)
8	10	_EN	I	_EN=1, Power Down is Enabled
9	1	VDD	PWR	Positive Supply Voltage
3	5	GND	GND	Power Ground

TRUTH TABLE

Function	SEL	_EN
C0+/- to L0+/-	L	L
C0+/- to L1+/-	Н	L
All Switches Hi-Z	X	Н

Typical Application

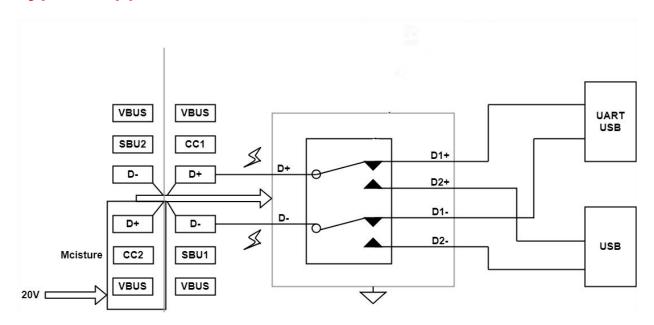


Figure 3. FSW7227A Application circuit

In addition, considering the power consumption requirements of portable products, FSW7227A is designed to minimize static power consumption. As shown in Figure 5 below, FSW7227A integrates pull-down resistance on both SEL and / OE pins. The weak pull-down resistance on the SEL pin saves power and ensures that channel 1 is opened in the default state, and the weak pull-down resistance on the OE pins ensures that the chip can work after power on.

FUNCTIONAL DIAGRAM

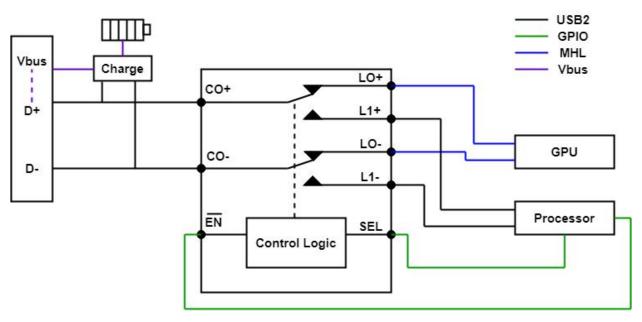


Figure 4. Function Diagram

FSW7227A is a high-speed, low-power double knife/double throw (DPDT) analog switch, supporting power supply from 1.8V to 5.5V. FSW7227A Designed to switch high-speed USB 2.0 signals in handheld devices (such as mobile phones, digital cameras, and laptops, with hubs or controllers).

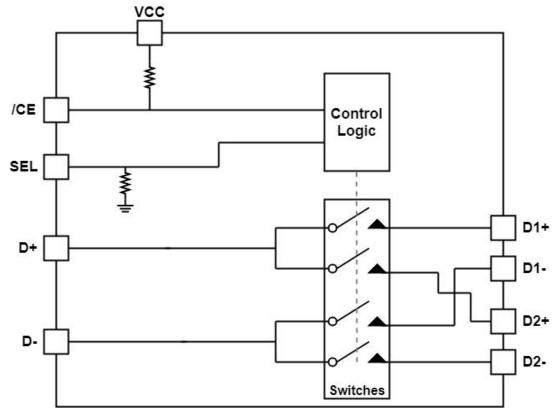


Figure 5. Internal function diagram

ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_{DD}=3.3V, unless otherwise specified)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
POWER SUPPLY	ı •					
Supply Voltage Range	V_{DD}		1.8	3.3	5.5	V
		$EN = V_{DD}$, $V_{DD} = 5.5V$		0.1	1	
	.	_EN =0, V _{DD} =2.5V, V _{SEL} =0 or 1			50	
Supply Current	I_{CC}	$_{\rm EN}$ =0, $V_{\rm DD}$ =3.3V, $V_{\rm SEL}$ =0 or 1			70	uA
		$EN = 0, V_{DD} = 5.5V, V_{SEL} = 0 \text{ or } 1$			120	
SEL DIGITAL INPU	T CONTO	L				
	X 7	V _{DD} =3.3V 1				V
control input logic high	V_{IH}	V _{DD} =5.5V	1.3] v
	V	$V_{DD}=3.3V$			0.75	17
control input logic low	$V_{ m IL}$	V _{DD} =5.5V			0.9	$\mid V \mid$
		V _{DD} =3.6V ,V _{SEL} =0.3V or 3.3V;				
pull-down resistance	Rsel	V_{DD} =5.5V , V_{SEL} =1V or 4.5V;		220		kΩ
		$V_{I/O}=0$				
Control Input Leakage	I _{SEL}	V_{DD} =3.6V , V_{SEL} =0.3V, $V_{I/O}$ =0			1.6	.,,
Current	ISEL	V_{DD} =3.6V , V_{SEL} =3.3V, $V_{I/O}$ =0			17	uA
SWITCH ON RESIS	TANCE A	ND OFF LEAKAGE				
On-Resistance	Ron			11	14	Ω
R _{ON} Flatness ⁽¹⁾	R _{FLAT}	V _{DD} =3.3V, V _{C0+/-} =0V~5.5V, I _D =8mA,		0.05	0.17	Ω
R _{ON} Matching Between ΔR _{ON}		V_{SEL} =0V or V_{DD}		0.7	1	Ω
Channels ⁽²⁾	ΔICON			0.7	1	22
Channel Off Leakage		V_{DD} =3.3V, $V_{L0+/-}$ =0.3V or 3.3V,				
Current	I _{L0/L1}	$V_{L1+/-} = 0.3 V$ or $3.3 V$ $V_{C0+/-} = 0V$, $V_{SEL} = 0V$ or V_{DD}			±50	nA
Power OFF Leakage I_{OFF} V_{DD} =3.6V, V		$V_{DD}=3.6V$, $V_{C0+/-}=0.3V$ or 3.3V,			±10	nA
Current(C0+/C0-)		$V_{L0/L1}$ =0V, V_{SEL} =0V or V_{DD}				
SWITCH DYNAMIC	CS	T				
	_	$f = 1 GHz$, $R_L = 50\Omega$, Signal = -10dBm		-27		
Off Isolation	O _{ISO}	$f=100MHz$, $R_L=50\Omega$,		-33		dB
		Signal = -10dBm				
Crosstalk ⁽³⁾	X_{TALK}	$f = 1 GHz$, $R_L = 50\Omega$, Signal = -10dBm		-35		
(Channel-to-Channel)		$f = 100MHz$, $R_L = 50\Omega$,		-63		dB
Signal = -10dBm				1.4		CII
-3dB Bandwidth	BW	$R_L=50\Omega$, Signal = -10dBm		1.4		GHz
Break-Before-Make Delay Time	$T_{ m BBM}$	$V_{C0+/-} = 0.4V, R_L=300\Omega, C_L=10pF$		556		ns
Turn-on Time	t _{ON}	$V_{C0+/-} = 0.4V, R_L = 300\Omega, C_L = 10pF$		960		ns
Turn-off Time	t _{OFF}	$V_{C0+/-} = 0.4V, R_L = 300\Omega, CL = 10pF$		32		ns

Note:

- (1) Flatness is defined as the difference between maximum and minimum value of ON-resistance at the specified analog signal voltage points.
- (2) R_{ON} matching between channels is calculated by subtracting the channel with the lowest max Ron value from the channel with the highest max Ron value.
- (3) Crosstalk is inversely proportional to source impedance.

TYPICAL PERFORMANCE CURVES

T_A=25°C, V_{DD}=3.3V, unless otherwise noted

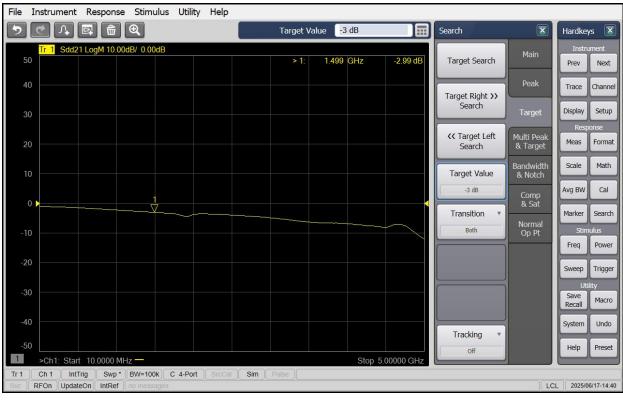
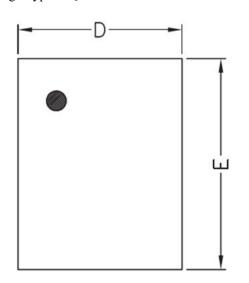
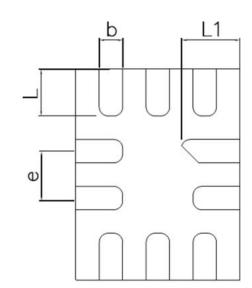
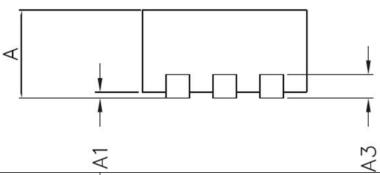


Fig 7. Switch Bandwidth

Fig 8. Switch Cross-Talk

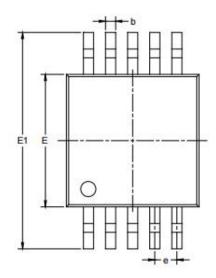


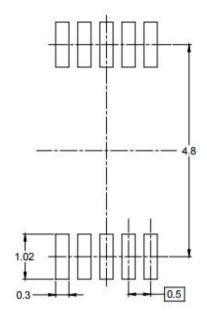

Fig 9. Switch Off Isolation



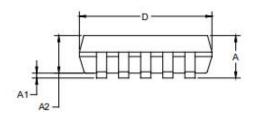
PACKAGE OUTLIHNE DIMENSIONS(All dimensions in mm.)

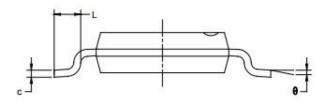
(1) Package Type: UQFN 1.4x1.8 -10L





Symbol	Dimension in Millimeters			
	Min.	Max.		
A	0.450	0.550		
A1	0.000	0.050		
A3	0.152 Ref.			
D	1.350	1.450		
E	1.750	1.850		
ь	0.150	0.250		
e	0.400 Typ.			
L	0.350	0.450		
L1	0.450	0.550		




(2) Package Type: MSOP10

RECOMMENDED LAND PATTERN (Unit: mm)

	Dimensions		Dimensions		
Symbol	In Millimeters		In Inches		
	MIN	MAX	MIN	MAX	
A	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.280	0.007	0.011	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.500BSC		0.020BSC		
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

FSW7227A

Important Notice And Disclaimer

- We reserves the right to change the instruction manual without prior notice.
- Any semiconductor product has a certain possibility of failure or malfunction under specific conditions. The buyer is responsible for complying with safety standards and taking safety measures when using our products for system design and overall manufacturing to avoid potential failure risks that may cause personal injury or property damage.
- The improvement of product quality is endless, our company will be dedicated to provide customers with better products.