

■ FEATURES 特征

- No cross coupling due to magnetic shield. 良好的磁屏蔽, 无交叉耦合
- Excellent solderability and high heat resistance. 良好的可焊性和耐焊性
- Higher DC bias current and lower DC resistance due to trench technology.

采用沟槽工艺,提高了偏置电流,降低了直流电阻

• Operating Temp: $-40^{\circ} \sim +125^{\circ}$ (Including self heating) 工作温度范围:-40℃~+125℃(包括自身温度上升)

■ APPLICATIONS 用途

 Mobile phones, mobile PC, wearable devices, security monitoring DC-DC converter for other 移动电话、移动 PC、可穿戴设备、安防监控等设、备用 DC-DC 转换器电路

PART NUMBERING 产品型号

APQM	21	PN	1R0	N	GR	L
1	2	3	4	<u></u>	<u></u>	7

① Series Name					
APQM	Chip Power Inductor				

② External	Dimensions [inch]
21	2012[0805]

3	Product identification code
	PN

4 Inductance	e	⑥ Internal code
Code (example)	Nominal inductance [µH]	GR
(CXumpic)		
1R0	1.0uH	7 Packaging

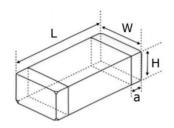
	30 70
0	
6 Internal c	ode
© 2111001110110	

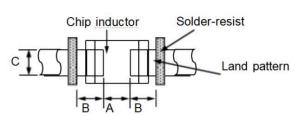
20%

30%

⑤ Inductance Tolerance

N


7 Packaging			
L	Tape & Reel		


4.7uH

4R7

■ DIMENSIONS & RECOMMENDED LAND PATTERN 尺寸及推荐焊盘

Unit: mm

							• • • • • • • • • • • • • • • • • • • •
Dimensions						nended Lan	d Pattern
Series	L	W	Н	a	Α	В	С
APQM21PN	2.0(+0.3,-0.1)	1.25±0.2	0.9±0.1	0.5±0.3	0.8~1.2	0.8~1.2	0.9~1.6

■ ELECTRICAL CHARACTERISTICS 特性规格表

APQM21PN Series

Part Number	Inductance (µH)	L,Q Test Freq.L/Q	resist	C tance 2)	Cur	ration rent nA)	Rated Current (mA)	S.R.F (MHz)	Thickness (mm)
	.,	(MHz)	Max.	Тур.	Max.	Тур.	Max.	Min.	, ,
APQM21PN1R0NGRD	1.0±30%	1	0.14	0.11	950	1150	1300	60	0.9±0.1
APQM21PN3R3NGRD	3.3±30%	1	0.24	0.19	200	250	900	30	0.9±0.1
APQM21PN3R3MGRD	3.3±20%	1	0.24	0.19	200	250	900	30	0.9±0.1
APQM21PN4R7NGRD	4.7±30%	1	0.32	0.25	180	230	800	30	0.9±0.1
APQM21PN4R7MGRD	4.7±20%	1	0.32	0.25	180	230	800	30	0.9±0.1

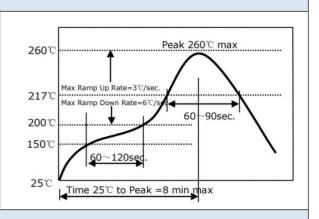
- Rated current: Isat or Irms, whichever is smaller.
- Isat: DC current at which the inductance drops approximate 30% from its value without current.
- Irms: DC current that causes the temperature rise (△T=40°C) from 20°C ambient.

RELIABILITY TEST 可靠性测试

Items	Requirements	Test Methods and Remarks		
	No removal or split of the termination or other defects shall occur.			
1. Terminal Strength	Chip F Mounting Pad Glass Epoxy Board	① Solder the inductor to the testing jig (glass epoxy board shown in Fig.1-1) using leadfree solder. Then apply a 10N force in the direction of the arrow. ② Keep time: 10±1s. ③ Speed: 1.0mm/s.		
	Fig.1-1			
	No visible mechanical damage. Unit: mm [inch] Type a b c 2012[0805] 1.2 4.0 1.65	① Solder the inductor to the test jig (glass epoxy board shown in Fig.2-1) Using a leadfree solder. Then apply a force in the direction shown Fig.2-2. ② Flexure: 2mm. ③ Pressurizing Speed: 0.5mm/sec. ④ Keep time: 30 sec.		
2. Resistance to Flexure	ф4.5 Пс Д Ф4.5	R230 Flexure 45[1.772] Flexure		
	Fig.2-1	F19.2-2		
3. Vibration	① No visible mechanical damage. ② Inductance change: Within ±20%. Cu pad Solder mask Glass Epoxy Board Fig. 3-1	① Solder the inductor to the testing jig (glass epoxy board shown in Fig.3-1) using leadfree solder. ② The inductor shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55 Hz. ③ The frequency range from 10 to 55 Hz and return to 10 Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3mutually perpendicular directions (total of 6 hours).		
4. Dropping	① No visible mechanical damage. ② Inductance change: Within ±20%.	Drop chip inductor 10 times on a concrete floor from a height of 100 cm.		
5. Temperature	nductance change should be within ±20% of initial value measuring at 20 .	Temperature range: -40°C ~+85°C Reference temperature: +20°C		

■ RELIABILITY TEST 可靠性测试

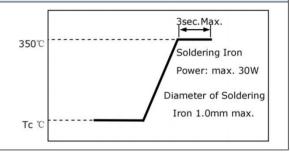
Items	Requirements	Test Methods and Remarks		
6. Solderability	① No visible mechanical damage. ② Wetting shall exceed 95% coverage.	① Solder temperature: 240±2℃ ② Duration: 3 sec. ③ Solder: Sn/3.0Ag/0.5Cu. ④ Flux: 25% Resin and 75% ethanol in weight.		
7. Resistance to Soldering Heat	① No visible mechanical damage. ② Wetting shall exceed 95% coverage. ③ Inductance change: Within ±20%.	① Solder temperature: 260±3 . ℃ ② Duration: 5 sec. ③ Solder: Sn/3.0Ag/0.5Cu. ④ Flux: 25% Resin and 75% ethanol in weight. ⑤ The chip shall be stabilized at normal condition for 1~2 hours before measuring.		
	① No mechanical damage. ② Inductance change: Within ±20%.			
8. Thermal Shock	30 min. 30 min. Ambient 30 min. -40°C 30 min. 20sec. (max.)	 Temperature, Time: (See Fig.8-1) -40°C for 30±3 min→ 85°C for 30±3min. Transforming interval: 20 sec.(max.). Tested cycle: 100 cycles. The chip shall be stabilized at normal condition for 1~2 hours before measuring. 		
	Fig.8-1			
9. Resistance to Low Temperature	① No mechanical damage. ② Inductance change: Within ±20%.	 Temperature: -40±2°C Duration: 1000⁺²⁴ hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring. 		
10. Resistance to High Temperature	① No mechanical damage. ② Inductance change: Within ±20%.	 Temperature: 85±2°C Duration: 1000+24 hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring. 		
11. Damp Heat (Steady States)	① No mechanical damage. ② Inductance change: Within ±20%.	 Temperature: 60±2℃ Humidity: 90% to 95% RH. Duration: 1000+24 hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring. 		



Recommended Soldering Technologies 回流焊建议

Reflowing Profile

- ◆ Preheat condition: 150~200°C/60~120sec.
- ♦ Allowed time above 217°C: 60~90sec.
- Max temp: 260°C
- Max time at max temp: 10sec.Solder paste: Sn/3.0Ag/0.5Cu
- Allowed Reflow time: 2x max


Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.

Iron Soldering Profile

- Iron soldering power: Max.30W
- ◆ Pre-heating: 150 °C / 60sec.
- ◆ Soldering Tip temperature: 350°C Max.
- Soldering time: 3sec Max.Solder paste: Sn/3.0Ag/0.5Cu
- Max.1 times for iron soldering

Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.

■ Safety Reminders 注意事项

SAFETY REMINDERS

- The storage period is within 12 months. Be sure to follow the storage conditions (temperature: 15 to 35° C, humidity: 75% RH or less). If the storage period elapses, the soldering of the terminal electrodes may deteriorate.
- > Do not use or store in locations where there are conditions such as gas corrosion (salt, acid, alkali, etc.).
- Soldering corrections after mounting should be within the range of the conditions determined in the specifications. If overheated, a short circuit, performance deterioration, or lifespan shortening may occur.
- When embedding a printed circuit board where a chip is mounted to a set, be sure that residual stress is not given to the chip due to the overall distortion of the printed circuit board and partial distortion such as at screw tightening portions.
- > Self heating (temperature increase) occurs when the power is turned ON, so the tolerance should be sufficient for the set thermal design.
- This product is not designed for production processes involving ultrasonic welding, as high-frequency vibration may cause application issues such as product detachment and breakage.
- > Carefully layout the coil for the circuit board design of the non-magnetic shield type. A malfunction may occur due to magnetic interference.
- > Use a wrist band to discharge static electricity in your body through the grounding wire.
- Do not expose the products to magnets or magnetic fields.
- Do not use for a purpose outside of the contents regulated in the delivery specifications.
- > The products listed on this catalog are intended for use in general electronic equipment, under a normal operation and use condition.

The Company shall not guarantee the suitability, performance, or quality for the following applications that require a high level of safety and reliability, or where equipment failure, malfunction, or abnormal operation may cause damage to human life, physical well-being, or property, and may have significant social impacts (hereinafter referred to as "specific applications"). If you intend to use this product in the application scenarios listed below, or if you have special requirements exceeding the scope or conditions specified in each product catalog, please contact us.

- (1) Aerospace/aviation equipment
- (2) Transportation equipment (cars, electric trains, ships, etc.)
- (3) Medical equipment
- (4) Power-generation control equipment
- (5) Atomic energy-related equipment
- (6) Seabed equipment
- (7) Transportation control equipment
- (8) Public information-processing equipment
- (9) Military equipment
- (10) Electric heating apparatus, burning equipment
- (11) Disaster prevention/crime prevention equipment
- (12) Safety equipment
- (13) Other applications that are not considered general-purpose applications

When designing your equipment even for general-purpose applications, you are kindly requested to take into consideration securing protection circuit/device or providing backup circuits in your equipment.

