

GENERAL DESCRIPTION

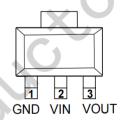
The XC6203 series are highly precise, low power consumption, 3 terminal positive voltage regulators manufactured using CMOS and laser trimming technologies.

The series provides large currents with a significantly small dropout voltage.

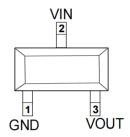
The XC6203P consists of a driver transistor, a current limiter, a precision reference voltage and an error amplifier.

The XC6203E is also available but without the current limiter function.SOT-23, SOT-89 package are available.

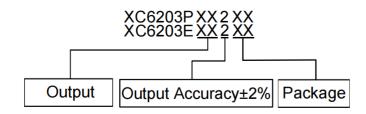
FEATURES


- Low Power Consumption
- Low Voltage Drop
- Low Temperature Coefficient
- Withstanding Voltage 10V
- Quiescent Current 2.0μA
- Output Voltage Accuracy: tolerance ±2%
- High output current: 400mA

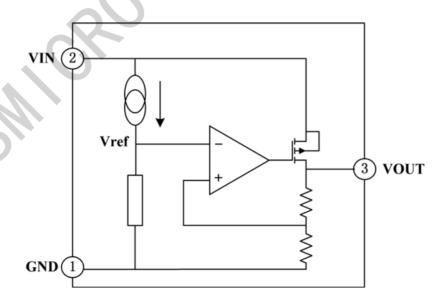
TYPICAL APPLICATIONS


- Battery-powered Equipments
- Communication Equipments
- Audio/Video Equipments

PIN CONFIGURATION



ORDERING INFORMATION


: 3.0V : 3.3V : 3.6V MR: SOT-23 30 33 PR: SOT-89

36 50 : 5.0V

PIN DESCRIPTION

Pin Number	Pin Name	Functions	
SOT-89/SOT-23	Pirrivame		
1	V _{SS}	Ground	
2	V_{IN}	Power Input	
3	V _{OUT}	Output	

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Description	Symbol	Value range	Unit
Limit Power Voltage	V_{IN}	−0.3~+12	V
Storage Temperature Range	T _{STG}	$-50 \sim +125$	$^{\circ}$
Operating Free-air Temperature Range	T _A	−3 0∼+85	$^{\circ}$

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

HEAT DISSIPATION

Description	Symbol	Package	Value range	Unit
Thermal resistance	$ heta_{ m JA}$	SOT-89	200	°C/W
		SOT-23	500	°C/W
Power dissipation	$P_{ m W}$	SOT-89	500	mW
		SOT-23	200	mW

DC CHARACTERISTICS (unless otherwise noted $T_A = +25$ °C)

 $\underline{ (V_{\text{IN}} = V_{\text{OUT}} + 2V, \ V_{\text{CE}} = V_{\text{IN}} \ , \ C_{\text{IN}} = C_{\text{L}} = 10 \text{uF}, \ Ta = 25^{\circ}\text{C}, \ unless \ otherwise} \ noted) }$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Voltage	V _{OUT} (E) (Note 2)	I_{OUT} =10mA, V_{IN} = V_{OUT} +2V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Maximum Output Current	I _{OUTMAX}	V _{IN} = V _{OUT} +2V		400		mA
Load Regulation	ΔV_{OUT}	V _{IN} = V _{OUT} +2V , 1mA≤I _{OUT} ≤300mA		37		mV
Dropout Voltage	V_{DIF1}	I _{OUT} =100mA		180		mV
(Note 1)	V_{DIF2}	I _{OUT} =200mA		260		mV
Supply Current	I _{SS}	V _{IN} = V _{OUT} +2V		2	X	μA
Stand-by Current	I _{CEL}	V _{CE} =0V		0		μA
Line Regulation	ΔV_OUT	$I_{OUT} = 30mA$ $V_{OUT} + 2V \le V_{IN} \le 10V$		0.2		%/V
CE "High" Voltage	VCEH	Start up	1.20	Ó		V
CE "Low" Voltage	VCEL	Shut down	0		0.8	V
Short-circuit Current	I _{SHORT}	V _{OUT} =0V		200		mA
Thermal Shutdown Protection	T_{sd}	I _{OUT} =10mA, V _{IN} = V _{OUT} +2V		100		$^{\circ}$

FUNCTIONAL DESCRIPTION

1. Input Bypass Capacitor

An input capacitor is recommended. A 10uF tantalum on the input is a suitable input bypassing for almost all applications.

2. Output Capacitor

The output capacitor is critical in maintaining regulator stability, and must meet the required conditions for both minimum amount of capacitance and ESR (Equivalent Series Resistance). The minimum output capacitance required by the XC6203 is $10\mu F$, if a tantalum capacitor is used. Any increase of the output capacitance will merely improve the loop stability and transient response. The ESR of the output capacitor should be less than 0.5Ω .

3. Load Regulation

The XC6203 regulates the voltage that appears between its output and ground pins, or between its output and adjust pins. In some cases, line resistances can introduce errors to the voltage across the load. To obtain the best load regulation, a few precautions are needed. Figure 1, shows a typical application using a fixed output regulator. The Rt1 and Rt2 are the line resistances. It is obvious that the V_{LOAD} is less than the V_{OUT} by the sum of the voltage drops along the line resistances. In this case, the load regulation seen at the degraded from the datasheet specification. To improve this , the load should be tied directly to R_{LOAD} would be the output terminal on the positive side and directly tied to the ground terminal on the negative side.

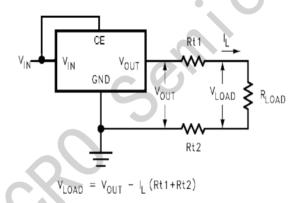
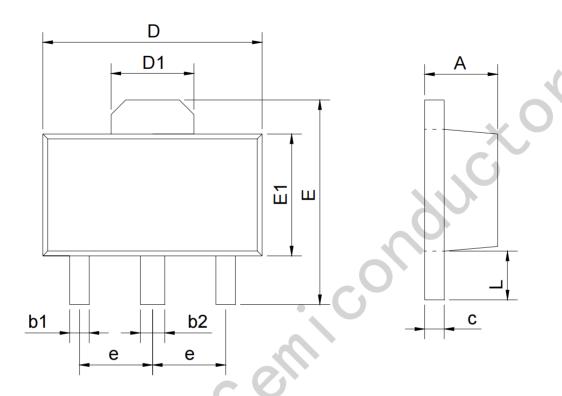
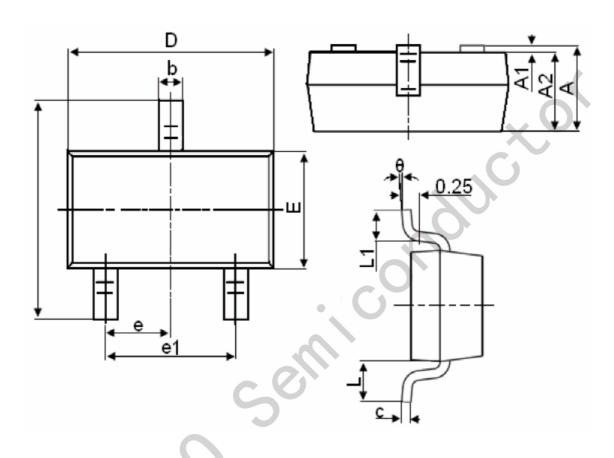



FIGURE 1. Typical Application using Fixed Output Regulator

Package Information

SOT-89



SYMBOL	mm		
	min	max	
Α	1.40	1.60	
b1	0.35	0.50	
b2	0.45	0.60	
С	0.36	0.46	
D	4.30	4.70	
D1	1.40	1.80	
Е	4.00	4.40	
E1	2.30	2.70	
е	1.50BSC		
Ĺ	0.80	1.20	

Package Information

SOT-23

Symbol	Dimensions in Millimeters(mm)		Dimensions In Inches		
Syllibol	Min Max		Min	Max	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
Е	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950TYP		0.037	0.037TYP	
e1	1.800	2.000	0.071	0.079	
L	0.550REF		0.022REF		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	