

Document Title	M104GNX1 R1 Product Specification			Page No.	1/27
Document No.		Issue date	2019/07/29	Revision	00

Product Specification

To:

Product Name: M104GNX1 R1

Document Issue Date: 2019/07/29

Customer	InfoVision Optoelectron	ics
<u>SIGNATURE</u>	<u>SIGNATURE</u>	
	REVIEWED BY CQM	
	3	
6/9/6	PREPARED BY FAE	
Please return 1 copy for your confirmation with		
your signature and comments.		

Note: 1. Please contact InfoVision Company before designing your product based on this product.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein.

FQ-7-30-0-009-03D

	V		

Document Title	M104GNX1 R1 Product Specification			Page No.	2/27
Document No.		Issue date	2019/07/29	Revision	00

Revision	Date	Page	Revised Content/Summary	Remark
00	2019/07/29		First issued.	
				X
				~~
				•
			6,9	

Document Title	M104GNX1 R1 Product Specification			Page No.	3/27
Document No.		Issue date	2019/07/29	Revision	00

CONTENTS

1.0	GENERAL DESCRIPTIONS	4
2.0	ABSOLUTE MAXIMUM RATINGS	6
3.0	OPTICAL CHARACTERISTICS	7
4.0	ELECTRICAL CHARACTERISTICS	10
5.0	MECHANICAL CHARACTERISTICS	20
6.0	RELIABILITY CONDITIONS	23
7.0	PACKAGE SPECIFICATION	24
8.0	LOT MARK	25
9.0	GENERAL PRECAUTION	26

Document Title	M104GNX1 R1 Product Specification			Page No.	4/27
Document No.		Issue date	2019/07/29	Revision	00

1.0 General Descriptions

1.1 Introduction

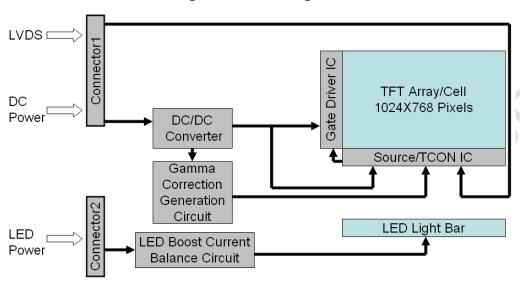
The M104GNX1 R1 is a Color Active Matrix Liquid Crystal Display with a back light system. The matrix uses a-Si Thin Film Transistor as a switching device. This TFT LCD has a 10.4 inch diagonally measured active display area with XGA resolution (1,024 horizontal by 768 vertical pixels array).

1.2 Features

- Supported XGA Resolution
- LVDS Interface
- Compatible with RoHS Standard

1.3 Product Summary

1.5 Froduct Summary				
Items	Specifications	Unit		
Screen Diagonal	10.4	inch		
Active Area (H x V)	211.2 x 158.4	mm		
Number of Pixels (H x V)	1,024 x 768	1		
Pixel Pitch (H x V)	0.2063 x 0.2063	mm		
Pixel Arrangement	R.G.B. Vertical Stripe			
Display Mode	Normally White	-		
White Luminance	350 (Typ.)	cd /m ²		
Contrast Ratio	900 (Typ.)	-		
Response Time	16 (Typ.)	ms		
Input Voltage	3.3 (Typ.)	٧		
Power Consumption	3.72 (Max.)	W		
Weight	300 (Max.)	g		
Outline Dimension (H x V x D)	236.0 (Typ.) x 176.9(Typ.) x 5.70 (Typ.)	mm		
Electrical Interface (Logic)	LVDS	-		
Support Color	262 K/16.7 M	-		
NTSC	50 (Typ.)	%		
Viewing Direction	6 O'clock	-		
Surface Treatment	AG	-		



Document Title	M104GNX1 R1 Product Specification			Page No.	5/27
Document No.		Issue date	2019/07/29	Revision	00

1.4 Functional Block Diagram

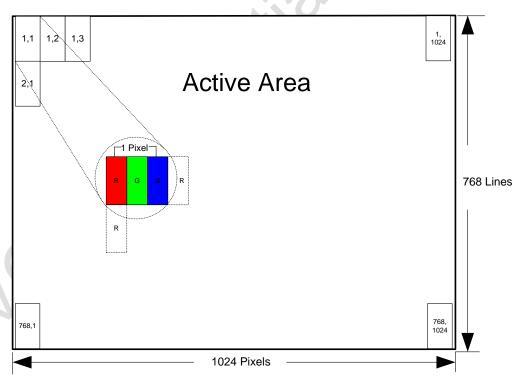

Figure 1 shows the functional block diagram of the LCD module.

Figure 1 Block Diagram

1.5 Pixel Mapping

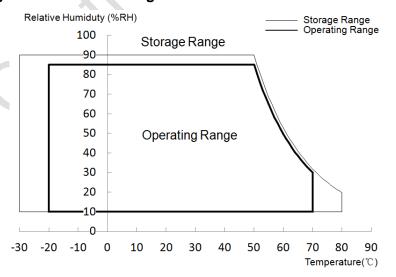
Figure 2 Pixel Mapping

Document Title	M104GNX1 R1 F	M104GNX1 R1 Product Specification			6/27
Document No.		Issue date	2019/07/29	Revision	00

2.0 Absolute Maximum Ratings

Table 1 Electrical & Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
Logic Supply Voltage	V_{DD}	-0.3	3.96	V	
LED Driver Voltage	VLED	-0.3	20	V	(4) (2) (2) (4)
Operating Temperature	Tgs	-20	70	$^{\circ}$ C	(1),(2),(3),(4)
Storage Temperature	Ta	-30	80	$^{\circ}$ C	


Note (1) All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value.

Note (2) All the contents of electro-optical specifications and display fineness are guaranteed under Normal Conditions. All the display fineness should be inspected under normal conditions. Normal conditions are defined as follow: Temperature: 25°C, Humidity: 55± 10%RH.

Note (3) Unpredictable results may occur when it was used in extreme conditions. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature. All the display fineness should be inspected under normal conditions.

Note (4) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 39° C, and no condensation of water. Besides, protect the module from static electricity.

Figure 3 Absolute Ratings of Environment of the LCD Module

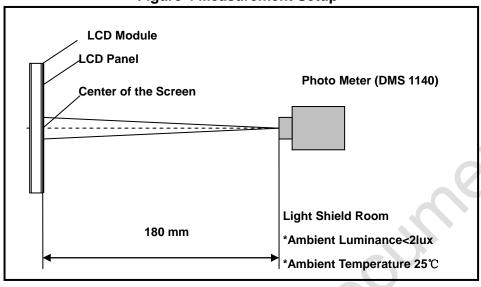
Document Title	M104GNX1 R1 Product Specification			Page No.	7/27
Document No.		Issue date	2019/07/29	Revision	00

3.0 Optical Characteristics

The optical characteristics are measured under stable conditions as following notes.

Table 2 Optical Characteristics

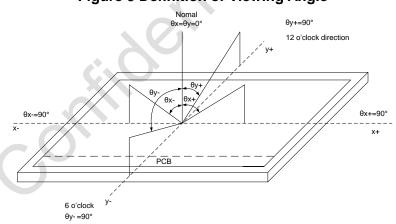
Item	Conditions		Min.	Тур.	Max.	Unit	Note	
	Horizontal	θ x+	70	75	-			
Viewing Angle	Honzontai	θ _{x-}	70	75	-	dograa	(4) (2) (2) (4) (0)	
(CR≥10)	Vertical	θ _{y+}	70	75	-	degree	(1),(2),(3),(4),(8)	
	Vertical	θ _{y-}	70	75	-			
Contrast Ratio	Center		720	900	-		(1),(2),(4),(8) θx=θy=0°	
Response Time	Rising + Fallin	g	-	16	25	ms	(1),(2),(5),(8) $\theta x = \theta y = 0^{\circ}$	
	Red x			0.602		-		
	Red y			0.352		-		
Color	Green x		Тур.	0.320	Тур.	-		
Chromaticity	Green y		-0.03	0.570	+0.03	-	(1),(2),(3),(8)	
(CIE1931)	Blue x		×	0.155		-	θx=θy=0°	
(OIL 1931)	Blue y			0.132		-		
	White x		0.260	0.310	0.360	-		
	White y		0.280	0.330	0.380	-		
NTSC			48	50	-	%	(1),(2),(3),(8) $\theta x = \theta y = 0^{\circ}$	
White	Center		300	350	_	cd/m^2	(1),(2),(6),(8)	
Luminance	Cerner		300	330	_	Cu/III 2	θx=θy=0°	
Luminance	9 Points		75	80	_	%	(1),(2),(7),(8)	
Uniformity	J FOILIG		, ,	00		/0	θx=θy=0°	


Note (1) Measurement Setup:

The LCD module should be stabilized at given temperature (25°C) for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in a windless room.

Document Title	M104GNX1 R1 Product Specification			Page No.	8/27
Document No.		Issue date	2019/07/29	Revision	00

Figure 4 Measurement Setup


Note (2) The LED input parameter setting as:

VLED=12V

PWM_LED: Duty 100 %

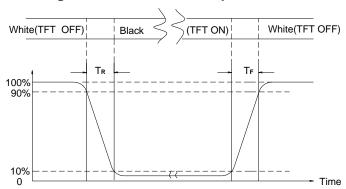
Note (3) Definition of Viewing Angle

Figure 5 Definition of Viewing Angle

Note (4) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression:

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255, L0: Luminance of gray level 0

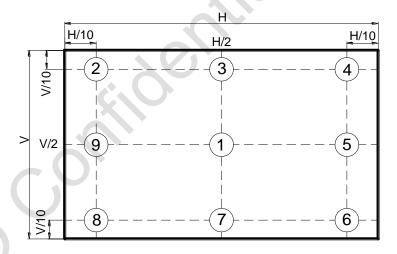
Note (5) Definition of Response Time (T_R, T_F)

Document Title	M104GNX1 R1 Product Specification				9/27
Document No.		Issue date	2019/07/29	Revision	00

Figure 6 Definition of Response Time

Note (6) Definition of Luminance White

Measure the luminance of gray level 255 at center point (Ref.: Active Area)


Note (7) Definition of Luminance Uniformity (Ref.: Active Area)

Measure the luminance of gray level 255 at 9 points.

Luminance Uniformity= Min.(L1, L2, ... L9) / Max.(L1, L2, ... L9)

H-Active Area Width, V-Active Area Height, L-Luminance

Figure 7 Measurement Locations of 9 Points

Note (8) All optical data based on IVO given system & nominal parameter & testing machine in this document.

IVO

InfoVision Optoelectronics (Kunshan)Co., Ltd.

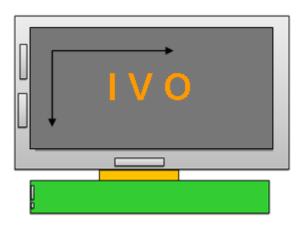
Document Title	M104GNX1 R1 Product Specification			Page No.	10/27
Document No.		Issue date	2019/07/29	Revision	00

4.0 Electrical Characteristics

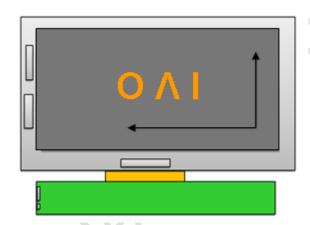
4.1 Interface Connector

Table 3 Signal Connector Type

Item	Description	
Manufacturer / Type	STM/MSB24013P20HA	
Mating Receptacle / Type (Reference)	P24013P20 or compatible	


Table 4 Signal Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	VDD	Power Supply, 3.3V (typical)	-
2	VDD	Power Supply, 3.3V (typical)	-
3	VSS	Ground	-
4			(1)
		{High:2.5(min), 3.3(typ),3.6(max); Low: 0.5(max)}	
5	Rin1-	-LVDS differential data input (R0-R5,G0)	-
6	Rin1+	+LVDS differential data input (R0-R5,G0)	-
7	VSS	Ground	-
8	Rin2-	-LVDS differential data input (G1-G5,B0-B1)	-
9	Rin2+	+LVDS differential data input (G1-G5,B0-B1)	-
10	VSS	Ground	-
11	Rin3-	-LVDS differential data input (B2-B5,HS,VS,DE)	-
12	Rin3+	+LVDS differential data input (B2-B5,HS,VS,DE)	-
13	VSS	Ground	-
14	CIkIN-	-LVDS differential clock input	-
15	ClkIN+	+LVDS differential clock input	-
16	GND	Ground	-
17	Rin4-	-LVDS differential data input (R6-R7,G6-G7,B6-B7)	-
18	Rin4+	+VDS differential data input (R6-R7,G6-G7,B6-B7)	-
19	SEL6/8	6/8 bits LVDS data input selection(H:8bits L/NC:6bits)	H:3.3V L:0V
20	Bist	Internal use	-


Note(1) REV=LOW/NC

Document Title	M104GNX1 R1 Product Specification			Page No.	11/27
Document No.		Issue date	2019/07/29	Revision	00

REV = High

Table 5 LED Connector Name / Designation

Item	Description
Manufacturer / Type	STM/MSB24038P5A
Mating Receptacle / Type (Reference)	P24038P5 or compatible

Table 6 LED Connector Pin Assignment

Pin No.	Symbol	Signal name
1	VCC	12V
2	GND	GND
3	ON/OFF	5V-ON,0V-OFF
4	Dimming	PWM Dimming or Analog Dimming
5	NC	NC

IVO

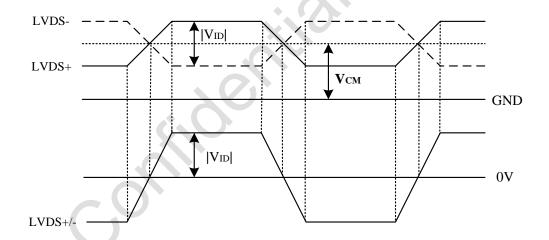
InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Title	M104GNX1 R1 Product Specification			Page No.	12/27
Document No.		Issue date	2019/07/29	Revision	00

4.2 Signal Electrical Characteristics

4.2.1 Signal Electrical Characteristics For LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.


Table 7 LVDS Receiver Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Threshold	Vth	-	-	+100	mV	V _{CM} =+1.2V
Differential Input Low Threshold	VtI	-100	-	ı	mV	V _{CM} =+1.2V
Magnitude Differential Input Voltage	V _{ID}	200	-	600	mV	-
Common Mode Voltage	V_{CM}	1.0	1.2	1.4	V	Vth – Vtl=200 mV
Common Mode Voltage Offset	ΔV_{CM}	-50	-	50	mV	Vth – Vtl=200 mV

Note (1) Input signals shall be low or Hi- resistance state when VDD is off.

Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

Figure 8 Voltage Definitions

Document Title	M104GNX1 R1 F	M104GNX1 R1 Product Specification			13/27
Document No.		Issue date	2019/07/29	Revision	00

Figure 9 Measurement System

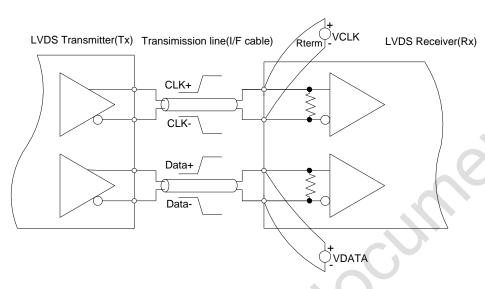


Figure 10 Data Mapping (6 Bit)

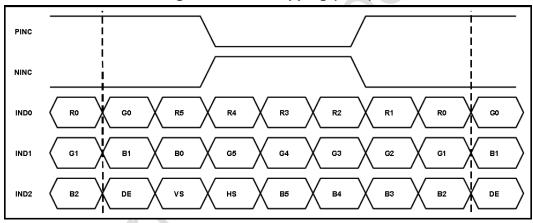
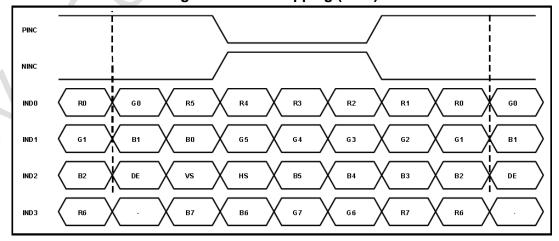



Figure 11 Data Mapping (8 Bit)

Document Title	M104GNX1 R1 F	4GNX1 R1 Product Specification			14/27
Document No.		Issue date	2019/07/29	Revision	00

4.2.2 LVDS Receiver Internal Circuit

Figure 12 LVDS Receiver Internal Circuit shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link.

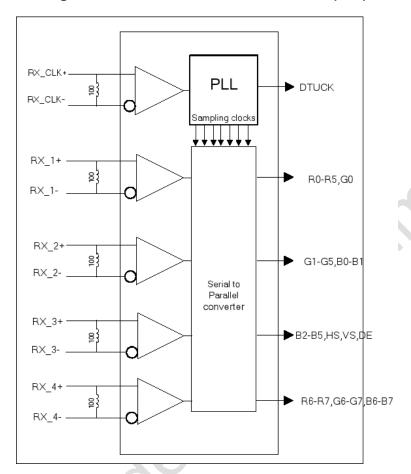

RX_CLK+ PLL ■ DTCLK RX_CLK-Sampling clocks RX_1+ ► G0,R5,R4,R3,R2,R1,R0 RX_1-RX_2+ Serial-to-parallet → B1,B0,G5,G4,G3,G2,G1 converter RX_2-RX_3+ DE,VS,HS,B5,B4,B3,B2 RX 3-

Figure 12 LVDS Receiver Internal Circuit (6bit)

Document Title	M104GNX1 R1 F	M104GNX1 R1 Product Specification			15/27
Document No.		Issue date	2019/07/29	Revision	00

Figure 13 LVDS Receiver Internal Circuit (8bit)

Document Title	M104GNX1 R1 F	4GNX1 R1 Product Specification			16/27
Document No.		Issue date	2019/07/29	Revision	00

4.3 Interface Timings

Table 8 Interface Timings

Parameter	Symbol	Min.	Тур.	Max.	Unit
LVDS Clock Frequency	Fclk	52	65	71	MHz
H Total Time	HT	1,114	1,344	1,400	Clocks
H Active Time	HA		1,024		Clocks
V Total Time	VT	778	806	845	Lines
V Active Time	VA		768	0	Lines
Frame Rate	FV	55	60	65	Hz

Document Title	M104GNX1 R1 Product Specification F		Page No.	17/27	
Document No.		Issue date	2019/07/29	Revision	00

4.4 Input Power Specifications

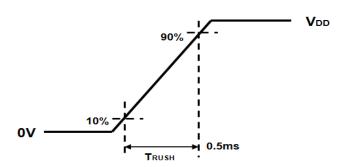
Input power specifications are as follows.

Table 9 Input Power Specifications

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
System Power Supply							
LCD Drive Vol	LCD Drive Voltage (Logic)		3.0	3.3	3.6	V	(1), (2)
VDD Current	Black Pattern	I _{DD}	-	-	0.25	Α	
VDD Power Consumption	Black Pattern	P_{DD}	-	-	0.84	W	(1),(3)
Rush Current		I _{Rush}	-	-	1.5	А	(1),(4)
Allowable Logi	c/LCD	V		_	200	mV	(1)
Drive Ripple V	oltage	V_{VDD-RP}	-	-	200	IIIV	(1)
LED Power Supply							
LED Input Volt	age	V_{LED}	10.8	12	12.6	V	(1),(2)
LED Power Co	nsumption	P _{LED}	-)	2.88	W	(1),(5)
LED Forward \	/oltage	V_{F}	2.8	3.2	3.6	V	
LED Forward (Current	I _F	-	20	30	mA	
PWM Signal	High	\/	2.2	5	5.5	V	(4) (0)
Voltage	Low	V_{PWM}	0	-	0.4	V	(1),(2)
LED Enable	High		2.0	5	5.5	V	
Voltage Low		V_{LED_EN}	0	-	0.4	V	
Input PWM Fre	Input PWM Frequency		100	-	1K	Hz	(1),(2),(6)
Duty Ratio		PWM	5	-	100	%	(1),(7)
LED Life Time		LT	30,000	-	-	Hours	(1)(8)

Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm 10\%$ RH.

Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.


Note (3) The specified V_{DD} current and power consumption are measured under the V_{DD} = 3.3 V, F_{V} = 60 Hz condition and Black pattern.

Note (4) The figures below is the measuring condition of V_{DD} . Rush current can be measured when T_{RUSH} is 0.5 ms.

Document Title	M104GNX1 R1 F	104GNX1 R1 Product Specification			18/27
Document No.		Issue date	2019/07/29	Revision	00

Figure 14 V_{DD} Rising Time

Note (5) The power consumption of LED Driver are under the V_{LED} = 12.0V, Dimming of Max luminance.

Note (6) Although acceptable range as defined, the dimming ratio is not effective at all conditions.

The PWM frequency should be fixed and stable for more consistent luminance control at any specific level desired.

Note (7) The operation of LED Driver below minimum dimming ratio may cause flickering or reliability issue.

Note (8) The life time is determined as the sum of the lighting time till the luminance of LCD at the typical LED current reducing to 50% of the minimum value under normal operating condition.

Document Title	M104GNX1 R1 F	4GNX1 R1 Product Specification			19/27
Document No.		Issue date	2019/07/29	Revision	00

4.5 Power ON/OFF Sequence

Interface signals are also shown in the chart. Signals from any system shall be Hi- resistance state or low level when VDD voltage is off.

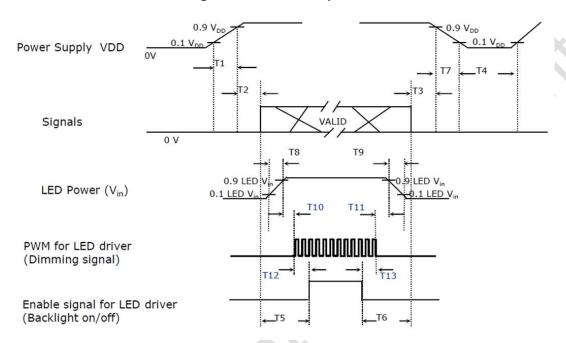
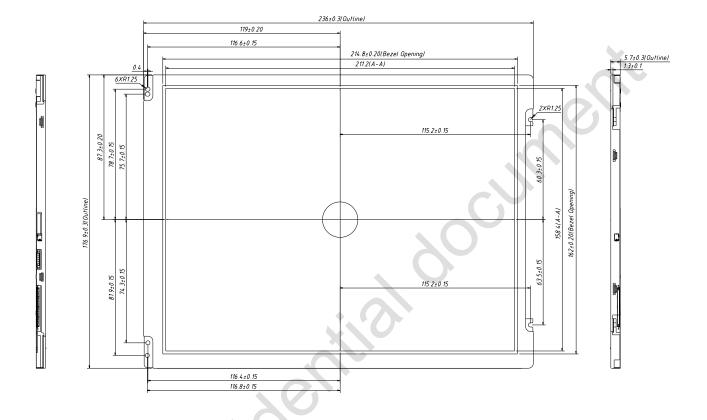


Figure 15 Power Sequence

Table 10 Power Sequencing Requirements

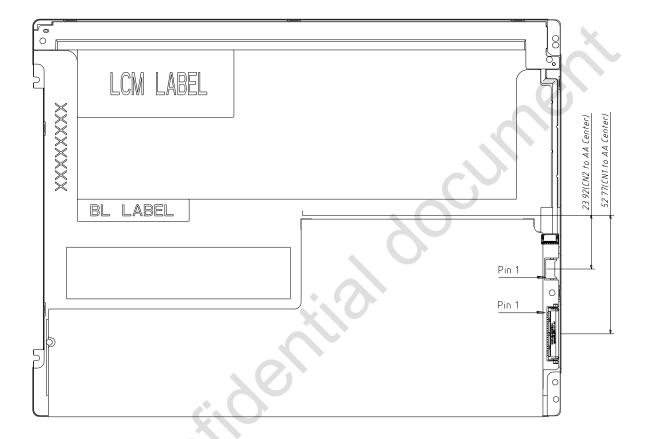
Parameter	Symbol	Min.	Тур.	Max.	Unit
VDD rising time from 10% to 90%	T1	0.5	-	10	ms
Delay from VDD to valid data at power ON	T2	30	-	50	ms
Delay from valid data OFF to VDD OFF at power OFF	Т3	0	-	50	ms
VDD OFF time for windows restart	T4	500	-	1	ms
Delay from valid data to B/L enable at power ON	T5	200	-	ı	ms
Delay from valid data off to B/L disable at power Off	Т6	200	•	ı	ms
VDD falling time from 90% to 10%	T7	0.5	-	10	ms
LED Vin rising time from 10% to 90%	Т8	0.5	-	10	ms
LED Vin falling time from 90% to 10%	Т9	0.5	-	10	ms
Delay from LED driver Vin rising time 90% to PWM ON	T10	0	-	ı	ms
Delay from PWM Off to LED driver Vin falling time 10%, Must keep rule	T11	0	-	ı	ms
Delay from PWM ON to B/L Enable ON, Must keep rule	T12	0	-		ms
Delay from B/LEnable Off to PWM Off	T13	0	-	-	ms



Document Title	M104GNX1 R1 Product Specification			Page No.	20/27
Document No.		Issue date	2019/07/29	Revision	00

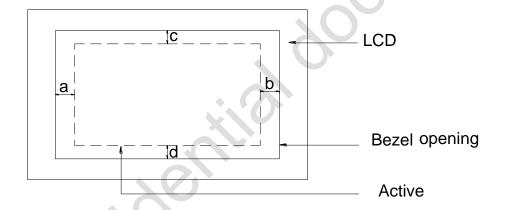
5.0 Mechanical Characteristics

5.1 Outline Drawing


Figure 16 Reference Outline Drawing (Front Side)

Document Title	M104GNX1 R1 F	104GNX1 R1 Product Specification			21/27
Document No.		Issue date	2019/07/29	Revision	00

Figure 17 Reference Outline Drawing (Back Side)


Document Title	M104GNX1 R1 F	4GNX1 R1 Product Specification				
Document No.		Issue date	2019/07/29	Revision	00	

5.2 Dimension Specifications

Table 11 Module Dimension Specifications

Item	Min.	Тур.	Max.	Unit
Width	235.7	236.0	236.3	mm
Height	176.6	176.9	177.2	mm
Thickness	5.4	5.7	6.0	mm
Weight	-	-	300	g
BM: a-b & c-d		≤1.0		mm

Figure 18 BM Area

Document Title	M104GNX1 R1 F	4GNX1 R1 Product Specification					
Document No.		Issue date	2019/07/29	Revision	00		

6.0 Reliability Conditions

Table 12 Reliability Condition

Ite	m	Package	Test Conditions	Note
High Temperature	Operating Test	Module	T _{gs} =70℃, 240 hours	(1),(2),(3),(4)
Low Temperature	Operating Test	Module	T _a =-20°C, 240 hours	(1),(2),(3),(4)
High Temperature	Storage Test	Module	T _a =80℃, 240 hours	(1),(3),(4)
Low Temperature	Storage Test	Module	T _a = -30°C, 240 hours	(1),(3),(4)
High Temperature Storage Test	/High Humidity	Module	T _a =50℃, 90%RH, 240 hours	(1),(3),(4)
High Temperature Operating Test	/High Humidity	Module	T _{gs} =50°C, 85%RH, 240 hours	(1),(2),(3),(4)
			3 shock in each direction	
Shock Non-opera	ting Test	Module	Peak acceleration:981m/s2	(1) (3) (5)
			Half Sine Wave; 6ms.	(1),(3),(5)
Vibration Non one	vrating Tost	Module	1.5G , 10~500 Hz , x、y、z each	
Vibration Non-ope	erating rest	iviodule	axis/1hour.	
	Operating		Contact ± 8 KV, 150pF(330Ohm)	
ESD Test	Operating	Madula	Air ± 15 KV, 150pF(3300hm)	(4) (2) (6)
	Non operating	Module	Contact ± 10 KV, 150pF(330Ohm)	(1),(2),(6)
	Non-operating		Air ± 20 KV, 150pF(330Ohm)	

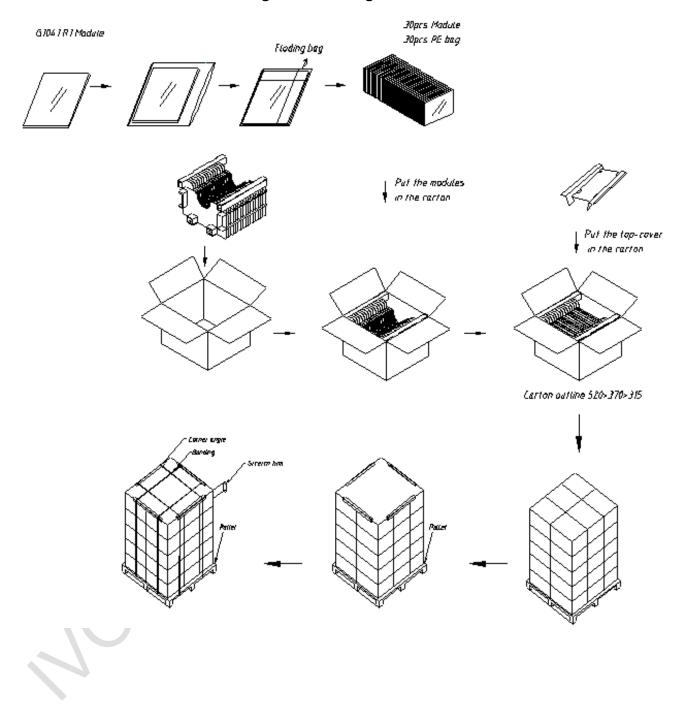
Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the IVO document before reliable test. Only check the function of the module after reliability test.

Note (2) The setting of electrical parameters should follow the typical value before reliability test.

Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the module from static electricity.

Note (4) The sample must be released for 24 hours under normal conditions before judging. Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm 10\%$ RH. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature.

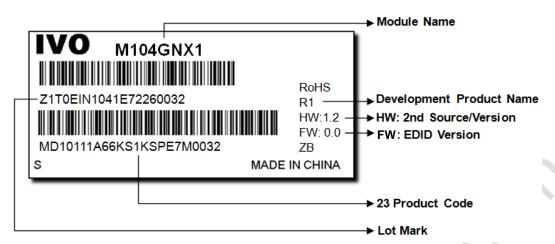
Note (5) The module should be fixed firmly in order to avoid twisting and bending.


Note (6) It could be regarded as pass, when the module recovers from function fault caused by ESD after resetting.

Document Title	M104GNX1 R1 F	4GNX1 R1 Product Specification					
Document No.		Issue date	2019/07/29	Revision	00		

7.0 Package Specification

Figure 19 Packing Method



IVO

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Title	M104GNX1 R1 F	Page No.	25/27		
Document No.		Issue date	2019/07/29	Revision	00

8.0 Lot Mark

Note: This picture is only an example.

8.1 20 Lot Mark

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	17 18	19 20
--	-------	-------

Code 1,2,4,5,6,7,8,9,10,11,16: IVO internal flow control code.

Code 3: Production Location.

Code 12: Production Year.

Code 13: Production Month.

Code 14,15: Production Day.

Code 17,18,19,20: Serial Number.

8.2 23 Product Barcode

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	

Code 1,2: Manufacture District.

Code 3,4,5,6,7: IVO internal module name.

Code 8,9,10,13,16: IVO internal flow control code.

Code 11,12: Cell location Suzhou, China defined as "KS".

Code 14,15: Module location Kunshan, China defined as "KS"; Yangzhou, China defined as "YZ"; Shenzhen, China defined as "SE"; Zhuhai, China defined as "ZH"; Suzhou, China defined as "SZ".

Code 17,18,19: Year, Month, Day refer to Note(1), Note(2) and Note(3).

Note (1) Production Year

Year	2006	2007	2008	2009	2010	2011	2012	2013	•••••	2035
Mark	6	7	8	9	Α	В	С	D		Z

Note (2) Production Month

Month	Jan.	Feb.	Mar.	Apr.	Мау.	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

Note (3) Production Day: 1~V. Code 20~23 : Serial Number.

Document Title	M104GNX1 R1 F	4GNX1 R1 Product Specification				
Document No.		Issue date	2019/07/29	Revision	00	

9.0 General Precaution

9.1 Using Restriction

This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems and any other appliance where performance failure could be life-threatening or lead to be catastrophic.

9.2 Operation Precaution

(1) The LCD product should be operated under normal conditions.

Normal conditions are defined as below:

Temperature: 25°C Humidity: 55±10%

Display pattern: continually changing pattern (Not stationary)

- (2) Brightness and response time depend on the temperature. (It needs more time to reach normal brightness in low temperature.)
- (3) It is necessary for you to pay attention to condensation when the ambient temperature drops suddenly. Condensate water would damage the polarizer and electrical contacted parts of the module. Besides, smear or spot will remain after condensate water evaporating.
- (4) If the absolute maximum rating value was exceeded, it may damage the module.
- (5) Do not adjust the variable resistor located on the module.
- (6) Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding may be important to minimize the interference.
- (7) Image sticking may occur when the module displayed the same pattern for long time.
- (8) Do not connect or disconnect the module in the "power on" condition. Power supply should always be turned on/off by the "power on/off sequence"
- (9) Ultra-violet ray filter is necessary for outdoor operation.

9.3 Mounting Precaution

- (1) All the operators should be electrically grounded and with Ion-blown equipment turning on when mounting or handling. Dressing finger-stalls out of the gloves is important for keeping the panel clean during the incoming inspection and the process of assembly.
- (2) It is unacceptable that the material of cover case contains acetic or chloric. Besides, any other material that could generate corrosive gas or cause circuit break by electro-chemical reaction is not desirable.
- (3) The case on which a module is mounted should have sufficient strength so that external force is not transmitted to the module directly.
- (4) It is obvious that you should adopt radiation structure to satisfy the temperature specification.
- (5) It should be attached to the system tightly by using all holes for mounting, when the module is assembled. Be careful not to apply uneven force to the module, especially to the PCB on the back.
- (6) A transparent protective film needs to be attached to the surface of the module.

Document Title	M104GNX1 R1 F	//104GNX1 R1 Product Specification				
Document No.		Issue date	2019/07/29	Revision	00	

- (7) Do not press or scratch the polarizer exposed with anything harder than HB pencil lead. In addition, don't touch the pin exposed with bare hands directly.
- (8) Clean the polarizer gently with absorbent cotton or soft cloth when it is dirty.
- (9) Wipe off saliva or water droplet as soon as possible. Otherwise, it may cause deformation and fading of color.
- (10) Clean the panel gently with absorbent cotton or soft cloth when it is dirty. Ethanol(C₂H₅OH) is allowed to be used. Ketone (ex. Acetone), Toluene, Ethyl acid, Methyl chloride, etc are not allowed to be used for cleaning the panel, which might react with the polarizer to cause permanent damage.
- (11) Do not disassemble or modify the module. It may damage sensitive parts in the LCD module, and cause scratches or dust remains. IVO does not warrant the module, if you disassemble or modify the module.

9.4 Handling Precaution

- (1) Static electricity will generate between the film and polarizer, when the protection film is peeled off. It should be peeled off slowly and carefully by operators who are electrically grounded and with Ion-blown equipment turning on. Besides, it is recommended to peel off the film from the bonding area.
- (2) The protection film is attached to the polarizer with a small amount of glue. When the module with protection film attached is stored for a long time, a little glue may remain after peeling.
- (3) If the liquid crystal material leaks from the panel, keep it away from the eyes and mouth. In case of contact with hands, legs or clothes, it must be clean with soap thoroughly.

9.5 Storage Precaution

When storing modules as spares for long time, the following precautions must be executed.

- (1) Store them in a dark place. Do not expose to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) It is recommended to use it in a short-time period, after it's unpacked. Otherwise, we would not guarantee the quality.

9.6 Others

When disposing LCD module, obey the local environmental regulations.