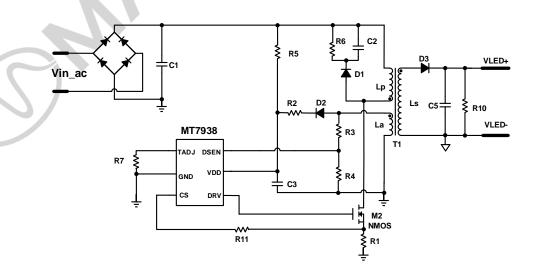
描述

MT7938 是一个单级、高功率因数,原边控制交流转直流 LED 驱动芯片。MT7938 集成片上功率因数校正(PFC)功能,在临界导通模式(Critical Conduction Mode,CRM)下运行,实现了高功率因数并减少功率 MOS 管开关损耗。利用创新的控制技术,无需光耦及副边感应器件就可以精确地调制 LED 电流。

MT7938 内置保护功能,包括过流保护(OCP)、输出过压保护(OVP)、输出短路保护(SCP)和过温调节(OTR)等,以确保系统可靠的工作。同时,MT7938 的过温调节设置引脚 TADJ,可以通过连接外部电阻来灵活设置温度调节的阈值。


应用

- AC/DC LED驱动
- LED信号灯、装饰灯、投光灯、路灯
- E27/PAR30/PAR38/GU10等LED灯
- LED日光灯

主要特点

- 单级有源PFC实现了高功率因数
- 内置积分器(无外置COMP电容)
- 内置THD补偿电路
- 内置线电压补偿
- 原边感应机制,无需光耦
- 高精度LED电流: ±5%
- 临界导通模式运行
- 每周期峰值电流控制
- 多种带有自恢复功能的保护功能
 - 过流保护
 - 输出过压/开路保护
 - 输出短路保护
- 通过过温调节引脚调节温度保护阈值
- 具有软启动功能
- SOT23-6封装

典型应用电路

Email: <u>sales@maxictech.com</u>
Tel: 010-62662828

www.maxictech.com
版权 © 2022 美芯晟科技(北京)股份有限公司

极限参数

VDD 引脚电压	-0.3V ~ VDD 钳位电压
DRV 引脚电压	-0.3V ~ 24V
TADJ/CS/DSEN 引脚电压	-0.3V ~ 5V
功率损耗(P _{DMAX})	0.5W
焊接温度(焊接,10秒)	260°C
存储温度(T _{STG})	-55°C ~ 150°C
工作结温(T」)	-40°C ~ 150°C

推荐工作条件

电源电压	6.8V ~ 20V
工作温度 (环境)	-40°C ~ 125°C

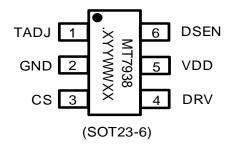
热阻^①

PN 结到外部环境(ReJA)	145°C/W
PN 结到封装表面(Reuc)	80°C/W

注释:

① ReJA, ReJC 的测定是在 TA = 25°C 低效导热性单层测试板上,在自然对流条件下按 JEDEC 51-3 热计量标准进行测试。测试条件: 设备 PCB 安装在 2" X 2" FR-4 的基板上, 2oz 铜箔厚度, 顶层金属放置最小衬垫,通过散热过孔与底层接地平面相连。

 Email: sales@maxictech.com
 www.maxictech.com
 Rev 1.15


 Tel: 010-62662828
 版权 © 2022 美芯晟科技(北京)股份有限公司
 第 2 页

定购信息

定购型号	封装形式	封装形式 包装形式		印章信息
MT7938	SOT23-6	编带 3,000 颗/盘	3	MT7938 .XYYWWXX

管脚排列图

芯片标记:

MT7938: 产品型号

Y: 年代码 W: 周代码 X: 内部代码

管脚描述

管脚名称	管脚号	描述		
TADJ	1	过温调节设置引脚,通过与 DSEN 电阻比值设置温度调节的阈值点。		
GND	2	芯片地。		
CS	3	电流检测引脚。		
DRV	4	外部功率MOS管栅极驱动。		
VDD	5	芯片电源。		
DSEN	6	辅助绕组的反馈电压,通过一个电阻分压器连接到辅助绕组来反映输出电压。		

电气参数

除非特别说明,测试条件为: VDD=15V, TA=25℃。

符号	参数	条件	最小值	典型值	最大值	单位
启动(VDD 引脚)						
ISTART	启动电流			50	1	μA
Vuvlo	欠压锁定阈值	VDD引脚电压下降		6.8		V
VSTART	启动电压	V _{DD} 引脚电压上升		20	7	V
电源电流						
ΙQ	静态电流			0.5		mA
IVDD_CLAMP	VDD 钳位电流	VDD>20V		10		mA
控制回路						
V _{FB}	原边电流感应参考电压		392	400	408	mV
V _{DDCLM}	VDD 钳位电压		, ,	20		V
V _{OVP1}	VDD 引脚过压保护阈值			27		V
V _{OVP2}	DSEN 引脚过压保护阈值			3.6		V
T _{OFF_LEB}	关断 (状态) 前沿消隐时间			2.1		μs
T _{ON_MAX}	最大导通时间			25		μs
T _{OFF_MAX}	最大关断时间			250		μs
T _{MIN}	最小开关周期			10		μs
电流检测(CS 引脚)					
T _{CS_LEB}	CS 脚的内置前沿消隐时间			240		ns
Vcs_ocp	CS 脚的过流保护阀值			1.8		V
热保护(TA	DJ 引脚)					
Totr_max	过热调节最大温度折返阈值	TADJ 引脚浮空		148		°C
Totr_min	过热调节最小温度折返阈值	TADJ 引脚电阻调 节		88		°C
驱动级(DRV 引脚)						
Isink	最大驱动下拉电流	DRV=4V		0.2		А
I _{SOURCE}	最大驱动上拉电流	DRV=4V		0.2		А

功能描述

MT7938 是一个单级、原边反馈的交流转直流 LED 驱动芯片。通过检测原边电信息, LED 电流可精 确调制。MT7938 集成功率因数校正功能和 THD 补偿,能有效地消除了对市电网络的电流谐波污 染。其工作在临界导通模式和准谐振模式 (Quasi-resonant mode, QRM), 降低了开关损 耗,提高了系统效率。

电流控制

通过检测电感去磁时间, MT7938 能够精确调节 LED 电流。LED 电流能够通过下面的公式很容易 的设置(请参阅在第1页的应用电路):

$$I_{LED} = \frac{1}{2} \cdot \frac{N_P}{N_S} \frac{V_{FB}}{R1} \qquad (1)$$

式中 NP 是原边绕组匝数, Ns 是次级绕组匝数; VFB (=400mV) 是内部参考电平, R1 是一个外部电 流感应电阻(参考第1页应用电路)。

启动过程

启动过程中, VDD 通过连接到母线的启动电阻充 电。当 VDD 达到 20V 时,芯片首先在静态条件下 检测 TADJ 引脚电阻值,设定温度调节阈值,然后 内部控制逻辑开始工作。

内置积分器快速建立算法, 使芯片在启动时快速达 到稳定状态,同时避免导通时突变产生电流尖峰, 实现软启动功能。

一旦辅助绕组上的电压升得足够高,芯片的电源将 由辅助绕组提供。

当 VDD 低于 6.8V (欠压锁定阈值电压)时,PWM 信号将会关闭。

功率因数校正

在外部 MOS 管的导通时间内,原边电流会从 0mA 线性增加到峰值,该电流通过感应电阻由 CS 引脚 检测。当原边电流达到阈值极限, MT7938 会立即 关闭 MOS 管。当副边电流耗尽时, MT7938 会再 次开启 MOS 管。通过内部 THD 补偿,校正 CRM 和波谷 DCM 模式下开关周期变化导致的电流波形 失真,使输入平均电流为正弦信号,从而实现高功 率因数和极低的 THD。

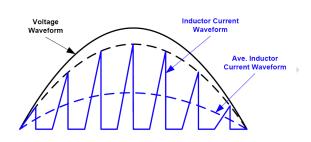


图 1、功率因数校正

辅助绕组电学参数检测

功率 MOS 管的开通是通过检测去磁结束来判断。 去磁检测时间由 DSEN 引脚波形控制,该波形通 过电阻分压器在辅助绕组上取样得到。当 DSEN 波形在关断时间内低于 0V, 这就表明功率 MOS 管 漏极电压已经降至谷底或者附近此时将触发启动 功率 MOS 管。此外,最小关断时间机制保证了系 统的抗干扰能力。

除此以外, MT7938 还具有开路保护等功能, 该功 能是通过检测辅助绕组的波形信息来触发的。因为 在功率 MOS 管关断时间内,辅助绕组电压与输出 电压(次级绕组电压)成正比。辅助绕组电压的检 测是由 DSEN 引脚在栅极驱动信号结束后经过一 个前沿消隐时间后进行采样的。辅助绕组检测功能 如图 2 所示。

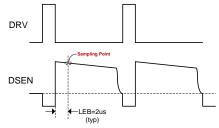


图 2、辅助绕组电学参数检测

线电压补偿

内置线电压补偿电路。可以通过调节 DSEN 引脚 R3 和 CS 外置电阻 R11 来调节(参考第一页的应 用电路图) 改变线性补偿比例。

当输入电压 Vin 由低到高时:

lo越来越大,说明线补能力太弱。此时应增大 R11

www.maxictech.com Email: sales@maxictech.com Tel: 010-62662828

Maximizing IC Performance

单级高功率因数 AC-DC LED 驱动

电阻,但不要超过 1kΩ,如果仍不能达到指标要求, 再减小 R3 直至达到要求。

lo 越来越小,说明线补太强。此时应减小 R11 电阻,最小至 0Ω ,如果仍不能达到指标要求,再增大 R3 直至达到要求。

为保证输出过压阈值保持不变,R3 阻值调整,则R4 阻值要同比例调整。

THD 补偿

MT7938 内部集成了自适应 THD 补偿电路,补偿值会根据工作模式自动调节,无需增加外部补偿电路,并且对电感值不敏感,可以在很宽范围内任意选取电感。

输出过电压保护

MT7938 内置两个输出过压保护机制:

(1) 若 DSEN 引脚电压高于 3.6V 三次,则被判定为输出开路。MT7938 将关闭 PWM 开关信号,VDD 电压逐渐降至 UVLO 阈值,并进入重启模式。输出电压的过压保护阈值 Vour_ov可以由下式来设定(参考第 1 页的应用电路):

$$V_{\text{OUT_OV}} = 3.6 * (1 + \frac{R3}{R4}) * \frac{N_s}{N_s} + V_{D3}$$
 ----- (2)

式中 N_s 是次级绕组, N_a 是辅助绕组, V_{D3} 是次级绕组整流二极管的正向压降。

(2) 如果 VDD 引脚的电压连续三个开关周期超过 27V,MT7938 将自动关闭 PWM 信号,VDD 逐步降至 UVLO 阈值,并进入重启模式。建议设计合适的变压器 Na 与 Ns 比例.将 VDD 电压设置在12V 到 18V 之间。

触发过压保护功能后 PWM 驱动信号将停止。计时 300ms 后系统对 VDD 放电或 VDD 自然放电到 UVLO 后重启。

输出短路保护

如果芯片检测不到 DSEN 下降沿,进入 Toff_MAX 并持续 10ms~20ms,则触发输出短路保护功能。PWM 驱动信号将停止。计时 300ms 后系统对 VDD 放电或 VDD 自然放电到 UVLO 后重启。

上述重启过程将一直重复, 直到短路消除。

过流保护

一旦 CS 引脚电压超过 1.8V,MT7938 将立即关断 功率 MOS 管。这种逐周期过流检测的方式保护了 相关的元件免于损坏,如功率 MOS 管,变压器等 等。

在短路状态下,如果前一个周期触发了 Toff_MAX,那么下一个周期的过流保护阈值将会降低到 0.8V,防止短路检测响应时间内电流过大。

过温调节阈值点设置(TADJ 引脚电阻调节)

TADJ 引脚经电阻 R7(如下图 3 所示)接地。通过调节 R7 与 DSEN 引脚对地电阻 RDSEN 的比值,可以设置温度调节阈值(TOTR)的大小。各温度阈值如下表所示。芯片在 DSEN 引脚内置 9kΩ 串联电阻,计算 TOTR 时请将按照内外串联总电阻计算(如下表所示)。

R7/(R _{DSEN} +9kΩ)的比值	T _{OTR} (°C)
0.1	88
1.5	96
2.5	103
3.5	112
4.5	120
5.5	129
6.5	138
∞	148

其中 RDSEN 是 DSEN 引脚连接的总等效电阻,在第一页的应用电路上,是 R3 和 R4 的并联值。由于 R3 远远大于 R4,RDSEN 近似等于 R4。当温度大于 TOTR 时,输出电流开始逐渐下降。

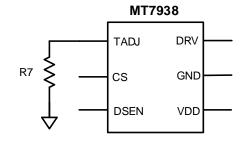
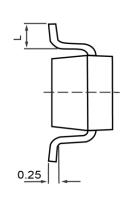
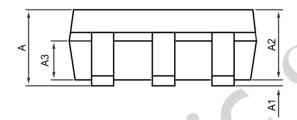


图 3、TADJ 引脚电阻调节

Rev 1.15


第6页


封装外形尺寸

SOT23-6 PACKAGE OUTLINE AND DIMENSIONS

CV/MDOL	MILIMETER			
SYMBOL	MIN	NOM	MAX	
Α	-	-	1.25	
A1	0.04	-	0.10	
A2	1.00	1.10	1.20	
A3	0.55	0.65	0.75	
D	2.72	2.92	3.12	
E	2.60	2.80	3.00	
E1	1.40	1.60	1.80	
е	0.95BSC			
e1	1.90BSC			
L	0.30	-	0.60	

重要声明

- 在任何时候,美芯晟科技(北京)股份有限公司(美芯晟)保留在没有通知的前提下,修正、更改、 增补、改进和其它改动其产品和服务,和终止任一产品和服务的权利。客户在下单前,应该获取最 新的相关信息,也应该确认该信息是最新的和完整的。所有被卖出的产品,均受到在确认订单时所 提供的美芯晟的销售条款和条件的制约。
- 在没有美芯晟的书面认可的条件下,禁止复制、抄写、传播和复印本文档。
- 美芯晟仅对其芯片产品质量负责,并保证在芯片销售实际发生之时其产品性能满足指标要求。客户 应在使用美芯晟器件进行设计、生产产品时,提供稳妥可靠的设计和操作安全措施以减小产品应用 的相关风险。

Email: sales@maxictech.com Rev 1.15 www.maxictech.com 版权 © 2022 美芯晟科技(北京)股份有限公司 Tel: 010-62662828