

MODEL NO :	TM133VDGP01-00
MODEL VERSION:	00
SPEC VERSION:	1.0
ISSUED DATE:	2020-04-27
	Specification set Specification

Customer :

Approved by	Notes

TIANMA Confirmed:

Prepared by	Checked by	Approved by
Mingxu_Xiao	Guangkun_An	XiaoXing_Ding

This technical specification is subjected to change without notice

Table of Contents

Tab	le of Contents	2
Red	cord of Revision	3
	General Specifications	
	Input/Output Terminals	
	Absolute Maximum Ratings	
	Electrical Characteristics	
	Timing Chart	
	Optical Characteristics	
7	Environmental / Reliability Test	14
8	Mechanical Drawing	
	Packing Drawing	
	Precautions for Use of LCD Modules	

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2020-04-27	Preliminary release.	Mingxu xiao

	Feature	Spec		
	Size	13.3inch		
	Resolution	1920×1080		
	Technology Type	a-Si TFT		
	Pixel Configuration	R.G.B. Vertical Stripe		
Display Spec.	Pixel pitch(mm)	0.153*0.153		
	Display Mode	Transmissive, Normally Black		
	Surface Treatment	AG		
	Viewing Direction	All		
	Gray Scale Inversion Direction	NA		
	LCM (W x H x D) (mm)	305.35*178.56*3.7mm		
	Active Area(mm)	293.76*165.24		
Mechanical	With /Without TSP	Without TSP		
Characteristics	Matching Connection Type	IPEX 20455-030E-76		
	LED Numbers	64		
	Weight (g)	TBD		
Flactoical	Interface	EDP1.2		
Electrical Characteristics	Color Depth	16.7 M		
	Driver IC	RM91M39FB		

2 Input / Output Terminals

Pin No.	Symbol	I/O	Function	Remark
1	NC	-	No connect	
2	GND	Р	Ground	
3	D1-	I	eDP Rx lane 1, negative	
4	D1+	I	eDP Rx lane 1, positive	
5	GND	Р	Ground	
6	D0-	I	eDP Rx lane 0, negative	
7	D0+	I	eDP Rx lane 0, positive	
8	GND	Р	Ground	
9	AUX+	I/O	Edp AUX ch, positive	
10	AUX-	I/O	Edp AUX ch, negative	
11	GND	Р	Ground	
12	VCC	Р	Power for LCD 3.3V	
13	VCC	Р	Power for LCD 3.3V	
14	NC	-	No connect	
15	GND	Р	Ground	
16	GND	Р	Ground	
17	Edp_HPD	I/O	Hot Plug Detection	
18	PWM	I	BLU Diming	
19	NC	-	No connect	
20	VCC_LED-	Р	BL Ground	
21	VCC_LED-	Р	BL Ground	
22	VCC_LED-	Р	BL Ground	
23	VCC_LED-	Р	BL Ground	
24	VCC_LED-	Р	BL Ground	
25	VCC_LED-	Р	BL Ground	
26	EDP_LED_EN	1	BLU Enable	
27	NC	-	No connect	
28	VCC_LED+	Р	Power for BLU (12V type)	
29	VCC_LED+	Р	Power for BLU (12V type)	
30	NC FRO	-	No connect	

Note1: Please add the FPC connector type and matched one if necessary.

Note2: I——Input, O——Output, P——Power/Ground

GND=0V

Item	Symbol	MIN	MAX	Unit	Remark
Power Voltage	VCC	0.3	4.5	V	
BL_POWER Input	VCC_LED+	-0.3	28	V	
BL_PWM signal input	PWM	-0.3	5.5	V	
BL ENABLE	EDP_LED_E N	-0.3	-0.3 5.5		
Operating Temperature	Тор	-20	70	$^{\circ}$	
Storage Temperature	Tst	-30	80	$^{\circ}$ C	

Table 3 Absolute Maximum Ratings

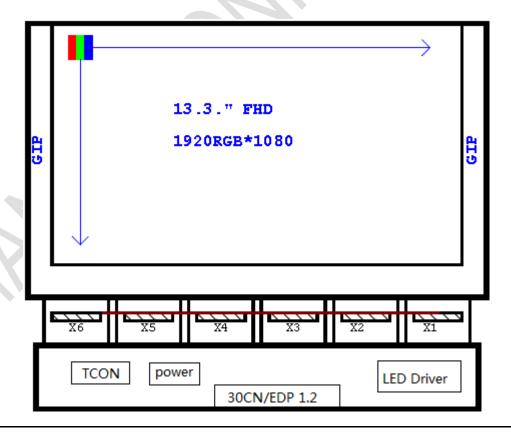
4 Electrical Characteristics

4.1 Driving TFT LCD Panel

GND=0V, Ta=25°C

Item	Symbol	MIN	TYP	MAX	Unit	Remark
Power Supply for LCD	VCC	3.2	3.3	34	V	
Hot plug Detect	Edp_HPD		3.3		V	TCON output HPD 3.3Vtyp
LCD Power Consumption	P_VDD		TBD		W	Test at White pattern

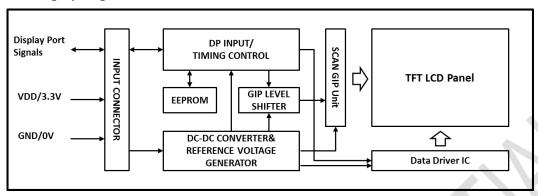
Note1: Input voltage include all MIPI data and clock


4.2 Backlight Unit Driving Condition

ND=0V, Ta=25°C

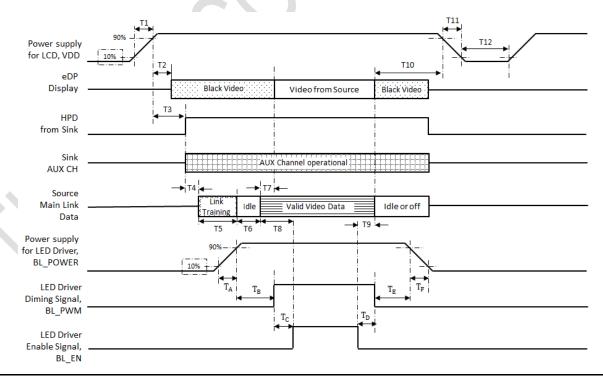
Ite	em	Symbol	Min	Тур	Max	Unit	Remark	
Backlight power	Backlight power supply voltage		11.5	12	12.5	V		
Backlight power	supply current	I _{VCC_LED+}	ı	TBD		Α		
Backlight power	consumption	P_LED	-	TBD		W		
Input voltage for	High level	-	1.3	-	5	V		
PWM signal	Low level	-	0	1	0.15	V		
Input voltage for	High level	1	1.6	ı	5	V		
VLED_EN	Low level	-	0	-	1	V		
VLED_PWM frequency		Fpwm	100	-	20k	HZ		
VLED_PWM duty		D	1		100	%	Note1	
LED life time				30000		H		

Note 1:_If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data


4.3 BLOCK DIAGRAM

5 Timing Chart

5.1 Display Edp1.2 Reference Circuit



5.2 eDP1.2 Data Format

24 bpp RGB Mapping to a Two Lane Main Link

24 bpp NGB Mapping to a Two Lane Main Link					
Lane 0	Lane 1				
R0-7:0	R1-7:0				
G0-7:0	G1-7:0				
B0-7:0	B1-7:0				
R2-7:0	R3-7:0				
G2-7:0	G3-7:0				
B2-7:0	B3-7:0				
R4-7:0	R5-7:0				
G4-7:0	G5-7:0				
B4-7:0	B5-7:0				

5.3 POWER ON/OFF SEQUENCE

Param	Description	Reqd.	Regd. Value		Unit	Notes
eters	Description	by	Min	Max	Unit	Notes
T1	Power tail rise time, 10% to 90%	Source	0.5	10	ms	-
T2	Delay from LCD VDD to black video generation	Sink	0	200	ms	Automatic Black Video generation prevents display noise until valid video data is received from the Source
Т3	Delay from LCD VDD to HPD high	Sink	0	200	ms	Sink AUX Channel must be operational upon HPD high
T4	Delay from HPD high to link training initialization	Source	-	-	ms	Allows for source to read Link capacity and initialize
T5	Link training duration	Source	-	-	ms	Dependent on Source link training Protocol
Т6	Link Idle	Source	-	-	ms	Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization
Т7	Delay from valid video Data from Source to video on display	Sink	0	50	ms	Max value allows for Sink to valid video Data and Timing. At the end of T7, Sink will indicate the detection of valid video data by setting SINK_STATUS bit to logic 1(DPCD 00205h, bit 0), and Sink will no longer generate automatic Black video
Т8	Delay from valid video Data from Source to Backlight on	Source	-	-	ms	Source must assure display video is stable
Т9	Delay from Backlight off to end of valid video Data	Source	-	-	ms	Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video.
T10	Delay from end of valid video data from Source to Power off	Source	0	500	ms	Black video will be displayed after receiving idle or off signals from Source
T11	LCD VDD power rail fall time, 90% to 10%	Source	-	10	ms	-
T12	LCD VDD Power off time	Source	500	-	ms	-
T _A	BL_POWER rail rise time, 10% to 90%	Source	0.5	10	ms	-
T_{F}	BL_POWER rail fall time, 90% to 10%	Source	-	10	ms	-
T _B	Delay from BL_POWER to Dimming signal BL_PWM on	Source	0	-	ms	-
T _E	Delay from Dimming signal BL_PWM off to BL_POWER off	Source	0	-	ms	-
T _C	Delay from diming signal BL_PWM on to Enable signal BL_EN on	Source	0	-	ms	-
T_{D}	Delay from Enable signal BL_EN off to diming signal BL_PWM off	Source	0	-	ms	-

5.4 DP Characteristics

5.4.1 Aux Channel Characteristics

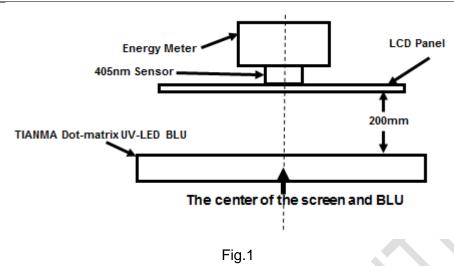
ı		Symbol and Parameter	Test Conditions	Min	Typ ²	Max	Unit
Ī	UI:	Unit Interval for AUX channel		0.4	0.5	0.6	μs
	VAUX-TX_DIFF-p-p:	AUX differential peak-to-peak voltage when driving (TX)		400		1000	mV
١	Vaux-rx_diff-p-p:	AUX differential peak-to-peak voltage when receiving (RX)		250		1360	mV
	VAUX-DC-CM-RX: VAUX-DC-CM-TX:	AUX common mode voltage when receiving AUX common mode voltage when transmitting			GND 0.15		V V
	laux-short:	AUX channel short circuit current				20	mA
	RAUX-DIFF: RAUX-SE:	Differential termination resistance Single-ended termination resistance		80 40	100 50	120 60	Ω Ω
L	Caux:	AUX AC coupling capacitor		75		200	nF

5.4.2 Main Link Characteristics

Symbol and Parameter	Test Conditions	Min	Typ ²	Max	Unit
Spread spectrum clock, down-spreading by SOURCE			0.5		%
VRX-DIFF _{P-P} : Differential peak-to-peak input voltage at package pins		100		1320	mV
Maximum adaptive/programmable equalization level at 1.35GHz			9		dB
VRX_DC_CM: Rx input DC common mode voltage RRX-DIFF: Differential termination resistance RRX-SE: Single-ended termination resistance		80 40	GND 100	120 60	V Ω Ω
IRX_SHORT: Rx short circuit current limit				20	mA
LRX_SKEW_INTRA_PAIR: Intra-pair skew at Rx package pins (HBR) RX intra-pair skew tolerance at HBR				150	ps
LRX_SKEW_INTRA_PAIR: Intra-pair skew at Rx package pins (RBR) RX intra-pair skew tolerance at RBR				300	ps
Receiver Jitter Tolerance for High Bit Rate (HBR) Total jitter tolerance at 2MHz Total jitter tolerance at 10MHz Total jitter tolerance at 20MHz Total jitter tolerance at 100MHz		1227 548 505 491			mUI mUI mUI mUI
Receiver Jitter Tolerance for Reduced Bit Rate (RBR) Total jitter tolerance at 2MHz Total jitter tolerance at 10MHz Total jitter tolerance at 20MHz		1648 778 747			mUI mUI mUI

6 Optical Characteristics

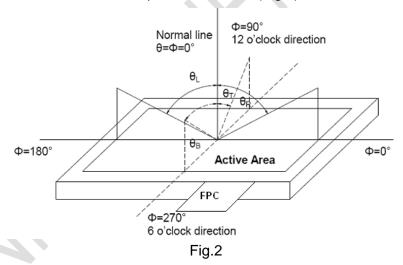
Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
		θТ			80	-		
View Angles		θВ	CR≧10		80	1	Dograd	Note2
View Aligi	162	θ L θ C			80	ı	Degree	
		θR			80	ı		
Contrast Ratio		CR	θ=0°		1000	ı	-	Note1,3
Response Time		T_ON	25℃	25℃ - 25		35	ms	Note 4
Response	Response Time		25 0		20 3	3	1115	11016 4
	White	х		0.259	0.309	0.359		
	VVIIILE	У		0.275	0.325	0.375		
	Red	x		0.586	0.636	0.686		
Chromaticity	Neu	У	Backlight is	0.291	0.341	0.391	_	
Cilioniaticity	Green	x	on	0.28	0.33	0.38		
	Green	У		0.575	0.625	0.675	-	
	Blue	х		0.103	0.153	0.203		
	Diue	У		0.024	0.074	0.124	-	
Uniformity		U	-	75		-	%	Note1,5
NTSC		-		67	72	-	%	
Luminance				270	320			


Test Conditions:

- 1. The ambient temperature is 25 °C.
- 2. The test systems refer to Note 1 (Excluding viewing angle and response time test).
- 3. Viewing Angle and Response Time test method follow the normal LCD test method.

Note 1: (1) Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen (Excluding Uniformity test). All input terminals LCD panel must be ground when measuring the center area of the panel.



(2) Test instrument and recipe.

As shown in the Fig.1, all optics are measured under a collimating dot-matrix LED backlight, which emitting a wave of 405nm. Energy meter AccuMAXTM –XS-405 is used to measure the following mentioned energy value, the LCD panel is 200mm away from the UV-LED surface. The transmissive energy value of LCD at white state is 2mW/cm^2.(Fig.1)

Note 2: Definition of viewing angle range and measurement system.

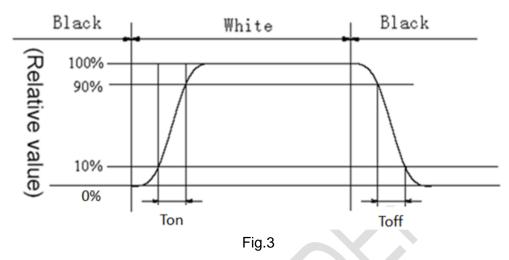
viewing angle is measured at the center point of the LCD.(Fig.2)

Note 3: Definition of contrast ratio

Contrast Ration(CR) = Energy value measured when LCD is on the "White" state

Energy value measured when LCD is on the "Black" state

"White state ": The state is that the LCD should be driven by Vwhite.


"Black state": The state is that the LCD should be driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.(Fig.3)

Note 5: Definition of Energy Uniformity

Active area is divided into 9 measuring areas (Fig. 4). Every measuring point is placed at the center of BLU center.

Energy Uniformity (U) = Emin / Emax

L----- Active area length W---- Active area width

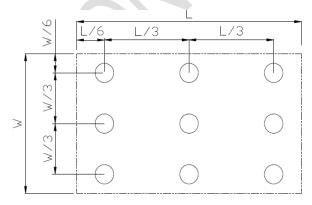


Fig.4

Emax: The measured Maximum Energy value of all the measurement positions.

Emin: The measured Minimum Energy value of all the measurement positions.

Note 6: Definition of transmittance:

Transmittance = Energy value measured when LCD is on the "White" state

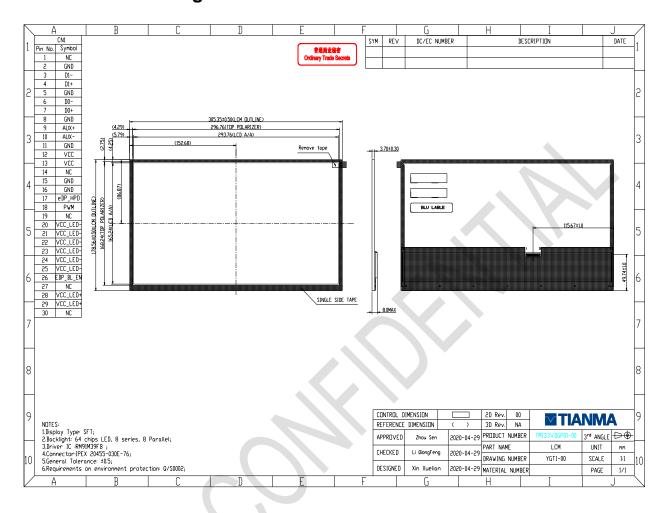
Energy value measured from BLU

7 Environmental / Reliability Test

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts=70℃,240H	IEC60068-2-1:2007,GB 2423.2-2008
2	Low Temperature Operation	Ta=-20℃,240H	IEC60068-2-1:2007 GB2423.1-2008
3	High Temperature Storage	Ta=80°C,240H	IEC60068-2-1:2007 GB2423.2-2008
4	Low Temperature Storage	Ta=-30℃,240H	IEC60068-2-1:2007 GB2423.1-2008
5	Operation at High Temperature and Humidity	60°C90%RH/240H	IEC60068-2-78 :2001 GB/T2423.3—2006
6	Thermal Shock (non-operation)	'-30°C/30min、80°C/30min 100cycles、1H/Cycle,5min	IEC60068-2-14:1984,G B2423.22-2002
7	Electro Static Discharge (operation)	C=150pF,R=330Ω; Contact:±4Kv, 5times; Air:±8KV,5times;	IEC61000-4-2:2001 GB/T17626.2-2006
8	Vibration (non-operation)	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz ~ 55Hz ~ 10Hz 2hours for each direction of X.Y.Z (6 hours total)	IEC60068-2-6:1982 GB/T2423.10—1995
9	Shock (non-operation)	60G 6ms, ±X,±Y,±Z 3 times for each direction	IEC60068-2-27:1987 GB/T2423.5—1995
8 Package Drop Test		Height:60 cm,1 corner, 3 edges, 6 surfaces	IEC60068-2-32:1990 GB/T2423.8—1995

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.


Note3: Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Note4: In the standard condition, there shall be no practical problem that may affect the display function.

After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

8 Mechanical Drawing

TBD

10 Precautions for Use of LCD Modules

- 10.1 Handling Precautions
- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
 - 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 10.2 Storage precautions
 - 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:
- Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80\%$
 - 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 10.3 Transportation Precautions
 - 10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.