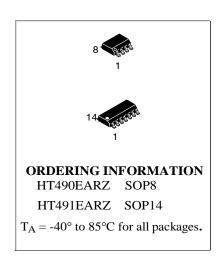
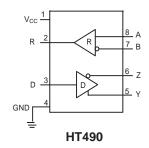
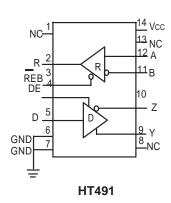


Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

The HT481, HT483, HT485, HT487–HT491, and HT1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and one receiver. The HT483, HT487, HT488, and HT489 feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the HT481, HT485, HT490, HT491, and HT1487 are not limited, allowing them to transmit up to 2.5Mbps.


These transceivers draw between $120\mu A$ and $500\mu A$ of supply current when unloaded or fully loaded with disabled drivers. Additionally, the HT481, HT483, and HT487 have a low-current shutdown mode in which they consume only $0.1\mu A$. All parts operate from a single 5V supply.


Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit.


The HT487 and HT1487 feature quarter-unit-load receiver input impedance, allowing up to 128 HT487/ HT1487 transceivers on the bus. Full-duplex communi-cations are obtained using the HT488–HT491, while the HT481, HT483, HT485, HT487, and HT1487 are designed for half-duplex applications.

Applications

Low-Power RS-485 Transceivers
Low-Power RS-422 Transceivers
Level Translators
Transceivers for EMI-Sensitive Applications
Industrial-Control Local Area Networks

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC)	12V
Control Input Voltage (RE, DE)	-0.5V to (VCC + 0.5V)
Driver Input Voltage (DI)	-0.5V to (VCC + 0.5V)
Driver Output Voltage (A, B)	-8V to +12.5V
Receiver Input Voltage (A, B)	-8V to +12.5V
Receiver Output Voltage (RO)	-0.5V to (VCC +0.5V)
Continuous Power Dissipation (TA = +70°C	C)
8-Pin Plastic DIP (derate 9.09mW/°C abov	ve +70°C) 727mW
14-Pin Plastic DIP (derate 10.00mW/°C ab	ove +70°C) 800mW
8-Pin SO (derate 5.88mW/°C above +70°C	C) 471mW

14-Pin SO (derate 8.33mW/°C above +70°C).	667mW
8-Pin µMAX (derate 4.1mW/°C above +70°C)	830mW
8-Pin CERDIP (derate 8.00mW/°C above +70	°C) 640mW
14-Pin CERDIP (derate 9.09mW/°C above +7	0°C) 727mW
Operating Temperature Ranges	
HT4C/HT1487C_ A	0°C to +70°C
HT4E/HT1487E_ A	-40°C to +85°C
HT4MJ_/HT1487MJA	-55°C to +125°C
Storage Temperature Range	-65°C to +160°C
Lead Temperature (soldering, 10sec)	+300°C

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 5\%, TA = TMIN to TMAX, unless otherwise noted.) (Notes 1, 2)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Differential Driver Output (no load)	VOD1					5	V
Differential Driver Output	VOD2	$R = 50\Omega (RS-422)$	$R = 50\Omega (RS-422)$				V
(with load)	VOD2	$R = 27\Omega$ (RS-485), Figure 4		1.5		5	V
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	ΔVOD	R = 27Ω or 50Ω , Figure 4				0.2	V
Driver Common-Mode Output Voltage	Voc	$R = 27\Omega$ or 50Ω , Figure 4				3	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	ΔVOD	$R = 27\Omega$ or 50Ω , Figure 4				0.2	V
Input High Voltage	VIH	DE, DI, RE		2.0			V
Input Low Voltage	VIL	DE, DI, RE				0.8	V
Input Current	lin1	DE, DI, RE				±2	μΑ
		DE = 0V; VCC = 0V or 5.25V,	VIN = 12V			1.0	mA
Input Current (A, B)	liN2	all devices except HT487/HT1487	VIN = -7V			-0.8	
		HT487/HT1487,	VIN = 12V			0.25	mA
		DE = 0V, VCC = 0V or 5.25V	VIN = -7V			-0.2	111/ (
Receiver Differential Threshold Voltage	VTH	-7V ≤ VCM ≤ 12V		-0.2		0.2	V
Receiver Input Hysteresis	ΔV TH	VCM = 0V			70		mV
Receiver Output High Voltage	Voн	IO = -4mA, VID = 200mV		3.5			V
Receiver Output Low Voltage	VOL	IO = 4mA, VID = -200mV				0.4	V
Three-State (high impedance) Output Current at Receiver	lozr	0.4V ≤ Vo ≤ 2.4V				±1	μА
Descriver Innut Desigtance	RIN	-7V ≤ VCM ≤ 12V, all devices except HT487/HT1487		12	_	_	kΩ
Receiver Input Resistance	IXIIV	-7V ≤ VCM ≤ 12V, HT487/HT1	48			kΩ	

DC ELECTRICAL CHARACTERISTICS (continued)

(VCC = 5V \pm 5%, TA = TMIN to TMAX, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	COND	ITIONS		MIN	TYP	MAX	UNITS
		HT488/HT489, DE, DI, RE = 0V or VCC				120	250	
		HT490/HT491, DE, DI, RE = 0V or VC	С			300	500	
No Lood Cupply Current		HT481/HT485,	DE = Vcc			500	900	
No-Load Supply Current (Note 3)	ICC	RE = 0V or VCC	DE = 0V			300	500	μA
	<u> </u>	HT1487,	DE = Vcc			300	500	
		RE = 0V or VCC	DE = 0V			230	400	
		HT483/HT487, RE = 0V or VCC	DE = 5V	HT483		350	650	1
			DE = 5V	HT487		250	400	1
			DE = 0V			120	250	
Supply Current in Shutdown	ISHDN	HT481/483/487, DE =	0V, RE = V0	CC		0.1	10	μΑ
Driver Short-Circuit Current, Vo = High	losd1	-7V ≤ Vo ≤12V (Note 4)			35		250	mA
Driver Short-Circuit Current, VO = Low	IOSD2	-7V ≤ Vo ≤12V (Note 4)			35		250	mA
Receiver Short-Circuit Current	IOSR	0V ≤ Vo ≤ Vcc			7		95	mA

SWITCHING CHARACTERISTICS—HT481/HT485, HT490/HT491, HT1487

 $(VCC = 5V \pm 5\%, TA = TMIN to TMAX, unless otherwise noted.) (Notes 1, 2)$

PARAMETER	SYMBOL	CC	ONDITIONS	MIN	TYP	MAX	UNITS
Driver Input to Output	tPLH	Figures 6 and 8, R	DIFF = 54Ω ,	10	30	60	ns
Briver input to Output	tPHL	CL1 = CL2 = 100pF	:	10	30	60	113
Driver Output Skew to Output	tskew	Figures 6 and 8, RD	DIFF = 54Ω , CL1 = CL2 = 100 pF		5	10	ns
		Figures 6 and 8,	HT481, HT485, HT1487	3	15	40	
Driver Rise or Fall Time	tR, tF	RDIFF = 54Ω ,	HT490C/E, HT491C/E	5	15	25	ns
		CL1 = CL2 = 100pF	HT490M, HT491M	3	15	40	1
Driver Enable to Output High	tzH	Figures 7 and 9, C	L = 100pF, S2 closed		40	70	ns
Driver Enable to Output Low	tZL	Figures 7 and 9, C	L = 100pF, S1 closed		40	70	ns
Driver Disable Time from Low	tLZ	Figures 7 and 9, C	L = 15pF, S1 closed		40	70	ns
Driver Disable Time from High	tHZ	Figures 7 and 9, C	L = 15pF, S2 closed		40	70	ns
		Figures 6 and 10,	HT481, HT485, HT1487	20	90	200	
Receiver Input to Output	tPLH, tPHL	RDIFF = 54Ω ,	HT490C/E, HT491C/E	20	90	150	ns
		CL1 = CL2 = 100pF	HT490M, HT491M	20	90	200	1
tPLH - tPHL Differential	tskd	Figures 6 and 10,	RDIFF = 54Ω ,		13		ns
Receiver Skew	ISKD	CL1 = CL2 = 100pF	:		13		115
Receiver Enable to Output Low	tzL	Figures 5 and 11,	CRL = 15pF, S1 closed		20	50	ns
Receiver Enable to Output High	tzH	Figures 5 and 11,	CRL = 15pF, S2 closed		20	50	ns
Receiver Disable Time from Low	tLZ	Figures 5 and 11,	CRL = 15pF, S1 closed		20	50	ns
Receiver Disable Time from High	tHZ	Figures 5 and 11,	CRL = 15pF, S2 closed		20	50	ns
Maximum Data Rate	fMAX			2.5			Mbps
Time to Shutdown	tshdn	HT481 (Note 5)		50	200	600	ns

SWITCHING CHARACTERISTICS—HT481/HT485, HT490/HT491, HT1487 (continued)

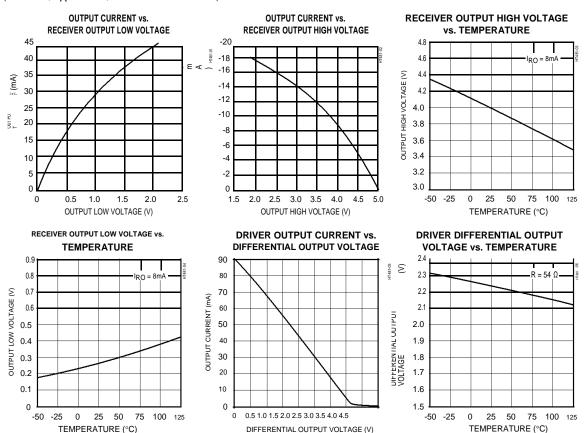
($V_{CC} = 5V \pm 5\%$, TA = TMIN to TMAX, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Enable from Shutdown to Output High (HT481)	tZH(SHDN)	Figures 7 and 9, CL = 100pF, S2 closed		40	100	ns
Driver Enable from Shutdown to Output Low (HT481)	tZL(SHDN)	Figures 7 and 9, CL = 100pF, S1 closed		40	100	ns
Receiver Enable from Shutdown to Output High (HT481)	tZH(SHDN)	Figures 5 and 11, CL = 15pF, S2 closed, A - B = 2V		300	1000	ns
Receiver Enable from Shutdown to Output Low (HT481)	tZL(SHDN)	Figures 5 and 11, CL = 15pF, S1 closed, B - A = 2V		300	1000	ns

SWITCHING CHARACTERISTICS—HT483, HT487/HT488/HT489

(VCC = 5V \pm 5%, TA = TMIN to TMAX, unless otherwise noted.) (Notes 1, 2)

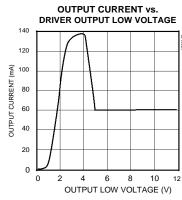
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Input to Output	tPLH	Figures 6 and 8, RDIFF = 54Ω ,	250	800	2000	ns
Briver input to Gulput	tPHL	CL1 = CL2 = 100pF	250	800	2000	110
Driver Output Skew to Output	tskew	Figures 6 and 8, RDIFF = 54Ω , CL1 = CL2 = $100pF$		100	800	ns
Driver Rise or Fall Time	tR, tF	Figures 6 and 8, RDIFF = 54Ω , CL1 = CL2 = 100 pF	250		2000	ns
Driver Enable to Output High	tzH	Figures 7 and 9, CL = 100pF, S2 closed	250		2000	ns
Driver Enable to Output Low	tZL	Figures 7 and 9, CL = 100pF, S1 closed	250		2000	ns
Driver Disable Time from Low	tLZ	Figures 7 and 9, CL = 15pF, S1 closed	300		3000	ns
Driver Disable Time from High	tHZ	Figures 7 and 9, CL = 15pF, S2 closed	300		3000	ns
Receiver Input to Output	tPLH	Figures 6 and 10, RDIFF = 54Ω ,	250		2000	ns
Receiver input to Output	tPHL	CL1 = CL2 = 100pF	250		2000	115
I tPLH - tPHL I Differential Receiver Skew	tskd	Figures 6 and 10, RDIFF = 54Ω , CL1 = CL2 = 100 pF		100		ns
Receiver Enable to Output Low	tZL	Figures 5 and 11, CRL = 15pF, S1 closed		20	50	ns
Receiver Enable to Output High	tzн	Figures 5 and 11, CRL = 15pF, S2 closed		20	50	ns
Receiver Disable Time from Low	tLZ	Figures 5 and 11, CRL = 15pF, S1 closed		20	50	ns
Receiver Disable Time from High	tHZ	Figures 5 and 11, CRL = 15pF, S2 closed		20	50	ns
Maximum Data Rate	fMAX	tPLH, tPHL < 50% of data period	250			kbps
Time to Shutdown	tshdn	HT483/HT487 (Note 5)	50	200	600	ns
Driver Enable from Shutdown to Output High	tZH(SHDN)	HT483/HT487, Figures 7 and 9, CL = 100pF, S2 closed			2000	ns
Driver Enable from Shutdown to Output Low	tZL(SHDN)	HT483/HT487, Figures 7 and 9, CL = 100pF, S1 closed			2000	ns
Receiver Enable from Shutdown to Output High	tZH(SHDN)	HT483/HT487, Figures 5 and 11, CL = 15pF, S2 closed			2500	ns
Receiver Enable from Shutdown to Output Low	tZL(SHDN)	HT483/HT487, Figures 5 and 11, CL = 15pF, S1 closed			2500	ns

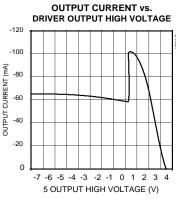


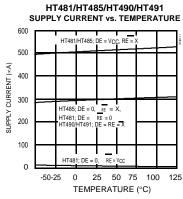
NOTES FOR ELECTRICAL/SWITCHING CHARACTERISTICS

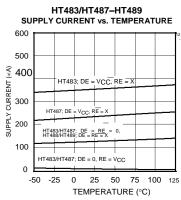
- Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
- **Note 2:** All typical specifications are given for VCC = 5V and $TA = +25^{\circ}C$.
- **Note 3:** Supply current specification is valid for loaded transmitters when DE = 0V.
- Note 4: Applies to peak current. See Typical Operating Characteristics.
- Note 5: The HT481/HT483/HT487 are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 50ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.

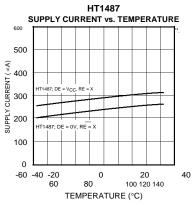
Typical Operating Characteristics

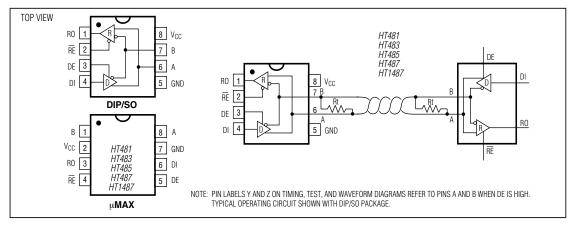

(VCC = 5V, $T_A = +25$ °C, unless otherwise noted.)

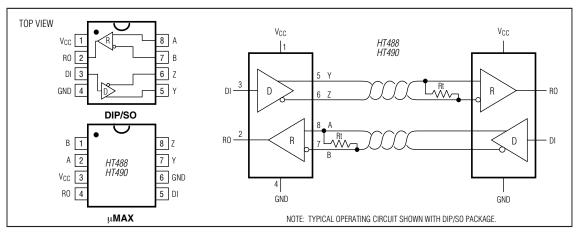





Typical Operating Characteristics (continued)


(VCC = 5V, $T_A = +25$ °C, unless otherwise noted.)





Pin Description

		PIN						
HT485/	HT481/HT483/ HT485/HT487/ HT1487 HT490		111 100,				NAME	FUNCTION
DIP/SO	μМΑХ	DIP/SO	μМΑХ	DIP/SO				
1	3	2	4	2	RO	Receiver Output: If A > B by 200mV, RO will be high; If A < B by 200mV, RO will be low.		
2	4	_	_	3	RE	Receiver Output Enable. RO is enabled when $\overline{\text{RE}}$ is low; RO is high impedance when $\overline{\text{RE}}$ is high.		
3	5	_	_	4	DE	Driver Output Enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high impedance when DE is low. If the driver outputs are enabled, the parts function as line drivers. While they are high impedance, they function as line receivers if RE is low.		
4	6	3	5	5	DI	Driver Input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.		
5	7	4	6	6, 7	GND	Ground		
_	_	5	7	9	Υ	Noninverting Driver Output		
_	_	6	8	10	Z	Inverting Driver Output		
6	8	_	_	_	А	Noninverting Receiver Input and Noninverting Driver Output		
_	_	8	2	12	А	Noninverting Receiver Input		
7	1	_	_	_	В	Inverting Receiver Input and Inverting Driver Output		
_	_	7	1	11	В	Inverting Receiver Input		
8	2	1	3	14	Vcc	Positive Supply: 4.75V ≤ V _{CC} ≤ 5.25V		
_	_	_	_	1, 8, 13	N.C.	No Connect—not internally connected		

Figur HT488/HT490 Pin Configuration and Typical Operating Circuit

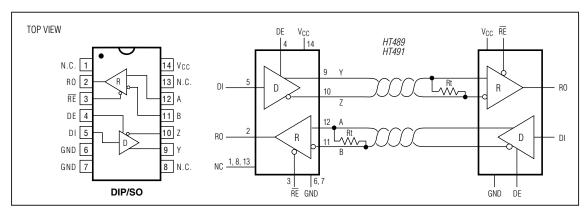


Figure 3. HT489/HT491 Pin Configuration and Typical Operating Circuit

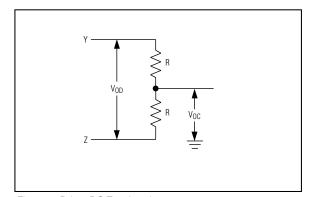


Figure 4. Driver DC Test Load

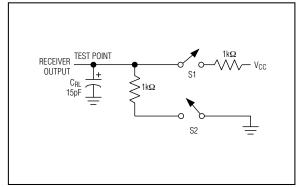


Figure 5. Receiver Timing Test Load

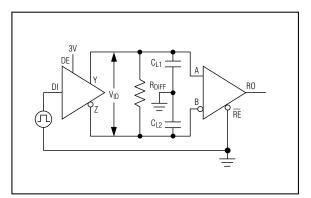


Figure 6. Driver/Receiver Timing Test Circuit

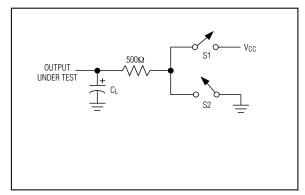


Figure 7. Driver Timing Test Load

Switching Waveforms

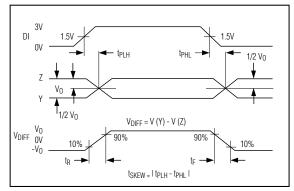


Figure 8. Driver Propagation Delays

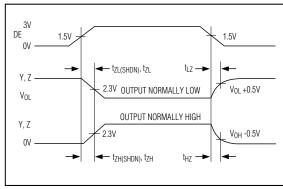


Figure 9. Driver Enable and Disable Times (except HT488 and HT490)

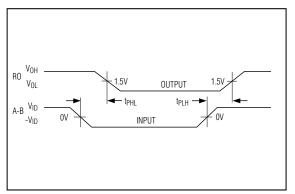


Figure 10. Receiver Propagation Delays

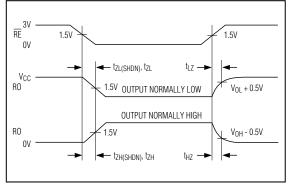


Figure 11. Receiver Enable and Disable Times (except HT488 and HT490)

Function Tables (HT481/HT483/HT485/HT487/HT1487)

Table 1. Transmitting

	INPUTS	OUTPUTS			
RE	DE	DI	Z	Υ	
Х	1	1	0	1	
Х	1	0	1	0	
0	0	Х	High-Z	High-Z	
1	0	Х	High-Z*	High-Z*	

Table 2. Receiving

	OUTPUT		
RE	DE	A-B	RO
0	0	≥ +0.2V	1
0	0	≤ -0.2V	0
0	0	Inputs open	1
1	0	X	High-Z*

X = Don't care High-Z = High impedance * Shutdown mode for HT481/HT483/HT487

X = Don't care High-Z = High impedance * Shutdown mode for HT481/HT483/HT487

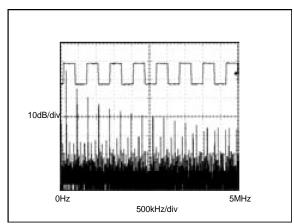


Figure 12. Driver Output Waveform and FFT Plot of HT481/ HT485/HT490/HT491/HT1487 Transmitting a 150kHz Signal

Low-Power Shutdown Mode (HT481/HT483/HT487)

A low-power shutdown mode is initiated by bringing both RE high and DE low. The devices will not shut down unless both the driver and receiver are disabled. In shutdown, the devices typically draw only $0.1\mu A$ of supply current.

RE and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts are guaranteed to enter shutdown.

For the HT481, HT483, and HT487, the tZH and tZL enable times assume the part was not in the low-power shutdown state (the HT485/HT488–HT491 and HT1487 can not be shut down). The tZH(SHDN) and tZL(SHDN) enable times assume the parts were shut down (see *Electrical Characteristics*).

It takes the drivers and receivers longer to become enabled from the low-power shutdown state (t_{ZH(SHDN)}, t_{) than from the operating mode_{ZL(SHDN)}_{}

(tzH, tzL). (The parts are in operating mode if the RE, DE inputs equal a logical 0,1 or 1,1 or 0, 0.)

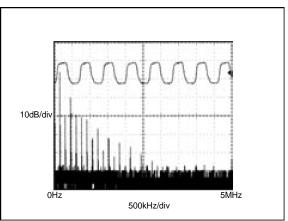


Figure 13. Driver Output Waveform and FFT Plot of HT483/ HT487–HT489 Transmitting a 150kHz Signal

Driver Output Protection

Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see *Typical Operating Characteristics*). In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.

Propagation Delay

Many digital encoding schemes depend on the difference between the driver and receiver propagation delay times. Typical propagation delays are shown in Figures 15–18 using Figure 14's test circuit.

The difference in receiver delay times, | tPLH - tPHL |, is typically under 13ns for the HT481, HT485, HT490, HT491, and HT1487 and is typically less than 100ns for the HT483 and HT487–HT489.

The driver skew times are typically 5ns (10ns max) for the HT481, HT485, HT490, HT491, and HT1487, and are typically 100ns (800ns max) for the HT483 and HT487-HT489.

VCC = 5V

 $T_A = +25$ °C

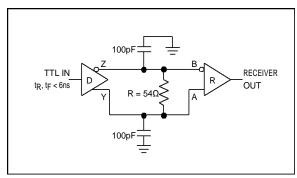


Figure 14. Receiver Propagation Delay Test Circuit

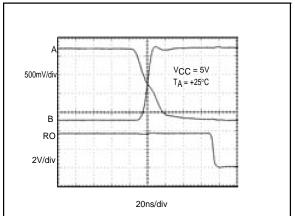
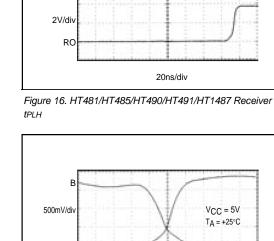



Figure 15. HT481/HT485/HT490/HT491/HT1487 Receiver tPHL

500mV/div

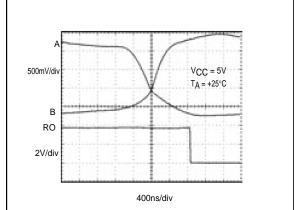


Figure 17. HT483, HT487–HT489 Receiver tPHL

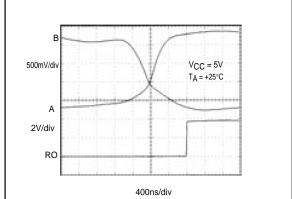


Figure 18. HT483, HT487–HT489 Receiver tPLH

Line Length vs. Data Rate

The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 23.

Figures 19 and 20 show the system differential voltage for the parts driving 4000 feet of 26AWG twisted-pair wire at 110kHz into 120Ω loads.

Typical Applications

The HT481, HT483, HT485, HT487–HT491, and HT1487 transceivers are designed for bidirectional data communications on multipoint bus transmission lines.

Figures 21 and 22 show typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 23.

To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possi-ble. The slew-rate-limited HT483 and HT487–HT489 are more tolerant of imperfect termination.

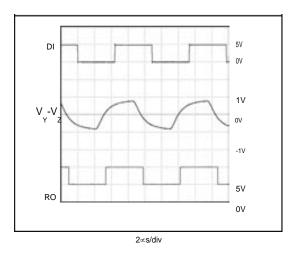


Figure 19. HT481/HT485/HT490/HT491/HT1487 System Differential Voltage at 110kHz Driving 4000ft of Cable

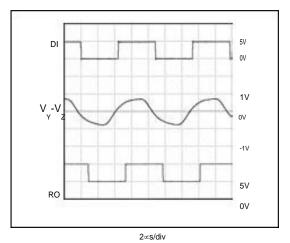
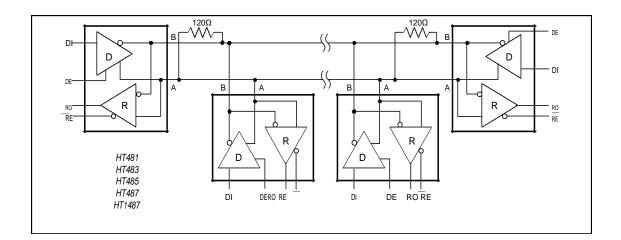
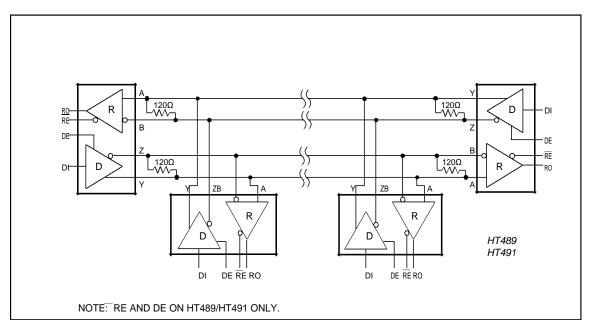
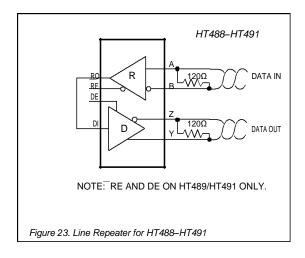
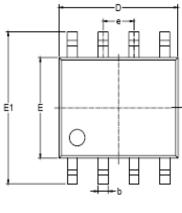
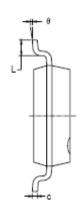
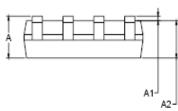



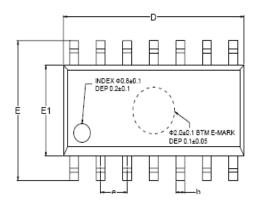
Figure 20. HT483, HT487–HT489 System Differential Voltage at 110kHz Driving 4000ft of Cable

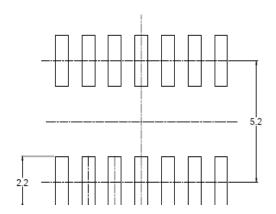





Figure 22. HT488-HT491 Full-Duplex RS-485 Network



SOP-8





Symbol		nsions imeters	Dimensions In Inches			
•	MIN	MAX	MIN	MAX		
Α	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
e	1.27	BSC BSC	0.050	BSC		
L	0.400	1.270	0.016	0.050		
е	0°	8°	0°	8°		

SOP-14

Symbol	Dimens	ions In Mill	imeters	Dimensions In Inches			
Symbol	MIN	MOD	MAX	MIN	MOD	MAX	
Α	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25		1.65	0.049		0.065	
A3	0.55		0.75	0.022		0.030	
b	0.36		0.49	0.014		0.019	
D	8.53		8.73	0.336		0.344	
E	5.80		6.20	0.228		0.244	
E1	3.80		4.00	0.150		0.157	
е		1.27 BSC		0.050 BSC			
L	0.45		0.80	0.018		0.032	
L1		1.04 REF			0.040 REF		
L2		0.25 BSC			0.01 BSC		
R	0.07			0.003			
R1	0.07			0.003			
h	0.30		0.50	0.012		0.020	
θ	0°		8°	0°		8°	