

NCA1C-XXXA/SP10 电流传感器 Current Transducer

 $I_{PN} = 50, 100, 200, 300, 400, 500, 600A$

The NCA1C-XXXA/SP10 Current Transducer is suitable for the electronic measurement of DC, AC or pulsed currents, with galvanic separation between the primary circuit and the secondary circuit.

Features

- Open loop multi-range current transducer
- Voltage output
- Bipolar supply voltage.

Typical application

- DC motor drives
- Uninterruptible Power Supplies (UPS)
- Switched model power supplies (SMPS)

Standards

• EN 50178: 1997

• IEC 61010-1:2010

• UL 508: 2010

- AC variable speed drives
- Battery supplied application
- Power supplies for welding applications.

Absolute rating

Danamatan	Symbol	Unit		Specification	1	Conditions
Parameter	Symbol		Min	Typical	Max	Conditions
Ambient storage temperature	Ts	°C	-40		105	
Ambient operating temperature	T_{A}	°C	-40		105	

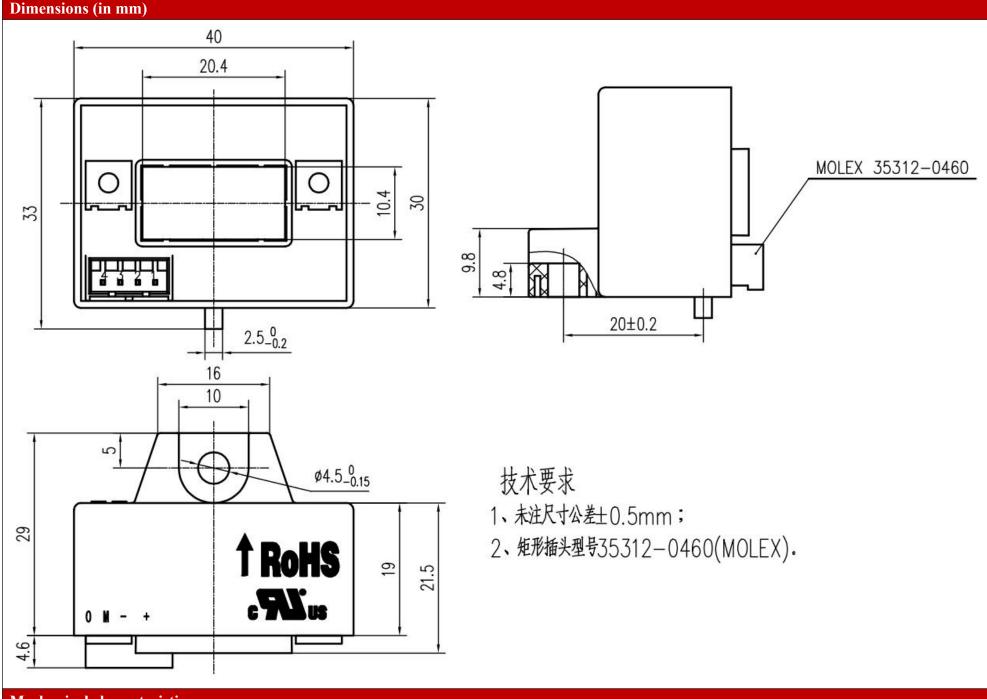
Insulation coordination

Parameter	Symbol	Unit		Specification		Conditions
			Min	Typical	Max	Conditions
Dielectric withstand voltage	V_{D}	kV			3	RMS voltage for AC test 50Hz, 1min
Insulation resistance	R _{INS}	ΜΩ	1000			2500V
Clearance distance	d_{CI}	mm	7.08			Shortest distance through air
Creepage distance	d_{CP}	mm	6.23			Shortest path along device body
Case material	-	-		V0		According to UL 94

Electrical parameters

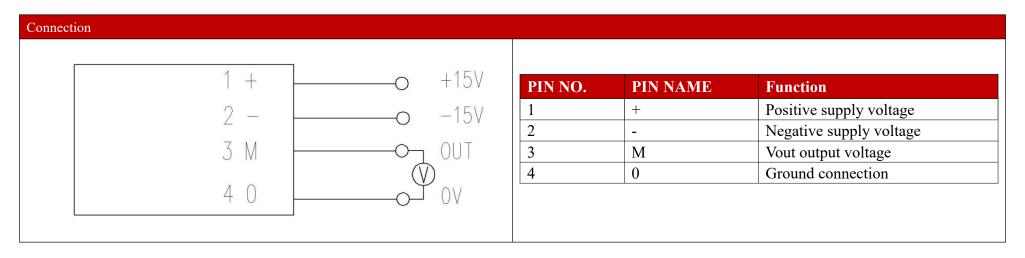
At T_A = 25°C, U_C = ± 15 V, R_L = 10 k $\Omega.$

Parameter	Symbol	Unit		Conditions						
Primary current, nominal range	I_{PN}	A	50	100	200	300	400	500	600	RMS current
Primary current measuring range	I _{PM}	A	±150	±300	±600	±900	±900	±900	±900	


Parameter	Symbol	Unit		Specification	n	
			Min	Typical	Max	- Conditions
Supply voltage	Uc	V	±14.25	±15	±15.75	
Current consumption	I_{C}	mA	-30		30	
Output voltage @I _{PN}	V_{SN}	V		4		
Offset voltage $@I_P = 0A$	V _{OE}	mV	-40		40	
Temperature coefficient of V _{OE}	TCV _{OE}	mV/℃	-1		1	
Temperature coefficient of V _{SN}	TCVs	%/°C	-0.1		0.1	@ -40°C~+105°C
Accuracy(excluding offset)	X	% of I _{PN}	-1		1	@ -40°C~+105°C
Linearity error	$\epsilon_{ m L}$	% of I _{PN}	-1		1	
Step response time to 90 % I _{PN}	t _r	μs			3	di/dt > 50 A/μs
Frequency bandwidth ¹⁾	BW	kHz		25		-3 dB
Load resistance	R_{L}	kΩ	10			
Output internal resistance	R _{OUT}	Ω		100		

Notes:

- 1) The frequency bandwidth test is for small signal.
- 2) Please contact CRRC if current transducer is applied in some extreme cases, for example: high frequency ripple, high temperature, larger operating frequency......


Page 1 Total 2 Revision: B Date: 2025/04/28

Mechanical characteristics

- Mass: 65g
- General tolerance: ±0.5mm
- Transducer fastening: 1 hole ø4.5mm, 1 M4 steel screws
- Recommended fastening torque: 2.5 N·m
 Primary through-hole: 20.4×10.4mm
- Connection of secondary: MOLEX 35312-0460

Remarks

- It is advised to use a primary conductor (busbar) that fills transducer through-hole.
- Be aware of the influence of the external field if nearby transducers are too close (relay, capacitor, choke...).

Comments:

- Items with "*" in this datasheet are recommended value for reference only. The final value must be determined by customer.
- CRRC reserves the right to carry out modifications on its transducers, in order to improve them.

Page 2 Total 2 Revision: B Date: 2025/04/28