

Features

Input voltage:1.5V~6.5V

Output range:1.2V~5.0V

 Maximum output current: 400mA @ VOUT=3.3V

PSRR: 60dB @1KHz

- Dropout voltage:180mV @ IOUT=100mA
- Quiescent current: 0.5µA Typ.
- Shut-down current: <1μA
- Recommend capacitor:1µF
- Built-in Short-Circuit Protection, Current

Limiter

Applications

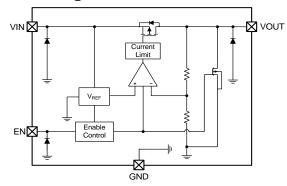
- Radio control systems
- Cellphones, radiophone, digital cameras
- Bluetooth, wireless handsets
- Others portable consumer equipments

General Description

The XC6206-1.2V is a high accuracy, low noise, high speed CMOS Linear regulator with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small. The devices offer a new level of cost effective performance in cellular phones, laptop and notebook computers, and other portable

devices.

The current limiter's fold-back circuit also operates as a short circuit protection and an output current limiter at the output pin.


The XC6206-1.2V regulators are available in standard SOT23-3

packages. Standard products are Pb-free and Halogen-free.

Selection Table

Part No.	Package	Temperature	Tape & Reel
XC6206-1.2V	SOT23-3	-40 ~ +125°C	3000/REEL

Block Diagram

Pin Assignment

SOT23-3 (Top View)

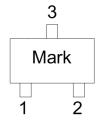


Table1: XC6206-1.2V (SOT23-3 PKG)

PIN NO.	PIN NAME	FUNCTION
1	GND	GND pin
2	VOUT	Output voltage pin
3	VIN	Input voltage pin

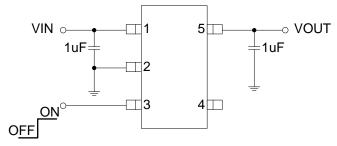
Absolute Maximum Ratings

Input Voltage0.3V to 8V	Storage Temperature55℃ to 150℃
Output Current450mA	Package Lead Soldering Temperature260 °C
Operating Temperature40°C to 125°C	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

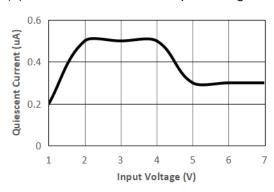
Symbol	Parameter	Package	Max.	Unit
θја	Thermal Resistance (Junction to Ambient) (Assume no ambient airflow, no heat sink)	SOT23-3	260	
P _D	Power Dissipation	SOT23-3	0.40	W

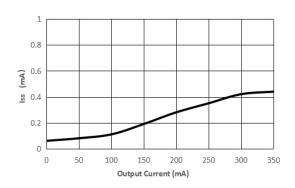

Note: P_D is measured at Ta= 25 °C

Electrical Characteristics

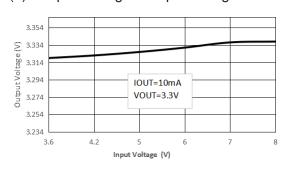
SYMBOL	ITEMS	CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input Voltage		1.5		6.5	V
Vouт	Output Range	Vouт≤2.5V , Iouт=1mA	V _{OUT} -50	V _{OUT}	V _{OUT} +50	mV
		2.5V≤Vouт≤5V , louт=1mA	-2	V _{OUT}	2	%
lα	Quiescent Current	V _{OUT} =3.3V, I _{OUT} =0		0.5		μΑ
LIMIT	Current Limit	V _{IN} =V _{EN} =4.5V		400		mA
V	Dropout Voltage	V _{OUT} =3.3V, I _{OUT} =100mA		180		mV
V_{DROP}		V _{OUT} =3.3V, I _{OUT} =200mA		400		
$\triangle V_{LINE}$	Line Regulation	V _{IN} =2.7~5.5V, I _{OUT} =1mA		0.01	0.15	%/V
$\triangle V_{LOAD}$	Load Regulation	V _{OUT} =3.3V, I _{OUT} =1~300mA		40		mV
Ishort	Short Current	$V_{\text{EN}}=V_{\text{IN}},\ V_{\text{OUT}}$ Short to GND with 1Ω		35		mA
I _{SHDN}	Shut-down Current	V _{EN} =0V			1	μA
PSRR	Power Supply Rejection Rate	V _{IN} =5V _{DC} +0.5V _{P-P} F=1KHz, I _{OUT} =10mA		60		dB
V _{ENH}	EN logic high voltage	V _{IN} =5.5V, I _{OUT} =1mA	1.2		Vin	V
V _{ENL}	EN logic low voltage	V _{IN} =5.5V, V _{OUT} =0V			0.4	V
I _{EN}	EN Input Current	V _{EN} = 0 to 5.5V			1	μА

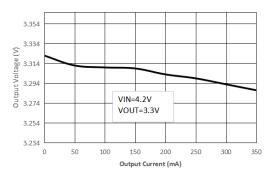
Application Circuits

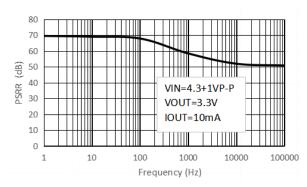



Typical Performance Characteristics

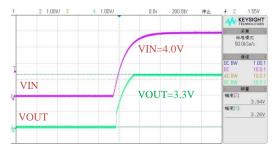
 C_{IN} =1uF, C_{OUT} =1uF, V_{IN} =4.5V, V_{OUT} =3.3V ,SOT23-5, T_{A} =25°C

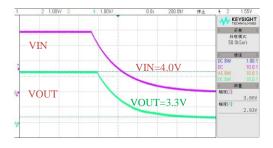

(Unless specified otherwise.Package:SOT23-5L)


(1) Quiescent current vs Input voltage

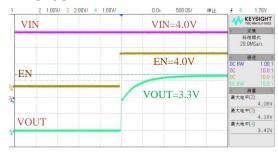


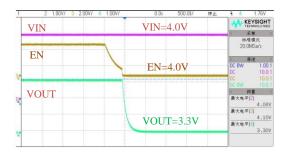
(2) Output Voltage vs Input voltage

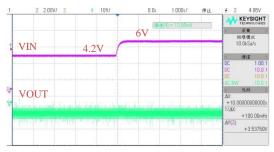


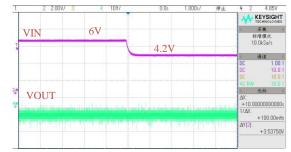


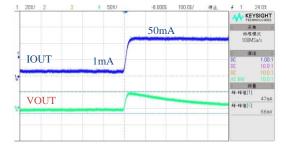
(3) PSRR vs Frequency

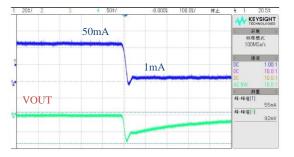



Power ON / OFF




EN ON/OFF



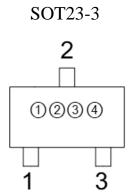

Line Transient

Load Transient

Application Information

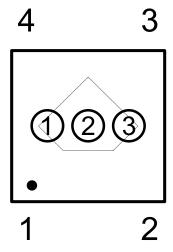
In general, all the capacitors need to be low leakage. Any leakage the capacitors have will reduce efficiency, increase the quiescent current.

A recent trend in the design of portable devices has been to use ceramic capacitors to filter DC-DC converter inputs. Ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, recently, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.


Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energy in the inductance of the power leads. A large voltage spike is created when the stored energy is

transferred from these inductance into the ceramic capacitor. These voltage spikes can easily be twice the amplitude of the input voltage step.

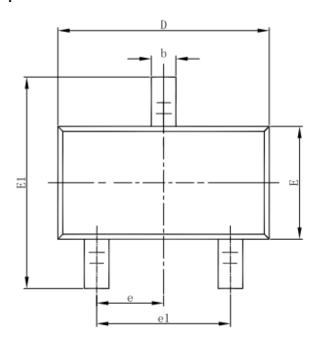
Many types of capacitors can be used for input by-pass, however, caution must be exercised when using multi layer ceramic capacitors (MLCC). Because of the self-resonant be generated under some start-up conditions, such as connecting the LDO input to a live power source.

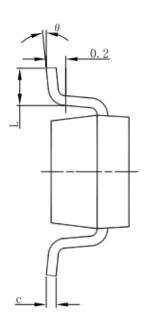

The LDO also requires an output capacitor for loop stability. Connect a 1uF tantalum capacitor from OUT to GND close to the pins. For improved transient response, this output capacitor may be ceramic.

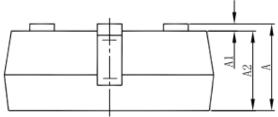
Marking Description

- product code: 4
 output voltage code:
 - Symbol Voltage(V)
 d 1.2

34: The last two of them are based on the time of this product which is the first time into production, the third is the year of this product first time into production, such as expressed in "1" in 2021, in "2" in 2022 and the forth is the mouth of this product first time into production, it can be in 1 ~ 9, which is expressed in "0" in October, in November with an "A", in December with "B"; For example: 4y16 represents XC6206-1.2V product is first put into production in June in 2021.




① output voltage code:


Symbol	Voltage(V)
d	1.2

23: The last two of them are based on the time of this product which is the first time into production, the third is the year of this product first time into production, such as expressed in "1" in 2021, in "2" in 2022 and the forth is the mouth of this product first time into production, it can be in 1 ~ 9 , which is expressed in "0" in October, in November with an "A", in December with "B"; . For example: 4y16 represents XC6206-1.2V product is first put into production in June in 2021.

Package Information 3-pin SOT23-3 Outline Dimensions

Cumb a I	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°