

Features

- Zero Forward/Reverse Recovery Current
- High Blocking Voltage
- High Frequency Operation
- Positive Temperature Coefficient on V_F
- Temperature Independent Switching Behavior
- · High surge current capability

Benefits

- Higher System Efficiency
- Parallel Device Convenience without thermal runaway
- Higher Temperature Application
- No Switching loss
- · Hard Switching & Higher Reliability
- Environmental Protection

Applications

- PC Power
- Server Power Supply
- AC/DC converters
- DC/DC converters
- Uninterruptable power supplies

Maximum Ratings (T_C=25°C unless otherwise specified)

Parameter	Symbol	Test conditions	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}	5	650	V
Peak Reverse Surge Voltage	V_{RSM}		650	V
DC Blocking Voltage	V_{R}		650	V
Continuous Forward Current	I _F	T _C =25°C	28	Α
		T _C =135°C	11	
121		T _C =140°C	10	
Non repetitive Forward Surge Current	I _{FSM}	T_C = 25°C, t_p =10 ms, Half Sine Pulse	50	Α
		T _C = 110°C, t _P =10 ms, Half Sine Pulse	40	
		T_C = 25°C, t_p =10 μ s, Square	300	
Repetitive peak Forward Surge Current	I _{FRM}	T_C = 25°C, t_p =10 ms, Freq = 0.1Hz, 100 cycles, Half Sine Pulse	40	Α
i cililli		T_C = 110°C, t_p =10 ms, Freq = 0.1Hz, 100 cycles, Half Sine Pulse	30	
Total power dissipation	P _D	T _C =25°C	83	W
Operating Junction Temperature	TJ		-55 to 175	°C
Storage Temperature	T _{STG}	19,	-55 to 175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Electrical Characteristics

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
DC Blocking Voltage	V_{DC}	$I_R = 250 \mu A, T_J = 25^{\circ} C$	650			V
15"		$I_F = 10A, T_J = 25^{\circ}C$		1.5	1.8	V
Forward Voltage	V _F	$I_F = 10A, T_J = 125^{\circ}C$		1.65		
		$I_F = 10A, T_J = 175^{\circ}C$		1.8		V
		$V_R = 650V, T_J = 25^{\circ}C$		10	80	uA
Reverse Current	I_{R}	$V_R = 650V, T_J = 125^{\circ}C$		68		uA
	- C	$V_R = 650V, T_J = 175^{\circ}C$		190		uA
Total Capacitive Charge	Q_{C}	V _R = 400V		23		nC
Total Capacitive Charge	QC	$T_J = 25^{\circ}C$		20		110
		$V_R = 1V$, $T_J = 25$ °C,		387		
		Freq = 1MHz		007		
Total Capacitance	С	$V_R = 200V, T_J = 25^{\circ}C,$		48		pF
Total Supusitarios		Freq = 1MHz	_			ρ.
		$V_R = 400V, T_J = 25^{\circ}C,$		33	19	
		Freq = 1MHz		- 50		

Note: This is a majority carrier diode, so there is no reverse recovery charge

Thermal Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Thermal Resistance	$R_{th(j-c)}$	junction-case	9,,	1.8		

Ordering Information

Order number	Package	Marking	Operation Temperature Range	MSL Grade	Ship,Quantity	Green
SIDL10G65C5XUMA2	DFN8080-4L	SC6D10065Q	-55 to 175°C	1	T&R,3000	Rohs

Typical Electrical Curves

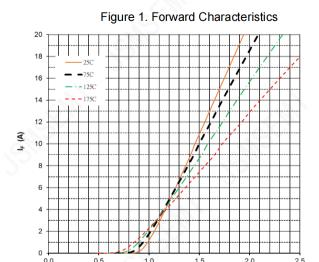


Figure 3. Reverse Characteristics

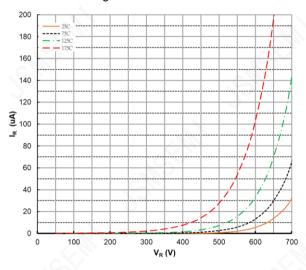


Figure 5. Capacitance vs Reverse Voltage

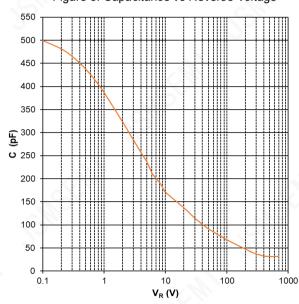


Figure 2. Forward Characteristics

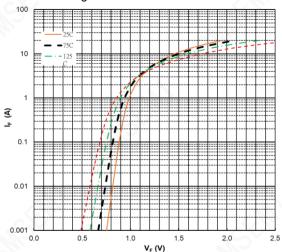
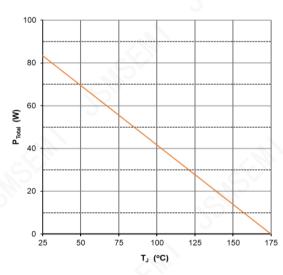
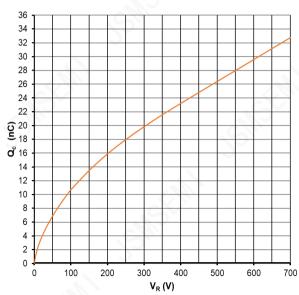
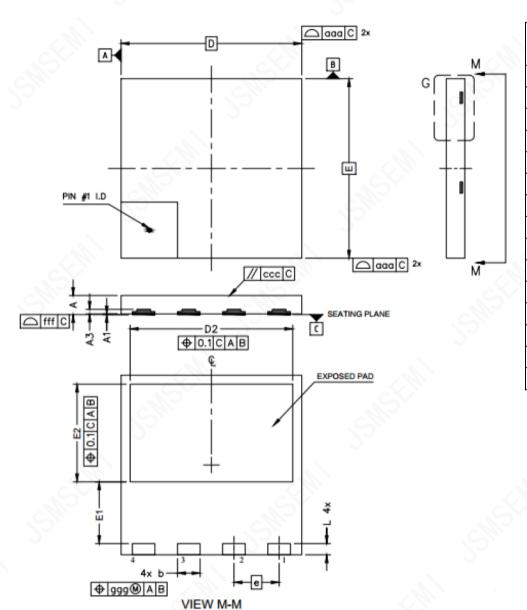


Figure 4. Power Derating


Figure 6. Recovery Charge vs Reverse Voltage

Package Dimensions

(DFN 8x8 Package)

Millimeters				
Min	Max			
0.75	0.95			
0.00	0.05			
0.10	0.30			
0.9	1.10			
7.90	8.10			
7.90	8.10			
7.10	7.30			
2.65	2.85			
4.25 4.45				
2.00 ((BSC)			
0.40	0.60			
0.10				
0.05				
0.05				
0.05				
	Min 0.75 0.00 0.10 0.9 7.90 7.10 2.65 4.25 2.00 (0.40 0.6			

Revision History

Rev.	Change	Date
V1.0	Initial version	2/23/2022
)

Important Notice

JSMSEMI Semiconductor (JSMSEMI) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC JSMSEMI PRODUCTS ARE SPECIFICALLY DESIGNATED BY JSMSEMI FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF JSMSEMI PRODUCTS WHICH JSMSEMI HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

JSMSEMI assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using JSMSEMI products.

Resale of JSMSEMI products or services with statements different from or beyond the parameters stated by JSMSEMI for that product or service voids all express and any implied warranties for the associated JSMSEMI product or s ervice. JSMSEMI is not responsible or liable for any such statements.

JSMSEMI All Rights Reserved. Information and data in this document are owned by JSMSEMI wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from JSMSEMI.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the JSMSEMI product that you intend to use.

For additional information please contact Kevin@jsmsemi.com or visit www.jsmsemi.com