

ESD


TVS

TSS

MOV

GDT

PLED

B320A-13-F-MS THRU B3100A-13-F-MS

Product specification

VOLTAGE RANGE: 20 - 100V
CURRENT: 3.0 A
FEATURES

- Schottky Barrier Chip
- Ideally Suited for Automatic Assembly
- Low Power Loss, High Efficiency
- For Use in Low Voltage Application
- Guard Ring Die Construction
- Plastic Case Material has UL Flammability Classification Rating 94V-O

MECHANICAL DATA

- Case: SMA/DO-214AC, Molded Plastic
- Terminals: Solder Plated, Solderable per MIL-STD-750, Method 2026
- Polarity: Cathode Band or Cathode Notch
- Weight: 0.064 grams (approx.)

Marking

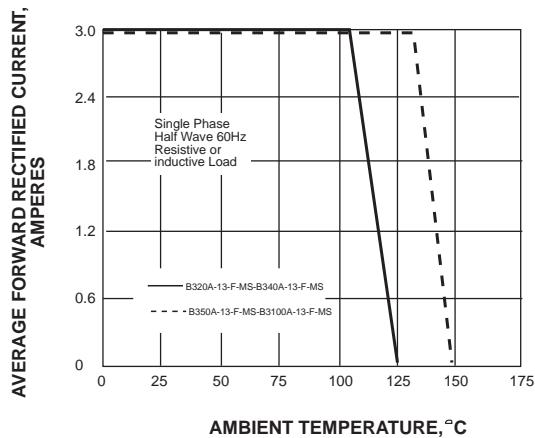
B320A-13-F-MS	B330A-13-F-MS	B340A-13-F-MS	B350A-13-F-MS
MSKSEMI B320A	MSKSEMI B330A	MSKSEMI B340A	MSKSEMI B350A
B360A-13-F-MS	B380A-13-F-MS	B390A-13-F-MS	B3100A-13-F-MS
MSKSEMI B360A	MSKSEMI B380A	MSKSEMI B390A	MSKSEMI B3100A

Maximum Ratings and Electrical Characteristics $T_A = 25^\circ\text{C}$ unless otherwise specified

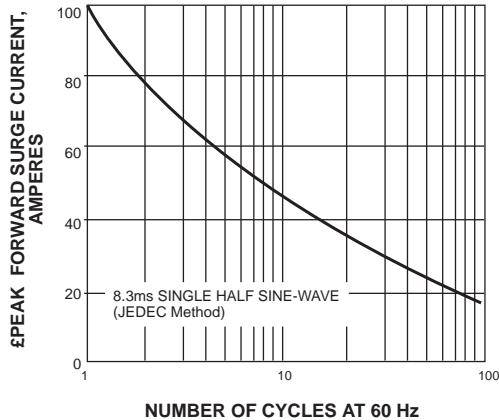
Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	B320A-13-F-MS	B330A-13-F-MS	B340A-13-F-MS	B350A-13-F-MS	B360A-13-F-MS	B380A-13-F-MS	B390A-13-F-MS	B3110A-13-F-MS	Unit
Peak Repetitive Reverse Voltage	VR _{RRM}									
Working Peak Reverse Voltage	VR _{WM}	20	30	40	50	60	80	90	100	V
DC Blocking Voltage	V _R									
RMS Reverse Voltage	V _R (RMS)	14	21	28	35	42	56	64	71	V
Average Rectified Output Current @ $T_L = 105^\circ\text{C}$	I _O									A
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	I _{FSM}									A
Forward Voltage @ $I_F = 2.0\text{A}$	V _{FM}	0.55		0.70		0.85				V
Peak Reverse Current @ $T_A = 25^\circ\text{C}$ At Rated DC Blocking Voltage @ $T_A = 100^\circ\text{C}$	I _{RM}			1.0		20				mA
Typical Thermal Resistance (Note 1)	R _{θ JL} R _{θ JA}			10		50				°C/W
Operating Temperature Range	T _j			-65 to +125						°C
Storage Temperature Range	T _{STG}			-65 to +150						°C

Reference News


SMA/DO-214AC	Schematic Diagram

PINNING


PIN	DESCRIPTION
1	Cathode
2	Anode

RATINGS AND CHARACTERISTIC CURVES
B320A-13-F-MS THRU B3100A-13-F-MS

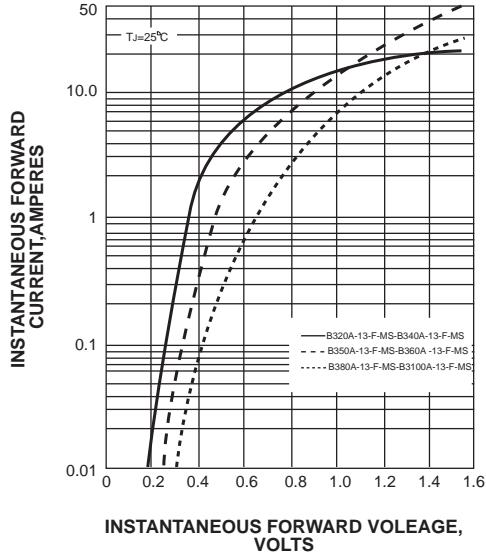
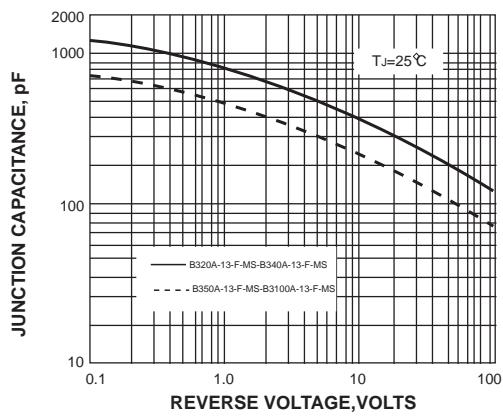
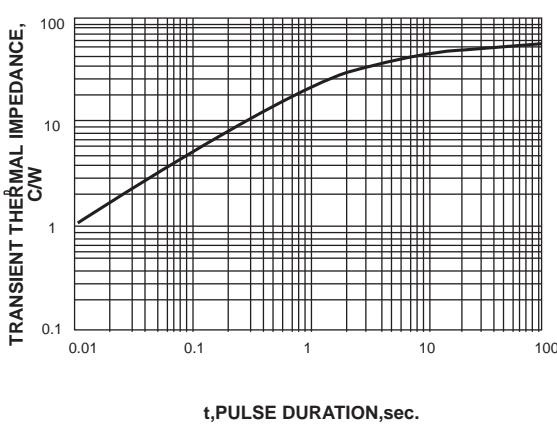

FIG. 1-FORWARD CURRENT DERATING CURVE

FIG. 2-MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT


FIG. 3-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS


FIG. 4-TYPICAL REVERSE CHARACTERISTICS

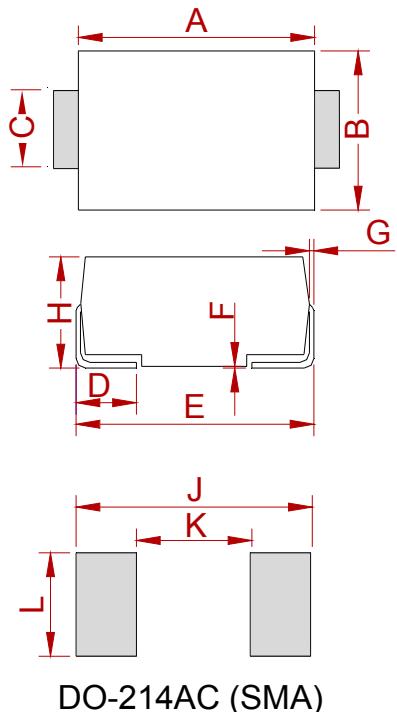


FIG. 5-TYPICAL JUNCTION CAPACITANCE

FIG. 6-TYPICAL TRANSIENT THERMAL IMPEDANCE

PACKAGE MECHANICAL DATA

Ref.	Dimensions			
	Millimeters		Inches	
	Min.	Max.	Min.	Max.
A	4.25	4.65	0.167	0.183
B	2.50	2.90	0.098	0.114
C	1.35	1.65	0.053	0.065
D	0.76	1.52	0.030	0.060
E	4.93	5.28	0.194	0.208
F	0.051	0.203	0.002	0.008
G	0.15	0.31	0.006	0.012
H	1.98	2.41	0.078	0.095
J	6.50		0.256	
K		2.30		0.090
L	1.70		0.067	

REEL SPECIFICATION

P/N	PKG	QTY
B320A-13-F-MS THRU B3100A-13-F-MS	SMA	2000

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor product that you intend to use.