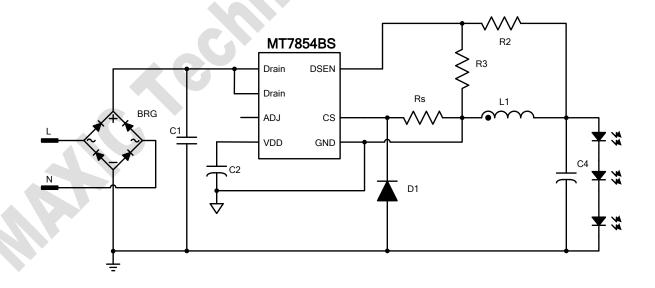


描述

MT7854BS 是一款高功率因数、非隔离 LED 驱动芯片。 它通过采用浮地、高端检测,降压式开关电源的架构实现了全周期检测。MT7854BS 工作在准谐振模式,同时使效率和抗电磁干扰的性能都得到提升。

MT7854BS 通过内部集成的高压供电电路供电,无需启动电阻和供电二极管。MT7854BS 内置补偿电路,节省了 COMP 管脚及 COMP 电容。MT7854BS 通过内部集成 THD 补偿电路,可以满足更低 THD 需求。

MT7854BS 内部集成了多重的保护功能,比如过 压保护、过流保护、过温补偿等等,提高了可靠性, 并且所有保护均具有自恢复功能。内置 600V 高压 MOSFET,精简了外围电路。


特性

- 单级功率因数调制(功率因数>0.9)
- 高压供电,无需启动电阻及供电电路
- 内置补偿电路,无需COMP电容
- 集成THD补偿电路, THD<15%
- 高次谐波失真抑制
- 高精度的LED输出电流(±3%)
- 优异的线性调整度和负载调整度(±2%)
- 准谐振工作模式
- 多重保护机制
- SOP7封装

应用

- E14/E27/PAR30/PAR38/GU10 灯具
- T8/T10 LED灯管
- 其他LED驱动应用

典型应用电路

极限参数

VDD 管脚电压	-0.3V ~ 30V
DRAIN 管脚电压	-0.3V ~ 600V
CS/DSEN/ADJ 管脚电压	-0.3V ~ 6V
焊接温度 (10秒)	260°C
P _{DMAX} (最大功耗)	0.8W
储存温度	-55°C ~ 150°C
结温(Tj)	150°C

推荐工作条件

工作电压	7.2V ~ 12V
工作温度 (环境)	-40°C ~ 125°C
输入功率(环境温度≤90℃)	≤24W @176VAC~265VAC
	≤18W @85VAC~265VAC

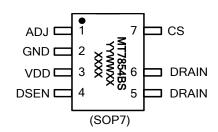
热阻①

内部芯片到环境 (ReJA)	128°C/W
PN 结到封装表面(Reuc)	90°C/W

备注:

① R_{θJA}, R_{θJC} 的测定是在 TA = 25°C 低效导热性单层测试板上,在自然对流条件下按 JEDEC 51-3 热计量标准进行测试。测试条件:设备 PCB 安装在 2" X 2" FR-4 的基板上, 2oz 铜箔厚度,项层金属放置最小衬垫,通过散热过孔与底层接地平面相连。

 Email:
 sales@maxictech.com
 www.maxictech.com
 Rev1.10


 Tel:
 010-62662828
 版权 © 2018 美芯晟科技(北京)有限公司
 第 2 页

定购信息

定购型号	封装形式	包装形式	印章信息
MT7854BS	SOP7	编带 4,000 颗/盘	MT7854BS YYWWXX XXXX

管脚排列

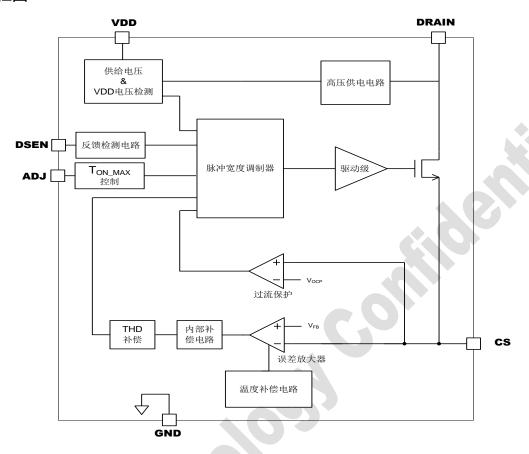
注释:

MT7854BS: 产品型号

Y: 年代码 W: 周代码 X: 内部代码

管脚描述

名称	管脚号	描述
ADJ	1	Ton_max 调节引脚。悬空时,Ton_max 为最大值。
GND	2	芯片地。
VDD	3	电源脚。
DSEN	4	反馈电压。通过电阻分压器连接到LED输出端或者辅助绕组以反映输出电压。
DRAIN	5,6	内部功率 MOSFET 的漏极,同时也是高压供电电路输入端。
CS	7	内部功率 MOSFET 的源极,电流检测管脚。



电气参数

(测试条件: 除非特别指定, VDD=12V, TA=25℃)

符号	参数	测试条件	最小值	典型值	最大值	单位	
启动 (VD	启动 (VDD 管脚)						
V _{STP}	启动电压	VDD 电压从 0V 升压	10.8	12	13.2	V	
UVLO	低压保护	VDD 电压从(V _{STP} +1V) 降压	7	8	9	<	
ISTP	启动电流	VDD=12V	15	30	50	μΑ	
供给电流							
ΙQ	静态电流		0.33	0.4	0.5	mA	
控制环路	(DSEN 脚)				(3)		
V _{REF-FB}	反馈环路的参考电压	闭环测试	194	200	206	mV	
OVP	DSEN 管脚的过压保护阈值		3.0	3.2	3.5	V	
LEB1	DSEN 管脚的前端消隐时间		1.56	2	2.44	μs	
MinT	最小开关周期		7.8	10	12.2	μs	
T _{OFF_MAX}	最大截止时间		195	250	305	μs	
T _{ON_MAX}	最大导通时间	参考 "Ton_MAX 调节"	21	27.5	35	μs	
电流检测	(CS脚)						
OCP	CS 管脚的过流保护阈值		1.3	1.4	1.5	V	
LEB2	CS 管脚的前端消隐时间		240	300	360	ns	
热保护							
T_{Trig}	温度补偿折转点		142.5	150	157.5	å	
高压功率 MOSFET(DRAIN 脚)							
Ron	内部高压功率管导通阻抗	VGS=10V/I _{DS} =1.5A		2.4		Ω	
BV _{DSS}	击穿电压	VGS=0V/I _{DS} =250uA	600	650		V	

内部框图

功能描述

MT7854BS 內置补偿电路,节省了 COMP 管脚及外置 COMP 电容,完全避免了板级漏电或者干扰引起的对 COMP 脚的影响。启动速度更快。

MT7854BS 内部集成了自适应 THD 补偿电路,补偿值会根据工作模式自动调节,无需增加外部补偿电路,即可使总谐波失真低于 15% @220Vac。同时有效降低奇次谐波分量,能轻松满足奇次谐波失真标准 IEC61000-3-2 的要求,并且对电感的感值不敏感,电感可以在很宽范围内任意选取。

恒流控制

MT7854BS 通过检测电感电流精确地调节 LED 电流。LED 电流可以通过以下方式设定:

$$I_{LED} = \frac{V_{FB}}{R_S}$$

式中 V_{FB} (=200mV)是内部参考电压, R_S 是外部的电流检测电阻(参见第 1 页应用电路图)。

启动与高压供电

MT7854BS 内部集成了高压供电电路,通过母线电压从芯片的 DRAIN 端直接给 VDD 充电,无需启动电阻和供电二极管。在上电启动过程中,VDD电容通过高压供电电路充电。当 VDD 电压达到12V时,内部控制电路开始工作。

当 VDD 电压下降到 8V 以下,系统进入欠压保护状态,这时功率 MOSFET 停止开关并保持关闭。MT7854BS 正常工作后,芯片控制内部高压供电电路的充、放电动作,当 VDD 电压超过 12V 后,停止供电;当 VDD 电压小于 11.5V 后,恢复供电。因此芯片在正常工作时的 VDD 电压在 12V 上下浮动。

反馈检测

在每个开关周期中,PWM 脉冲处于关断状态时, 电感电压通过分压电阻串被反馈到 DSEN 脚,用

 Email:
 sales@maxictech.com
 www.maxictech.com
 Rev1.10

 Tel:
 010-62662828
 版权 © 2018 美芯晟科技(北京)有限公司
 第 5 页

作开关逻辑的控制、过压保护和短路保护等。 DSEN 管脚通过电阻分压网络检测电感电压。为了减小噪声干扰,反馈电压的采样窗口被设定在功率 MOSFET 关断后的 2us 时,如图 2 所示。

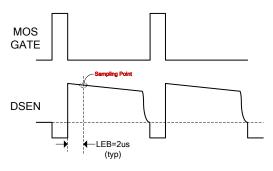


图.2、反馈电压检测

打嗝模式

MT7854BS 在检测到任何异常状态后,比如过压、短路等,都会进入到打嗝模式,这时 PWM 脉冲信号被关闭。并且 MT7854BS 的静态电流下降到更低的值(大约 100µA),内部高压供电电路继续给VDD 供电,持续大约 400ms,之后内部高压供电电路停止供电,芯片对VDD电容放电,一直到VDD电压低于欠压保护阈值。然后 MT7854BS 进入下一个启动过程。当异常的状态消除后,MT7854BS就会在下一个启动过程之后进入到正常的恒流控制模式,实现自恢复。

打嗝模式使系统在异常状态下保持极低的功耗,从 而增强了系统的可靠性。

过压保护

MT7854BS 内部集成了过压保护功能: 当 DSEN 管脚电压在 1ms 内, 3 次出现高于 3.2V 时 (请参考"反馈检测"), MT7854BS 进入打嗝模式。LED 电压的过压阈值可以通过如下公式计算得到(请参考第 1 页中的应用电路图)

$$V_{OUT_{-}OV} = 3.2 \times (1 + \frac{R2}{R3})$$

短路保护

如果在 12 到 16ms 内连续触发 MaxOFF, 短路保护就会被触发。然后 MT7854BS 就会进入打嗝模式。

过流保护

在每一个开关周期,CS 脚的电压超过 1.4V,MT7854BS 就会立即关闭功率 MOSFET。这种逐周期限流模式可以很好的保护相关的功率器件,比如功率 MOSFET、电感等。

温度补偿

当 MT7854BS 结温达到 150°C(±7.5°C)时,芯片内部的温度补偿电路开始随温度的升高迅速减小输出电流,从而使整个系统的温度下降。当芯片结温低于 150°C(±7.5°C)后,系统的输出电流将恢复至正常状态。此温度补偿技术在保护芯片的同时,避免了 LED 的闪烁。

Ton MAX 调节

通过调节 ADJ 脚对地电阻 RADJ与 DSEN 脚对地电阻 RDSEN 的比值,可以设置 TON_MAX 的大小(如下图 3 所示)。

RADJ/RDSEN	Ton_max (µs)			
0	4.4			
1.5	4.9			
2.5	5.5			
3.5	6.4			
4.5	7.3			
5.5	8.8			
6.5	11			
80	27.5			

其中 Rosen 是 DSEN 脚连接的总等效电阻,在第一页的应用电路上,是 R2 和 R3 的并联值。由于 R2 远远大于 R3, R_{DSEN} 近似等于 R3。

受到 Ton_MAX 的限制,当输入母线电压低于某一个 阈值时,输出电流开始下降。Ton_MAX 越小,则输出电流下降对应的输入母线电压阈值越高。

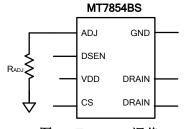
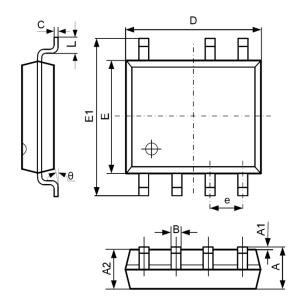



图.3、T_{ON_MAX} 调节

封装信息

SOP-7 PACKAGE OUTLINE AND DIMENSIONS

SYMBOL	DIMENSION IN MILLIMETERS		DIMENSION IN INCHES	
	MIN	MAX	MIN	MAX
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
В	0.330	0.510	0.013	0.020
С	0.190	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
Е	3.800	4.000	0.150	0.157
E1	5.800	6.300	0.228	0.248
е	1.270 TYP		0.050	TYP
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

重要声明

- 在任何时候,美芯晟科技(北京)有限公司(美芯晟)保留在没有通知的前提下,修正、更改、增补、改进和其它改动其产品和服务,和终止任一产品和服务的权利。客户在下单前,应该获取最新的相关信息,也应该确认该信息是最新的和完整的。所有被卖出的产品,均受到在确认订单时所提供的美芯晟的销售条款和条件的制约。
- 在没有美芯晟的书面认可的条件下,禁止复制、抄写、传播和复印本文档。
- 美芯晟仅对其芯片产品质量负责,并保证在芯片销售实际发生之时其产品性能满足指标要求。客户 应在使用美芯晟器件进行设计、生产产品时,提供稳妥可靠的设计和操作安全措施以减小产品应用 的相关风险。

 Email: sales@maxictech.com
 www.maxictech.com
 Rev1.10

 Tel: 010-62662828
 版权 © 2018 美芯晟科技(北京)有限公司
 第 7 页